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1. Introduction

In the present paper in the case of harmonic vibration we study well-
posedness of boundary value problems for elastic cusped prismatic shells in
the first approximation of I.Vekua’s hierarchical models in case of harmonic
vibration. One can find survey of results concerning cusped prismatic shells
in [6]. To the investigation of cusped plates within the framework of clas-
sical Kirchhoff-Love model the works of E. Makhover [8], G. Jaiani [7], N.
Chinchaladze [1] are devoted. Vibration under action of fluids is considered
by N. Chinchaladze [2], N. Chinchaladze and R. Gilbert [4].

We consider symmetric cusped prismatic shells, i.e., plates of variable
thickness with cusped edges. We assume that the cusped plate projection ω
has a Lipschitz boundary ∂ω = γ0∪γ1, where γ0 is a segment of the x1-axis
and γ1 lies in the upper half-plane x2 > 0; moreover, in some neighborhood
of an edge of the plate which may be cusped, the plate thickness has the
following form

2h(x1, x2) =
(+)

h (x1, x2)−
(−)

h (x1, x2) = h0x
κ
2 ,

h0 = const > 0, κ = const ≥ 0, x2 ≥ 0.

Then γ0 will be a cusped edge for κ > 0.

In what follows Xij and eij are the stress and strain tensors, respectively,
ui are the displacements, Φi are the volume force components, ρ is the den-
sity, λ and µ are the Lamé constants, δij is the Kronecker delta. Moreover,
repeated indices imply summation, bar under one of the repeated indices
means that we do not sum.

By uir, Xijr, eijr, Φjr we denote the r-th order moments of the corre-
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sponding quantities ui, Xij, eij, Φj as defined below:(
uir, Xijr, eijr, Φjr

)
(x1, x2, t)

:=

(+)

h (x1,x2)∫
(−)

h (x1,x2)

(
ui, Xij, eij, Φj

)
(x1, x2, x3, t)Pr(ax3 − b) dx3, j = 1, 3.

I.Vekua’s hierarchical models for elastic prismatic shells are the mathemat-
ical models (see, e.g., [11], [12], and [6]). Their constructing is based on
the multiplication of the basic equations of linear elasticity by Legendre
polynomials Pr(ax3 − b), where

a(x1, x2) :=
1

h(x1, x2)
, b(x1, x2) :=

(+)

h (x1, x2) +
(−)

h (x1, x2)
(+)

h (x1, x2)−
(−)

h (x1, x2)

,

and then integration with respect to x3 within the limits
(−)

h (x1, x2) and
(+)

h (x1, x2). By constructing Vekua’s hierarchical models in Vekua’s first
version on upper and lower face surfaces stress vectors are assumed to be
known.

The mathematical model of elastic cusped plates with variable thickness,
in the N = 1 approximation of Vekua’s hierarchical method, is described
by the following degenerating hyperbolic system ([6])

ρhvβ0,tt − µ
[
(hvα0,β),α + (hvβ0,α),α

]
− λ(hvγ0,γ),β − 3λ(hv31),β = Φ

(0)
β ,

ρhv30,tt − µ(hv30,α),α − 3µ(hvα1),α = Φ
(0)
3 , (1)

3ρh3vβ1,tt − 3µ
[
(h3vα1,β),α + (h3vβ1,α),α

]
− 3λ

(
h3vγ1,γ

)
,β

+3
[
µh(v30,β + 3vβ1)

]
= 3hΦ

(1)
β , β = 1, 2,

3ρh3v31,tt − 3µ(h3v31,α),α + 3
[
λhvγ0,γ + 3(λ+ 2µ)hv31

]
= 3hΦ

(1)
3 .

where

r

Φj := Q(+)
n j

√
1 +

((+)

h,1

)2
+
((+)

h,2

)2
+

+(−1)rQ(−)
n j

√
1 +

((−)

h,1

)2
+
((−)

h,2

)2
+ Φjr, j = 1, 3, r = 0, 1;

Q(+)
n j

and Q(−)
n j

are components of the stress vectors acting on the upper

and lower face surfaces with normals
(+)
n and

(−)
n , respectively. Φj0 and Φj1
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are the zero and first moments of the volume forces Φj; vj0 and vj1 are
the components of the zero and first weighted moment of the displacement
vector vjr := h−r−1ujr. The ranges of Latin and Greek indices are {1, 2, 3}
and {1, 2} correspondingly.

