
Proceedings of I. Vekua Institute
of Applied Mathematics
Vol. 61-62, 2011-2012

EXPLICIT SOLUTIONS OF BVPs OF 2D THEORY OF
TERMOELASTICITY WITH MICROTEMPERATURES FOR THE

HALF-PLANE

Bitsadze L., Jaiani G.

Abstract. The present paper deals with a two-dimensional version of statics

of the linear theory of elastic materials with inner structure whose particles, in

eddition to the classical displacement and temperature fields, possess microtem-

peratures. Using the Fourier integrals, some basic boundary value problems are

solved explicitly (in quadratures) for the half-plane.

Keywords and phrases: Thermoelasticity with microtemperatures, explicit

solutions, boundary value problems.

AMS subject classification (2000): 74F05, 74A60, 35Q74.

1. Introduction

The linear theory for elastic materials with inner structure whose parti-
cles, in addition to the classical displacement and temperature fields, pos-
sess microtemperatures was constructed by Iesan and Quintanilla [1] in
2000. The fundamental solutions of the equations of the three-dimensional
(3D) theory of thermoelasticity with microtemperatures were constructed
by Svanadze [2] in 2004. The representations of the Galiorkin type and
general solutions of the system of statics of the above theory were ob-
tained by Scalia, Svanadze, and Tracina [3] in 2010. The linear theory
for microstretch elastic materials with microtemperatures was constructed
by Iesan [4] in 2001, where the uniqueness and existence theorems in the dy-
namical case for isotropic materials are proved. The fundamental solutions
of the equations of the two-dimensional (2D) theory of thermoelasticity with
microtemperatures were constracted by Basheleishvili, Bitsadze, and Jaiani
[5] in 2011.

In the present paper, using the Fourier transform, the two-dimensional
boundary value problems (BVPs) of statics for the linear theory of thermoe-
lasticity with microtemperatures for the half-plane are solved explicitly.

2. Basic equations. Boundary value problems

We consider an isotropic elastic material with microtemperatures. Let
R2

+ denote the upper half-plane x2 > 0. The boundary of R2
+ which is x1-axis

will be denoted by S : Let x := (x1, x2) ∈ R2
+, ∂x :=

(
∂

∂x1
,
∂

∂x2

)
.

The governing homogeneous (i.e., body forces are neglected) system of
the theory of thermoelasticity with microtemperatures has the form [1]-[3]

µ∆u+ (λ+ µ)graddivu-βgradθ = 0, (1)
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k6∆w+ (k4 + k5)graddivw− k3gradθ − k2w = 0 (2)

k∆θ + k1divw = 0, (3)

where u := (u1, u2) is the displacement vector, w := (w1, w2) is the mi-
crotemperature vector, θ is the temperature measured from the constant
absolute temperature T0 (T0 > 0) by the natural state (i.e. by the state of
the absence of loads), λ, µ, β, k, kj, j = 1, ..., 6 are constitutive coeffi-
cients, ∆ is the 2D Laplace operator.

Here we state the BVPs and solved in this paper.
Find a solution U = (u,w, θ) ∈ C2(R2

+) to the system (1-3) in R2
+ ,

satisfying one of the following boundary conditions (BCs) on S :
Problem 1.

(u)+ = φ(x1), (w)+ = f(x1), (θ)+ = f3(x1).

Problem 2.

(u)+ = φ(x1), (w)+ = f(x1),

(
k1w2 + k

∂θ

∂x2

)+

= f3(x1).

Problem 3.

(u)+ = φ(x1), (w1)
+ = f1(x1),

(
T(2)(∂z,n)w

)+
2
= f2(x1), (θ)

+ = f3(x1).

Problem 4.

(u)+ = φ(x1), (w2)
+ = f1(x1),

(
T(2)(∂z,n)w

)+
1
= f2(x1),(

k1w2 + k
∂θ

∂x2

)+

= f3(x1).

The symbol (.)+ denotes the limit on S from R2
+, the vector-functions

φ(x1) := (φ1, φ2), f(x1) := (f1, f2), and function f3, are prescribed,
n := (0, 1) is a unit normal vector, T(2)(∂x,n)w is the microtemperature
stress vector,

T(2)(∂x,n) :=

 k6
∂

∂x2
k5

∂

∂x1

k4
∂

∂x1
k7

∂

∂x2

 , k7 := k4 + k5 + k6.

