
Proceedings of I. Vekua Institute
of Applied Mathematics
Vol. 58, 2008

PROGRAMMING WITH SEQUENCE AND CONTEXT VARIABLES

Dundua B.

Research Institute for Symbolic Computation
Johannes Kepler University of Linz, Austria

A-4040 Linz, Austria
e.mail: dundua@risc.uni-linz.ac.at

Abstract. Context and sequence variables make matching flexible and expres-
sive. In pattern matching based programming, they enhance capabilities of the
language to write compact, declarative, and readable code. PρLog is a tool that
extends Prolog with context sequence matching and strategic conditional trans-
formation rules. In this paper we briefly describe PρLog, concentrating on the
usage of context and sequence variables in programming.

Keywords and phrases: Rule based programming, logic programming, context
sequence matching, rewriting.

AMS subject classification (2000): 68N17; 03B70; 68T15; 68Q42.

1. Introduction

In recent years usefulness of sequence and context variables has been
shown in various areas of mathematics and computer science. Sequence
variables are placeholders for arbitrarily long finite sequences of expressions
and have applications in programming [16], XML querying and transforma-
tion [4], term rewriting [7], knowledge engineering and artificial intelligence
[15], automated reasoning [13, 6]. Context variables are placeholders for
contexts, which are functional expressions whose applicative behavior is to
replace a special constant (the constant hole) with the expression given
as argument. They have applications in compositional semantics of natu-
ral language [11, 8]. Combination of this variables in a single framework
allows flexible term traversal in arbitrary width (with sequence variables)
and in arbitrary depth (with context variables). In addition, we can restrict
possible values of sequence and context variables by constraining sequence
variables by regular hedge expressions and context variables by regular tree
expressions.

Solving equations between hedges containing context and sequence vari-
ables is a challenging task in unification theory, since decidability of context
unification is still an open problem [14]. In [9] matching between hedges
over context and sequence variables (context sequence matching) has been
studied and a matching algorithm for both unconstrained matching and for
matching with regular constraints has been given. Moreover, this matching
algorithm is finitary and always computes minimal complete set of matchers.

26 Dundua B.

PρLog is a system for rule-based programming [5] based on the calculus
described in [10]. It integrates powerful pattern matching mechanisms with
sequence and context variables and regular constraints in a single frame-
work. These capabilities together with strategies enable highly declarative
programming style that is expressive enough to support concise implementa-
tions for: specifying and prototyping deductive systems, solvers for various
equational theories, tools for XML querying and transformation, etc. We
do not elaborate on the role of strategies in PρLog system here, but, rather,
focus on demonstrating the expressive power of context and sequence vari-
ables in PρLog programs.

PρLog was inspired by rule-based programming languages such as ELAN
[1] and Maude [3], but the computational mechanism is different. ELAN
is based on the ρ-calculus, Maude is based on the rewriting logic [2, 3],
Whereas PρLog is based on the principles of logic programming with nega-
tion as finite failure [10] and extends logic programming with sequence,
context, functional variables, regular expressions and strategic conditional
transformation rules for hedges.

2. Matching Power

Terms t and hedges h are main syntactic categories of PρLog language
and are constructed in a standard way:

t ::= hole | i X | f(h) | f X(h) | c X(t) terms
h ::= eps | t | s X | (h, h) hedge

where i_X, f_X, c_X, s_X are from countable sets of individual, functional,
context and sequence variables respectively, f ranges over a countably set of
functional symbols, hole is a special function symbol called the hole sym-
bol, eps stands for the empty hedge and is omitted whenever it appears as
a subhedge of another hedge. A context is a term with a single occurrence
of the hole constant. Application of a context to a term t is a term derived
by replacing the hole in the context with t. We write anonymous individ-
ual variables as i_, sequence variables as s_ , context variables as c_ and
functional variables as f_.

A substitution is a mapping from individual variables to hole-free terms
that are not sequence variables, from sequence variables to hole-free hedges,
from function variables to function variables and symbols, and from context
variables to contexts, such that all but finitely many individual and function
variables are mapped to themselves, all but finitely many sequence variables
are mapped to themselves considered as singleton sequences, and all but
finitely many context variables are mapped to themselves applied to the
hole. A substitution is a solution of the matching problem t1 << t2,
where t2 is a ground term, if t1 solution=t2

Context sequence matching is the main computational mechanism in
the PρLog system. In this paper we describe neither the algorithm nor its
implementation (context sequence matching is in general not unique and

Programming with Sequence and Context 27

hence the system has to choose matcher). Instead, we just demonstrate
the algorithm on simple examples. First we consider an example without
regular constraints.