2. Harmonic vibration of the cusped plate in case of first ap-
proximation of Vekua’s hierarchical models

We will consider the case of harmonic vibration, i.e.,

vir(x, t) := e−1νt 0vir(x), Φ
(r)
i (x, t) := e−1νt

0

Φ
(r)
i (x),

ν = const > 0, i = 1, 3, r = 0, 1.

For
0
vi0(x) and

0
vi1(x) taking into account (1) we get the following system

(in what follows we omit the overscript index 0 if it will not lead to a
misunderstanding)

−ρν2hvβ0 − µ
[
(hvα0,β),α + (hvβ0,α),α

]
− λ(hvγ0,γ),β − 3λ(hv31),β = Φ

(0)
β ,

−ρν2hv30 − µ(hv30,α),α − 3µ(hvα1),α = Φ
(0)
3 ,

−3ρν2h3vβ1 − 3µ
[
(h3vα1,β),α + (h3vβ1,α),α

]
− 3λ

(
h3vγ1,γ

)
,β (2)

+3
[
µh(v30,β + 3vβ1)

]
= 3hΦ

(1)
β , β = 1, 2,

−3ρν2h3v31 − 3µ(h3v31,α),α + 3
[
λhvγ0,γ + 3(λ+ 2µ)hv31

]
= 3hΦ

(1)
3 .

Denoting by L(1)(x, ∂) the 6× 6 matrix differential operator, generated
by the left-hand side expressions of system (2). We can rewrite (2) in the
following vector form

L(1)(x, ∂)v(x) = F (x), x ∈ ω, (3)

where

L(1)(x, ∂) :=

∥∥∥∥∥∥∥∥∥∥∥∥

L11 L12 L13 L14 L15 L16

L21 L22 L23 L24 L25 L26

L31 L32 L33 L34 L35 L36

L41 L42 L43 L44 L45 L46

L51 L52 L53 L54 L55 L56

L61 L62 L63 L64 L65 L66

∥∥∥∥∥∥∥∥∥∥∥∥
,

L11 := −ρν2h− h(2µ+ λ)
∂2

∂x21
− hµ

∂2

∂x22
− h,2 µ

∂

∂x2
,

L12 := −h(µ+ λ)
∂2

∂x1∂x2
− h,2 µ

∂

∂x1
, L13 = L14 = L15 = 0,

L16 := −3λh
∂

∂x1
, L21 := −h(µ+ λ)

∂2

∂x1∂x2
− h,2 µ

∂

∂x1
,
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L22 := −ρν2h− h(2µ+ λ)
∂2

∂x22
− hµ

∂2

∂x21
− h,2 (µ+ λ)

∂

∂x2
,

L23 = L24 = L25 = 0, L26 := −3λ(h,2 +h
∂

∂x2
),

L31 = L32 = L36 = 0, L33 := −ρν2h− hµ

(
∂2

∂x21
+

∂2

∂x22

)
+ h,2 µ

∂

∂x2
,

L34 := −3µh
∂

∂x1
, L35 := −3µ(h,2+h

∂

∂x2
),

L41 = L42 = L46 = 0, L43 := 3µh
∂

∂x1
, L45 := −3(µ+ λ)h3

∂2

∂x1x2
,

L44 := −3ρν2h3 − 3(2µ+ λ)h3
∂2

∂x21
− 3µh3

∂2

∂x22
+ 3h2h,2

∂

∂x2
+ 9µh,

L51 = L52 = L56 = 0, L53 := 3µh
∂

∂x2
,

L54 := −3(µ+ λ)h3
∂2

∂x1x2
− 3λh2h,2

∂

∂x1
,

L55 := −3ρν2h3v21 − 3µh3
∂2

∂x21
− 3(2µ+ λ)

∂2

∂x22
− 9(2µ+ λ)h2h,2

∂

∂x2
+9µh,

L61 := 3λh
∂

∂x1
, L62 := −3λh

∂

∂x2
, L63 = L64 = L65 = 0,

L66 := −3ρν2h3 − 3µ

(
3h2h,α

∂

∂xα
+ h3

∂2

∂x2α

)
+ 9(λ+ 2µ)h,

v := (v10, v20, v30, v11, v21, v31)
⊤,

F := (Φ
(0)
1 ,Φ

(0)
2 ,Φ

(0)
3 , 3hΦ

(1)
1 , 3hΦ

(1)
2 , 3hΦ

(1)
3 ),

the symbol (·)⊤ means transposition.
Let

v, v∗ ∈ c2(ω) ∩ c1(ω), v∗ := (v∗10, v
∗
20, v

∗
30, v

∗
11, v

∗
21, v

∗
31)