Note that BVPs for the system (2),(3), which contain only w and θ,
can be investigated separately. Then supposing θ as known we can study
BVPs for the system (1) with respect to u. Combining the results obtained
we arrive at explicit solution for BVPs for the system (1)-(3). First we
assume that θ(x) is known, when x ∈ R2

+, then for u we get the following
nonhomogeneous equation

µ∆u+ (λ+ µ)graddivu = βgradθ. (4)
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It is known that the volume potential u0 [6]

u0 = − 1

π

∫
R2

+

Γ(x-y)gradθds, (5)

where

Γ(x-y) =


λ+ 3µ

2aµ
ln r − λ+ µ

2aµ

(
∂r

∂x1

)2

, −λ+ µ

2aµ

∂r

∂x1

∂r

∂x2

−λ+ µ

2aµ

∂r

∂x1

∂r

∂x2
,

λ+ 3µ

2aµ
ln r − λ+ µ

2aµ

(
∂r

∂x2

)2

 ,

is a particular solution of (4). In (5) gradθ is an exponentially vanishing
at infinity (see (22) below) continuous vector in R2

+ along with its first order
derivatives.

Thus, the general solution of equation (4) is representable in the form
u = V+ u0, where

µ∆V+ (λ+ µ)graddivV = 0.

The last equation is the equation of an isotropic elastic body. So, we have
reduced solving of basic BVPs under consideration to the solution of the
basic BVPs for the equation of an isotropic elastic body.

The solution of the BVP under BC (V)+ = f can be given in the form
[6]

V(x) =
1

π

∫
S

N(∂y,n)Γ(x-y)f(y)ds,

where

N(∂y,n)Γ(x-y) =

 1 +
λ+ µ

λ+ 3µ
cos 2θ,

λ+ µ

λ+ 3µ
sin 2θ

λ+ µ

λ+ 3µ
sin 2θ, 1− λ+ µ

λ+ 3µ
cos 2θ

 ∂θ

∂s
,

θ = arctan
x2

y1 − x1
,

∂

∂s
= n1

∂

∂x2
− n2

∂

∂x1
.

So, it remains to solve BVPs for the system (2),(3).

2.1. Expansion of regular solutions

In 2D space ”rot” is defined as a scalar

rotϕ =
∂ϕ2

∂x1
− ∂ϕ1

∂x2

for a vector ϕ := (ϕ1, ϕ2) and as a vector

rotψ :=

(
∂ψ

∂x2
,− ∂ψ

∂x1

)
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for a scalar ψ (see [7]).
Let further W = (w, θ), where w = (w1, w2) is the microtemperature

vector and θ the temperature, be a regular solution of homogeneous equa-
tions (2),(3).

Theorem 1. The regular solution W = (w, θ) of systems (2),(3) admits
in the domain of regularity a representation

W = (
1
w +

2
w, θ),

where
1
w and

2
w are the regular vectors, satisfying the conditions

∆(∆− s21)
1
w = 0, rot

1
w = 0, (∆− s21)div

1
w = 0,

(∆− s22)
2
w = 0, div

2
w = 0, ∆(∆− s21)θ = 0,

and the constants s21 and s22 are determined by the formulas

s22 :=
k2
k6

> 0, s21 :=
k2k − k1k3

k7k
> 0.

Proof. Let W = (w, θ) be a regular solution of equations (2),(3).
Taking into account the identity

∆w = graddivw− rotrotw, (6)

where

rotrotw :=

(
∂

∂x2

(
∂w2

∂x1
− ∂w1

∂x2

)
,− ∂

∂x1

(
∂w2

∂x1
− ∂w1

∂x2

))
,

from (2) we obtain

w =
k7
k2
graddivw− k6

k2
rotrotw− k3

k2
gradθ,

Let
1
w :=

k7
k2
graddivw− k3

k2
gradθ, (7)

2
w := −k6

k2
rotrotw. (8)

Acting with the operator rot on (7) and considering the identity rotgrad ≡ 0
and with the operator div on (8) we have

rot
1
w = 0, and div

2
w = 0, (9)

respectively. Taking into account the last equalities and (6), from (8) we
get

(∆− s22)
2
w = 0. (10)
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Applying the operator div to equation (2) and taking into account the
identity divgrad ≡ ∆, we obtain

(k7∆− k2)divw− k3∆θ = 0. (11)

Substitution of the value divw = − k
k1
∆θ from (3) into (9) gives

∆(∆− s21)θ = 0. (12)

From (7),(11), and (12), according to (9), we have

∆(∆− s21)
1
w = 0, (∆− s21)div

1
w = 0. (13)

Formulas (9),(10),(12),(13) prove the theorem.
Theorem 2. In the domain of regularity the regular solution of the

system (2),(3) can be represented in the form

W =
1

V +
2

V +
3

V, (14)

where
1

V := (
1
v, θ1),

2

V := (
2
v, θ2),

3

V := (
3
v, 0), (15)

and
∆

1
v = 0, (∆− s22)

3
v = 0, (∆− s21)

2
v = 0,

rot
1
v = 0, rot

2
v = 0 div

3
v = 0.

(∆− s21)div
2
v = 0, ∆θ1 = 0, (∆− s21)θ2 = 0.

Proof. Let

1
v := −(∆− s21)

1
w

s21
,

2
v :=

∆
1
w

s21
, θ1 := −(∆− s21)θ

s21
, θ2 :=

∆θ

s21
. (16)

By virtue of (13),(16) it follows that

1
v +

2
v =

1
w, ∆

1
v = 0, (∆− s21)

2
v = 0.

Since θ is a solution of equation (11) which is of the type of equation

(12)1 satisfied by the vector
1
w, similarly ,

θ = θ1 + θ2, ∆θ1 = 0, (∆− s21)θ2 = 0.

Now, it is clear that if we take
3
v =

2
w, the theorem will be proved by virtue

of (14),(15). Thus,

1
w =

1
v +

2
v, θ = θ1 + θ2, rot

1
w = 0, div

2
w = 0,

∆
1
v = 0, (∆− s21)

2
v = 0,

∆θ1 = 0, (∆− s21)θ2 = 0, (∆− s22)
2
w = 0.

(17)
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Substituting w =
1
w +

2
w into (2),(3)and replacing

1
w and θ by their values

from (16), we obtain

k7s
2
1

2
v − k2(

1
v +

2
v) = k3grad(ϑ1 + ϑ2),

k∆θ2 + k1div(
1
v +

2
v) = 0.

(18)

Equation(18) is satisfied by

1
v = −k3

k2
gradϑ1,

2
v = − k

k1
gradϑ2.

So, we have proved the following
Lemma. If

1
v = −k3

k2
gradϑ1, (19)

2
v = − k

k1
gradϑ2. (20)

and they satisfy the conditions

∆
1
v = 0, (∆− s21)

2
v = 0,

then
W = (

1
w +

2
w, θ),

where
1
w =

1
v +

2
v, θ = θ1 + θ2

and
2
w, θ1, θ2 satisfy the equations

(∆− s22)
2
w = 0, div

2
w = 0, ∆θ1 = 0, (∆− s21)θ2 = 0, (21)

is a solution of equations (2),(3).

2.2. Solution of problem I for a half-plane

The solution of the problem (w+ = f(x1), θ+ = f3(x1)) is sought in
the form

1
v(x) =

1√
2π

+∞∫
−∞

α(1)(ξ) exp(−x2|ξ|) exp(ix1ξ)dξ,

2
v(x) =

1√
2π

+∞∫
−∞

α(2)(ξ) exp(−x2r1) exp(ix1ξ)dξ,

2
w(x) =

1√
2π

+∞∫
−∞

α(3)(ξ) exp(−x2r2) exp(ix1ξ)dξ,

(22)
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θ1(x) =
1√
2π

+∞∫
−∞

α4(ξ) exp(−x2|ξ|) exp(ix1ξ)dξ,

θ2(x) =
1√
2π

+∞∫
−∞

α5(ξ) exp(−x2r1) exp(ix1ξ)dξ,

r2l = ξ2 + s2l , l = 1, 2 α(j) = (α
(j)
1 , α

(j)
2 )T , j = 1, 2, 3.