⊤,

where v and v∗ are arbitrary vectors of the above class. After multiplication
(3) by v∗ and integration by parts we obtain the following Green‘s formula∫

ω

L(1)v · v∗dω = B(1)(v, v∗)−
∫
∂ω

Tnv · v∗d∂ω =

∫
ω

F · v∗dω. (4)

Here and in what follows the · denotes the scalar product of two vectors,
n := (n1, n2) is the inward normal to ∂ω,

B(1)(v, v∗) :=

∫
ω

{h[ρν2vj0v∗j0 + µ(vα0,βv
∗
β0,α + vj0,αv

∗
j0,α) + λvα0,αv

∗
β0,β]

+3h3ρν2vj1v
∗
j1 − 3λ(hv31),α v

∗
α0 − 3µ(hvα1),α v

∗
30 (5)

+3h3(µvα1,βv
∗
β1,α + µvj1,αv

∗
j1,α + λvα1,αv

∗
β1,β)

+3λhvα0,αv
∗
31 + 3µhv30,αv

∗
α1 + 9µhvα1v

∗
α1 + 9(λ+ 2µ)hv31v

∗
31}dω,
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Tn := {σn10, σn20, σn30, 3hσn11, 3hσn21, 3hσn31},

with

σnir = σijrnj = {λδij(
1∑

s=r

hs+1
r

bksvks + hr+1vkr,k)}nj

+{µ[
1∑

s=r

hs+1(
r

birvjs +
r

bjsvir) + hr+1(vir,j + vjr,i)]}nj, i = 1, 2, 3, r = 0, 1,

where (see [6])

0

bα0 := −
(+)

h ,α −
(−)

h ,α
2h

,
1

bα1 := −
(+)

h ,α −
(−)

h ,α
h

, α = 1, 2;
0

b30 =
1

b31 = 0,

1

bj0 = 0,
0

bj1 := −3

(+)

h ,α +
(−)

h ,α
2h

= 0, j = 1, 2, 3;

σnir, i = 1, 2, 3, r = 0, 1, denote the zero and first moments of the
corresponding components of the 3D stresses σni, i = 1, 2, 3. From now on,
throughout the paper we assume that the plate is symmetric, i.e.

(−)

h = −
(+)

h , 2h = h0x
κ
2 , h0 = const > 0, κ = const ≥ 0, x2 ≥ 0.

If we consider BVPs for system (3) with homogeneous boundary condi-
tions for which the curvilinear integral along ∂ω in (4) disappears, we arrive
at the equation

B(1)(v, v∗) =

∫
ω

F · v∗dω.

Let us consider the following Dirichlet problem in the classical setting:
Fing a 6-dimensional vector

v = (v10, v20, v30, v11, v21, v31)
⊤

in ω satisfying the system of differential equations (3) in ω and the homo-
geneous Dirichlet boundary condition on

[v(x)]+ = 0, x ∈ ∂ω. (6)

Note that throughout the paper, for smooth classical solutions, equation
(3) and boundary condition (6) are understood in the classical point-wise
sense, while for generalized weak solutions of equation (3) is understood in
the distributional sense and boundary condition (6) understood in the usual
trace sense. To derive the weak setting of the above problem, we have to
apply Green‘s formulas (4). We arrive at the variational equation:

B(1)(v, v∗) = ⟨F, v∗⟩, (7)
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where the bilinear form B(1)(v, v∗) is defined by (5) and

⟨F, v∗⟩ =
∫
ω

(Φ
(0)
j v∗j0 + 3hΦ

(1)
j v∗j1)dω. (8)

Note that the bilinear form (5) can be represented as follows

B(1)(v, v∗) :=

∫
ω

{
(hρν2vi0v

∗
i0 + 3h3ρν2vi1v

∗
i1) +

1∑
r=0

(
r +

1

2

)
×a[λekkr(v)eiir(v∗) + 2µeijr(v)eijr(v

∗)]
}
dω,

where eijr (r = 0, 1) is given by the following expression

eij0 =
1

2
h(vi0,j + vj0,i), eij1 =

1

2
h2(vi1,j + vj1,i).