where α(j) and α4, α5 are absolutely integrable on S unknown vectors and
functions, respectively; besides, according to (21)2

α
(3)
1 iξ − r2α

(3)
2 = 0. (23)

Let us note ([8],[9]) that if vectors F and F̂(ξ) are absolutely integrable
over the entire S, F is bounded and continuous there, then there exists the
Fourier transform

F̂(x1) =
1√
2π

+∞∫
−∞

F(ξ) exp(−ix1ξ)dξ

and the inversion formula

F(ξ) =
1√
2π

+∞∫
−∞

F̂(x1) exp(ix1ξ)dx1

is valid.
In what follows we assume,that f, and f3, are absolutely integrable,

bounded, and continuous on S, moreover f̂ and f̂3 are absolutely integrable
on S.

Taking into account the boundary conditions and (19),(20), (23) for
determining the unknown vector functions α(j), j = 1, 2, 3, and functions
α4, α5 we obtain the following system of algebraic equations

α(1) +α(2) +α(3) = f̂, α4 + α5 = f̂3, (24)

α(1) =
k3
k2

(
−iξ
|ξ|

)
α4, α(2) =

k

k1

(
−iξ
r1

)
α5, (25)

α
(3)
1 iξ − r2α

(3)
2 = 0. (26)

From (24)-(26) we obtain the following system of algebraic equations

−k3
k2
iξα4 −

k

k1
iξα5 + α

(3)
1 = f̂1,

k3
k2

|ξ|α4 +
k

k1
r1α5 +

iξ

r2
α
(3)
1 = f̂2,

α4 + α5 = f̂3.

(27)
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It is easy to show that the determinant of system (27) has the form

D1 =
k

k1

[
ξ2

r2
− r1

]
− k3
k2

[
ξ2

r2
− |ξ|

]
=

[
k

k1
− k3
k2

] [
ξ2

r2
− |ξ|

]

+
k

k1
[|ξ| − r1] = −ks

2
1

k1

1

r2

[
k7
k6

|ξ|
|ξ|+ r2

+
r2

r1 + |ξ|

]
̸= 0,

since k6 and k7 are positive [see[3]).

From (27) we find

α4 = − 1

D1

[
iξ

r2
f̂1 − f̂2 −

k

k1

(
ξ2

r2
− r1

)
f̂3

]
,

α5 =
1

D1

[
iξ

r2
f̂1 − f̂2 −

k3
k2

(
ξ2

r2
− |ξ|

)
f̂3

]
,

α
(3)
1 =

1

D1

[(
k3
k2

|ξ| − k

k1
r1

)
f̂1 +

(
k3
k2

− k

k1

)
iξf̂2 − iξ

kk3
k1k2

(r1 − |ξ|)f̂3
]
,

By their means, according to (25),(26) we find

α(1) = − k3
D1k2

(
−iξ
|ξ|

)[
iξ

r2
f̂1 − f̂2 −

k

k1

(
ξ2

r2
− r1

)
f̂3

]
,

α(2) =
k

D1k1

(
−iξ
r1

)[
iξ

r2
f̂1 − f̂2 −

k3
k2

(
ξ2

r2
− |ξ|

)
f̂3

]
,

α
(3)
2 =

iξ

r2

1

D1

[(
k3
k2

|ξ| − k

k1
r1

)
f̂1 +

(
k3
k2

− k

k1

)
iξf̂2 − iξ

kk3
k1k2

(r1 − |ξ|)f̂3
]
.

Substituting the obtained values in (22), we obtain the desired solution of
the BVP in quadratures.

2.3. Solution of problem 2 for a half-plane

A solution is sought in the form (22). Keeping in mind BCs (i.e. (w)+ =

f(x1),
(
k1w2 + k ∂θ

∂x2

)+
= f3(x1)) and (19),(20),(23), after passing to the

limit, as x2 → 0, we get the following system of algebraic equations

α(1) +α(2) +α(3) = f̂, k1[α
(1)
2 + α

(2)
2 + α

(3)
2 ]− k[α4|ξ|+ r1α5] = f̂3,

α(1) =
k3
k2

(
−iξ
|ξ|

)
α4, α(2) =

k

k1

(
−iξ
r1

)
α5, α

(3)
1 iξ − r2α

(3)
2 = 0.