Further, we construct the vectors in Ω := {(x;x3) : x ∈ ω,−h(x) < x3 <
h(x)} :

wi(x, x3) =
1

2
vi0(x) +

3

2
x3vi1(x), i = 1, 2, 3, (9)

w∗
i (x, x3) =

1

2
v∗i0(x) +

3

2
x3v

∗
i1(x), i = 1, 2, 3. (10)

It can be shown that

B(w,w∗) :=

∫
Ω

[
2ρν2wiw

∗
i + σij(w)eij(w

∗)
]
dΩ = B(1)(v, v∗), (11)

where w(x, x3) := (w1, w2, w3) and w
∗(x, x3) := (w∗

1, w
∗
2, w

∗
3) are vectors and

B(w,w∗) is the bilinear form corresponding to the 3D potential energy for
the displacement vector w. Owing to positive definiteness of the potential
energy for 2λ+ 3µ > 0 and µ > 0.

B(w,w) ≥ 2ρν2
3∑

i=1

∫
Ω

w2
i dΩ + c2

3∑
i,j=1

∫
Ω

[eij(w)]
2dΩ =

3∑
i=1

∫
Ω

2ρν2w2
i dΩ

+c2

∫
ω

dω

∫ h

−h

(1
2
aeij0(v) +

3

2
a2x3eij1(v)

)
·
(1
2
aeij0(v) +

3

2
a2x3eij1(v)

)
dx3

=
3∑

i=1

∫
Ω

2ρν2w2
i dΩ + c2

∫
ω

3∑
i,j=1

(1
2
e2ij0(v) +

3

2
e2ij1(v)

)dω
h

(12)

=

∫
ω

dω

∫ h

−h

2ρν2 · 1
4
(vi0vi0 + 9x23vi1vi1 + 6x3vi0vi1)dx3 + c2

3∑
i,j=1

∫
ω

1

2
e2ij0(v)

dω

h

=
3∑

i=1

∫
ω

hρν2(v2i0 + 3h2v2i1)dω + c2

3∑
i,j=1

∫
ω

1

2
e2ij0(v)

dω

h
.
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After denoting by c0 := min{1, c2} we obtain

B(1)(v, v∗) ≥ c0

∫
ω

(
hρν2

3∑
i=1

(v2i0 + 3h2v2i1) +
1

2

3∑
i,j=1

e2ij(v) ·
1

h

)
dω.

Remark 1. In view of (11) and (12) we conclude that B(1)(v, v) = 0
yields v = 0. Indeed, if B(1)(v, v) = 0, then B(w,w) = 0 by (12). In turn,
the latter equality for the strain tensor eij corresponding to the displacement
vector w implies that eij(w) = 0, i, j = 1, 2, 3, i.e., w is a rigid displacement.
Since w vanishes on the part of the lateral boundary Γ1 of Ω (which contains
at least three points not belonging to a straight line) it follows that w = 0
in Ω. Therefore vir, r = 0, 1, due to formulas (9) and (10).

Denote by D(ω) a space of infinitely differentiable functions with com-
pact support in ω and introduce the linear form [D(ω)]6 by the formula:

(v, v∗)Xκ
1,ν

=

∫
ω

[
hρν2(vi0v

∗
i0 + 3h2vi1v

∗
i1)

+
(1
2
eij0(v)eij0(v

∗) +
3

2
eij1(v)eij1(v

∗)
)1
h

]
dω

=

∫
ω

[
hρν2(vi0v

∗
i0 + 3h2vi1v

∗
i1)
]
dω

+
1

8

3∑
i,j=1

∫
ω

{[
h(vi0,j + vj0,i)

][
h(v∗i0,j + v∗j0,i)

]
+3
[
h2(vi1,j + vj1,i)

][
h2(v∗i1,j + v∗j1,i)

]}dω
h
.

Denote by Xκ
1,ν := Xκ

1,ν(ω) the completion of the space [D(ω)]6 with the
help of the norm:

∥v∥2Xκ
1,ν

=

∫
ω

[
hρν2(v210 + v220 + v230 + 3h2v211 + 3h2v221 + 3h2v231)

+
h

8

(
4v210,1 + 4v220,2 + 2(v10,2 + v220,1)

2 + 2v230,1 + 2v230,2

)
+
3h3

8

(
4v211,1 + 4v221,2 + 2(v11,2 + v21,1)

2 + 2v231,1 + 2v231,2

)]
dω. (13)

Xκ
1,ν is a Hilbert space.
Now we can formulate the weak setting of the homogeneous Dirichlet

problem (6), (7):
Find a vector v = (v10, v20, v30, v11, v21, v31)

⊤ ∈ Xκ
1,ν , satisfying the equal-

ity

B(1)(v, v∗) = ⟨F, v∗⟩ for all v∗ ∈ Xκ
1,ν . (14)

Here, the vector F belongs to the adjoint space [Xκ
1,ν ]

∗, in general, and
⟨·, ·⟩ denotes duality brackets between the spaces [Xκ

1,ν ]
∗ and Xκ

1,ν .
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Lemma 2. The bilinear form B(1)(·, ·) is bounded and strictly coercive
in the space Xκ

1,ν(ω), i.e., there are positive constant C0 and C1 such that

|B(1)(v, v∗)| ≤ C1∥v∥Xκ
1,ν
∥v∗∥Xκ

1,ν
, (15)

B(1)(v, v) > C0∥v∥2Xκ
1,ν

(16)

for all v, v∗ ∈ Xκ
1,ν.

Proof. Since [D(ω)]6 is dense in Xκ
1,ν it suffices to show inequalities

(15) and (16) for v, v∗ ∈ [D(ω)]6. By the 6-dimensional vectors v and v∗

defined in ω, we construct 3D vectors (9) and (10) defined in Ω. Owing to
equalities (11), (12), and Hooke’s law we have

|B(1)(v, v∗)|2 = |B(1)(w,w∗)|2

=
[ ∫

Ω

2ρν2wiw
∗
i + (2µeij(w) + λδijekk(w))eij(w

∗)dΩ
]2

≤
∣∣∣ ∫

Ω

2ρν2wiw
∗
i dΩ

∣∣∣2 + ∣∣∣ ∫
Ω

(2µeij(w) + λδijekk(w))eij(w
∗)dΩ

∣∣∣2
≤
∫
Ω

2ρν2w2
i dΩ

∫
Ω

2ρν2w∗2
i dΩ + C2

3∑
i,j=1

∫
ω

e2ij(w)dω
3∑

i,j=1

∫
ω

e2ij(w
∗)dω

=

∫
ω

2ρν2h(v2i0 + 3h2v2i1)dω

∫
ω

2ρν2h(v∗2i0 + 3h2v∗2i1 )dω

+C2

∫
ω

3∑
i,j=1

(1
2
e2ij0(v) +

3

2
e2ij1(v)

)dω
h

∫
ω

3∑
i,j=1

(1
2
e2ij0(v

∗) +
3

2
e2ij1(v

∗)
)dω
h

≤ C1∥v∥2Xκ
1,ν
∥v∗∥2Xκ

1,ν
,

where
C1 := max{2, C2}.

Whence (15) follows. Inequality (16) immediately follows from (11) and
(12).

Theorem 3. Let F ∈ [Xκ
1,ν ]

∗. Then the variational problem (14) has a
unique solution v ∈ Xκ

1,ν for an arbitrary value of the parameter κ and

∥v∥Xκ
1,ν

≤ 1

C0

∥F∥[Xκ
1,ν ]

∗ .

Proof. The proof directly follows from the Lax-Milgram theorem (see
Appendix A, Theorem A.1).

It can be easily shown that if F ∈ [L(ω)]6 and suppF ∩ γ0 = ∅, then
F ∈ [Xκ

1 ]
∗ and

⟨F , v∗⟩ =
∫
ω

F (x) v∗(x) dω,
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since v∗ ∈ [H1(ωε)]
6, where ε is a sufficiently small positive number such

that suppF ⊂ ωε = ω ∩ {x2 > ε}. Therefore,

|⟨F , v∗⟩| =
∣∣∣ ∫
ω

F (x) v∗(x) dω
∣∣∣ ≤ ||F ||[L2(ω)]6 ||v∗||[L2(ωε)]6

≤ ||F ||[L2(ω)]6 ||v∗||[H1(ωε)]6 ≤ Cε ||F ||[L2(ω)]6 ||v∗||Xκ
1
.