(28)
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From here we obtain the following system of algebraic equations

−k3
k2
iξα4 −

k

k1
iξα5 + α

(3)
1 = f̂1,

k3
k2

|ξ|α4 +
k

k1
r1α5 +

iξ

r2
α
(3)
1 = f̂2,

−kk7s
2
1

k2
|ξ|α4 +

iξ

r2
k1α

(3)
1 = f̂3.

(29)

The determinant of the system (29) has the form

D2 = −|ξ| k
k2

[
−k3r1

(
|ξ|
r2

− 1

)
+
k2k

k1

(
ξ2

r2
− r1

)]
. (30)

By elementary calculation, from (30) we obtain

D2 = −ks
2
1

k1

|ξ|
r2

[
|ξ|

|ξ|+ r1
+
k7
k6

r1
|ξ|+ r2

]
.

Clearly, D2(0) = 0; D2(ξ) ̸= 0, ξ ̸= 0 and from (29) we have

α4 =
k

D2

[
iξr1
r2

f̂1 −
ξ2

r2
f̂2 +

1

k1

(
ξ2

r2
− r1

)
f̂3

]
,

α5 =
|ξ|
D2

[
iξ

r2

(
k +

k1k3
k2

)
f̂1 +

(
k1k3
k2

|ξ|
r2

+ kk7s
2
1

)
f̂2 −

k3
k2

(
|ξ|
r2

− 1

)
f̂3

]
,

α
(3)
1 =

k

k1k2D2

[
kk7s

2
1|ξ|(r1f̂1 + iξf̂2)− k3iξ(r1 − |ξ|)f̂3

]
,

α(1) =
k3
k2

(
−iξ
|ξ|

)
k

D2

[
iξr1
r2

f̂1 −
ξ2

r2
f̂2 +

1

k1

(
ξ2

r2
− r1

)
f̂3

]
,

α(2) =
k

k1

(
−iξ
r1

)

× |ξ|
D2

[
iξ

r2

(
k +

k1k3
k2

)
f̂1 +

(
k1k3
k2

|ξ|
r2

+ kk7s
2
1

)
f̂2 −

k3
k2

(
|ξ|
r2

− 1

)
f̂3

]
,

α
(3)
2 =

iξ

r2

k

k1k2D2

[
kk7s

2
1|ξ|(r1f̂1 + iξf̂2)− k3iξ(r1 − |ξ|)f̂3

]
.

Substituting the obtained values in (22), we obtain the solution of the
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BVP 2 in quadratures. We assume that f̂3(0) = 0. i.e.
+∞∫
−∞

f3(ξ)dξ = 0.

2.4. Solution of problem 3 for a half-plane

A solution of Problem 3 is sought in the form (22). Keeping in mind

BCs (i.e, (w1)
+ = f1(x1),

(
T(2)(∂z,n)w

)+
2
= f2(x1), (θ)+ = f3(x1)) and

passing to the limit, as x2 → 0, we have the following system of algebraic
equations

α
(1)
1 + α

(2)
1 + α

(3)
1 = f̂1, α4 + α5 = f̂3,

iξk4[α
(1)
1 + α

(2)
1 + α

(3)
1 ]− k7[α

(1)
2 |ξ|+ α

(2)
2 r1 + α

(3)
2 r2] = f̂2,

α(1) =
k3
k2

(
−iξ
|ξ|

)
α4, α(2) =

k

k1

(
−iξ
r1

)
α5, α

(3)
1 iξ − r2α

(3)
2 = 0.