In this case we obtain the estimate

||v||Xκ
1
≤ Cε

C0

||F ||[L2(ω)]6 .

Now we establish a representation of the spaceXκ
1,ν as a weighted Sobolev

space. To this end, we introduce the following space:

Y κ
1 :=

[ 0

W 1
2 ,κ(ω)

]3
×
[ 0

W 1
2 ,3κ(ω)

]3
,

where
0

W 1
2 ,κ1

(ω) is a completion D(ω) by means of the norm

∥f∥20

W 1
2 ,κ1

(ω) :=

∫
ω

xκ1
2

(
|∇f |2

)
dω, ∇f = (f,1 , f,2 ).

The norm in the space Y κ
1 for a vector (v10, v20, v30, v11, v21, v31) reads as

∥v∥2Y κ
1
:=

∫
ω

[
xκ2

( 3∑
j=1

|∇vj0|2
)
+ x3κ2

( 3∑
j=1

|∇vj0|2
)]
dω.

Theorem 4. Let κ < 1 and κ ̸= 1
3
. Then the linear spaces Xκ

1,ν and
Y κ
1 as sets of vector functions coincide and the norms ∥ · ∥

Xκ
1,ν
, ∥ · ∥

Y κ
1
are

equivalent.
Proof. Rewrite formula (13) in the form

∥v∥2Xκ
1,ν

=

∫
ω

[
h1x

κ
2ρν

2(v210 + v220 + v230) + 3h31x
3κ
2 ρν

2(v211 + v221 + v231)

+
h1x

κ
2

8

(
4v210,1 + 4v220,2 + 2(v10,2 + v220,1)

2 + 2v230,1 + 2v230,2

)
+
3h31x

3κ
2

8

(
4v211,1 + 4v221,2 + 2(v11,2 + v21,1)

2 + 2v231,1 + 2v231,2

)]
dω,

h1 :=
h0
2
.

Let us at first prove the following inequality,

∥v∥2
Xκ

1,ν

≤ C3∥v∥2
Y κ
1

. (17)



42 N. Chinchaladze

Let us denote by

I1 :=

∫
ω

[
h1x

κ
2ρν

2(v210 + v220 + v230) + 3h31x
3κ
2 ρν

2(v211 + v221 + v231)
]
dω,

and by

I2 :=

∫
ω

h1x
κ
2

8

(
4v210,1 + 4v220,2 + 2(v10,2 + v220,1)

2 + 2v230,1 + 2v230,2

)

+
3h31x

3κ
2

8

(
4v211,1 + 4v221,2 + 2(v11,2 + v21,1)

2 + 2v231,1 + 2v231,2

)]
dω.

The inequality,

I2 ≤ C4∥v∥2
Y κ
1

(18)

is a consequence of Hardy’s inequality (see [3]).
Let us now consider

|I1| ≤ h1ρν
2
∣∣∣ ∫

ω

x22x
κ−2
2 (v210 + v220 + v230)dω

∣∣∣
+3h31ρν

2
∣∣∣ ∫

ω

x22x
3κ−2
2 (v211 + v221 + v231)dω

∣∣∣
≤ h1ρν

2l2
∫
ω

xκ−2
2 (v210 + v220 + v230)dω

+3h31ρν
2l2
∫
ω

x3κ−2
2 (v211 + v221 + v231)dω

≤ C5h1ρν
2l2
∫
ω

xκ2 |∇vj0|2dω + C63h
3
1ρν

2l2
∫
ω

x3κ2 |∇vj1|2dω

≤ C7

∫
ω

(
xκ2 |∇vj0|2 + x3κ2 |∇vj1|2

)
dω

if ν2 ≤ 1

h2ρl2
, h2 := max{h1; 3h31}, C7 := max{C5;C6},

i.e.,

I1 ≤ C7∥v∥2
Y κ
1

if ν2 ≤ 1

h2ρl2
, h2 := max{h0

2
;
3h30
8

}. (19)

From (18) and (19) in case of ν2 ≤ 1/(h2ρl
2) we get (17).