It is easily seen that the determinant of the system for α4, α5, α
(3)
1

D3 = −kk7s
2
1

k1
̸= 0

and

α4 = − 1

D3

[
iξ(k5 + k6)f̂1 + f̂2 +

kk7s
2
1

k1
f̂3

]
,

α5 =
1

D3

[
iξ(k5 + k6)f̂1 + f̂2

]
,

α
(3)
1 =

1

k2

[
((k5 + k6)ξ

2 + k2)f̂1 − iξf̂2 + k3iξf̂3

]
,

α(1) = −k3
k2

(
−iξ
|ξ|

)
1

D3

[
iξ(k5 + k6)f̂1 + f̂2 +

kk7s
2
1

k1
f̂3

]
,

α(2) =
k

k1

(
−iξ
r1

)
1

D3

[
iξ(k5 + k6)f̂1 + f̂2

]
,

α
(3)
2 =

iξ

k2r2

[
((k5 + k6)ξ

2 + k2)f̂1 − iξf̂2 + k3iξf̂3

]
.

Substituting the obtained values in (22) and taking into account the follow-
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ing formulas [8]

1√
2π

+∞∫
−∞

exp[−x2|ξ|] exp[iξ(x1 − y1)]dξ =

√
2

π

x2
r2
,

1√
2π

+∞∫
−∞

exp(−x2rα) exp[iξ(x1 − y1)]
1

rα
dξ =

√
π

2
iH

(1)
0 (isαr),

where H
(1)
0 (isαr) is the first kind Hankel function of zero order,

r2 = (x1 − y1)
2 + x22, r2α = s2α + ξ2, α = 1, 2,

we obtain

w = −k3
k2
gradθ1 −

k

k1
gradθ2 +

2
w,

2
w(x) =

i

2k2

+∞∫
−∞


(k5 + k6)

∂3H
(1)
0 (is2r)

∂x21∂x2
− k2

∂H
(1)
0 (is2r)

∂x2
,

−(k5 + k6)
∂3H

(1)
0 (is2r)

∂x31
+ k2

∂H
(1)
0 (is2r)

∂x1

 f1(y)dy

+
i

2k2

+∞∫
−∞


−∂

2H
(1)
0 (is2r)

∂x1∂x2

∂2H
(1)
0 (is2r)

∂x21

 [−f2(y) + k3f3]dy,

θ1(x) =
−1

πD3

+∞∫
−∞

{
(k5 + k6)

∂2 ln r

∂x1∂x2
f1(y) +

∂ ln r

∂x2

[
f2(y) +

kk7s
2
1

k1
f3(y)

]}
dy,

θ2(x) =
−i
2D3

+∞∫
−∞

{
(k5 + k6)

∂2H
(1)
0 (is1r)

∂x1∂x2
f1(y) +

∂H
(1)
0 (is1r)

∂x2
f2(y)

}
dy.

2.5. Solution of problem 4 for a half-plane

Analogously, we obtain a solution of Problem 4 with BCs

(w2)
+ = f1(x1),

(
T(2)(∂z,n)w

)+
1
= f2(x1),

(
k1w2 + k

∂θ

∂x2

)+

= f3(x1)
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for a half-plane:

w = −k3
k2
gradθ1 −

k

k1
gradθ2 +

2
w,

2
w(x) =

i

2k2

+∞∫
−∞


(k5 + k6)

∂3H
(1)
0 (is2r)

∂x22∂x1
,

−(k5 + k6)
∂3H

(1)
0 (is2r)

∂x2∂x21

 f1(y)dy

− i

2k2

+∞∫
−∞


∂2H

(1)
0 (is2r)

∂x22

−∂
2H

(1)
0 (is2r)

∂x1∂x2

 f2(y)dy, D4 = −k
2k7s

2
1

k1
|ξ|r1
r2
,

θ1(x) =

k1
πkk7s21

+∞∫
−∞

{
(k5 + k6)

∂2 ln r

∂x22
f1(y) +

∂ ln r

∂x1
f2(y) +

k2
k1

ln rf3(y)

}
dy,

θ2(x) =
ik1

2kk7s21

+∞∫
−∞

{
−(k5 + k6)

∂2H
(1)
0 (is1r)

∂x21
+ k7s

2
1H

(1)
0 (is1r)

}
f1(y)dy

+
ik1

2k2k7s21

+∞∫
−∞

{
k
∂H

(1)
0 (is1r)

∂x1
f2(y) + k3H

(1)
0 (is1r)f3(y)

}
dy.
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