Let v ∈ Xκ
1,ν and show that v ∈ Y κ

1 . We have to prove that

∥v∥2
Y κ
1

≤ C0∥v∥2
Xκ

1,ν

(20)

C0 does not depend on v.
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Denote by D(ω) a space of infinitely differentiable functions with com-
pact support in ω and introduce the linear form [D(ω)] ̸ by the formula

(v, v∗)Xκ
1
=

∫
ω

(1
2
eij0(v)eij0(v

∗) +
3

2
eij1(v)eij1(v

∗)
)1
h
dω

=
1

8

3∑
i,j=1

∫
ω

{[
h(vi0,j + vj0,i)

][
h(v∗i0,j + v∗j0,i)

]
+3
[
h2(vi1,j + vj1,i)

][
h2(v∗i1,j + v∗j1,i)

]}dω
h
.

Denote by Xκ
1 := Xκ

1 (ω) the completion of the space [D(ω)]6 with the help
of the norm

∥v∥2Xκ
1
=

∫
ω

h

8

(
4v210,1 + 4v220,2 + 2(v10,2 + v220,1)

2 + 2v230,1 + 2v230,2

)
+
3h3

8

(
4v211,1 + 4v221,2 + 2(v11,2 + v21,1)

2 + 2v231,1 + 2v231,2

)
dω.

Xκ
1 is a Hilbert space (see [3]).
It is evidently,

∥v∥2
Xκ

1

≤ C9∥v∥2
Xκ

1,ν

.

On the other hand, the subset of

∥v∥2
Y κ
1

≤ C10∥v∥2
Xκ

1

is shown in [3]. The last two inequality leads to (20) if ν2 ≤ 1/(h2ρl
2),

h2 := max{h0

2
,
3h3

0

8
}.

Remark 5. From the trace theorem (see Appendix A, Theorem A.4) it
follows that
(i) if κ < 1/3, then the components of the unique solution v to the problem
14 possesses the zero traces on ∂ω;
(ii)if 1/3 < κ < 1, then the components vi0 have the zero traces on the
whole of the boundary ∂ω, while the components vi1 have no traces on the
part γ0 ⊂ ∂ω due to the order degeneration of equations (2).

Remark 6. From the Theorem 1.4 by Hardy’s inequality it follows that
for κ < 1 and κ ̸= 1/3 the linear functional defined by (8) is bounded if

x2Φ
(0)
j , x

1/2
2 Φ

(1)
j ∈ L2(ω), j = 1, 2, 3.

A. Appendix
A.1. The Lax-Milgram theorem. Let V be a real Hilbert space and

let J(w, v) be a bilinear form defined on V ×V . Let this form be continuous,
i.e., let there exist a constant K > 0 such that

|J(w, v)| ≤ K∥w∥
V
∥v∥

V
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holds ∀w, v ∈ V and V -elliptic, i.e., let there exist a constant α > 0 such
that

J(w,w) > α∥w∥2
V

holds ∀w ∈ V . Further let F be a bounded linear functional from V ∗ dual
of V . Then there exists one and only one element z ∈ V such that

J(z, v) = ⟨F, v⟩ ≡ Fv ∀v ∈ V

and
∥z∥

V
≤ α−1∥F∥

V ∗ .

Let ω be as in Section 1 and letD(ω) be a space of infinitely differentiable
functions with compact support in ω.

A.2. Hardy’s Inequality. For every f ∈ D(ω) and ν ̸= 1 there holds
the inequality ∫

ω

xν−2
2 f 2(x) dω ≤ Cν

∫
ω

xν2 |∇f(x)|2 dω, (21)

where the positive constant Cν is independent of f .
By completion of D(ω) with the norm

||f ||2◦
W 1

2,ν(ω)
:=

∫
ω

xν2 |∇ f(x)|2 dω,

we conclude that the inequality (21) holds for arbitrary f ∈
◦
W 1

2,ν(ω).
For proof see [5].

A.3. Korn’s Weighted Inequality. Let φ = (φ1, φ2) ∈ [
◦
W 1

2,ν(ω)]
2

and ν ̸= 1. Then ∫
ω

xν2 [ |∇φ1(x)|2 + |∇φ2(x)|2 ] dω

≤ Cν

∫
ω

xν2[φ
2
1,1(x) + φ2

2,2(x) + (φ1,2(x) + φ2,1(x))
2 ] dω,

where the positive constant Cν is independent of φ.
The proof can be found in [5], [13].

A.4. Trace Theorem. Let 0 < ν < 1 and f ∈
◦
W 1

2,ν(ω). Then the
trace of the function f equals to zero on ∂ω.

For proof see [5], [9], [10].
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