Example 1. Context sequence matching without regular constraints

match([c_C(h(s_X,b,s_Y))<< f(a,b,h(a,b,b,h(a,b)))], Solution).

Solution = [c_C ---> f(a, b, hole), s_X ---> a,

s_Y ---> (b, h(a, b))] ;

Solution = [c_C ---> f(a, b, hole), s_X ---> (a, b),

s_Y ---> h(a, b)] ;

Solution = [c_C ---> f(a, b, h(a, b, b, hole)), s_X ---> a,

s_Y ---> eps] ;

false.

If we restrict the possible values of the sequence variable s_X by the
regular hedge expression sstar(a) (the language generated by it is {eps, a,

(a,a), (a,a,a),...}) and the possible values of the context variable c_C

by the regular tree expression f(s_,hole) (the language generated by it
is {f(s_,hole)}), then we have:

match([c_C(h(s_X,b,s_Y))<< f(a,b,h(a,b,b,h(a,b))),

[s_X, sstar(a)],[c_C, f(s_,hole)]],Solution).

Solution = [c_C ---> f(a, b, hole), s_X ---> a,

s_Y ---> (b, h(a, b))] ;

false.

3. Programming

A PρLog program is a collection of Prolog clauses and clauses in the form
st :: h1 ==> h2 where C :- body where st stands for strategies, h1, h2

for hedges and C for regular constraints to restrict sequence and context
variables occurring in h1 and h2. body is conjunction of prolog literals
and PρLog atoms in the form st :: h1 ==> h2 where C or its negation.
We require PρLog clauses and those prolog clauses that define a predicate
that occurs in the body of some PρLog clause to be well-moded [12, 10].
A PρLog query is a conjunction of PρLog and Prolog literals satisfying
well-modedness property. We require the restriction of well-modedness to
guarantee that each execution step is performed using matching [9] and not
unification (whose decidability is not known)[14].

For well-moded programs and queries, PρLog uses Prolog’s depth-first
inference mechanism with the leftmost literal selection in the goal. If the se-
lected literal is a Prolog literal, then it is evaluated in the standard way. If it
is a PρLog atom of the form st :: h1 ==> h2 where C, then PρLog finds
a (renamed copy of a) program clause st’ :: h1’ ==> h2’ where C’ :-

body and computes matcher σ = [st’<<st,h1’<<h1,C’]. Then, it replaces

28 Dundua B.

the selected literal in the query with the conjunction of bodyσ and a lit-
eral id :: h2’σ ==> h2 where Cσ, applies σ to the rest of the query and
continues. Success and failure are defined in the standard way. Backtrack-
ing allows to explore other alternatives that may come from matching the
(input positions in the) selected query literal to the (input positions in the)
head of the same program clause in a different way, or to the (input positions
in the) head of another program clause. If selected literal is negation of the
atom st :: h1 ==> h2 where C, then it is processed by the standard
negation-as-failure rule.

Application of a PρLog program clauses (we sometime call it rule) in
the form st :: h1 ==> h2 where C :- body to a query may return sev-
eral results, which may come from multiple matchers. In order to take
into account non-determinism and set of results, and to control rule ap-
plication, the concept of strategy is introduced. PρLog provides several
predefined strategy operators, such as compose (sequential composition),
choice (nondeterministic choice), nf (normalization), first one (leftmost
applicable strategy), rewrite (term rewriting extended to hedges), map1

(map of the application of a strategy to all terms of the input hedge), etc.
for building strategies which specifies application of sequence of rules to a
given input.

To demonstrate expressive power of sequence and context variables and
role of strategies in programming, we show how some problems can be
implemented in PρLog.

Example 2. The following program illustrates how bubble sort can be
implemented in PρLog.

swap(f_Ordering) :: (s_X, i_I, s_Y, i_J, s_Z) ==>

(s_X, i_J, s_Y, i_I, s_Z) :-

not(f_Ordering(i_I,i_J)).

bubble_sort(f_Ordering) := first_one(nf(swap(f_Ordering))).

This algorithm takes two elements from a given sequence and compares
them with respect to f_Ordering. If the elements are not determined to be
ordered by f_Ordering, then they are swapped. nf applies swap repeatedly
until impossible, which leads to a sorted sequence.

Note that,
bubble_sort(f_Ordering) := first_one(nf(swap(f_Ordering)))

is an abbreviation of the clause

bubble_sort(f_Ordering) :: s_X ==> s_Y :-

first_one(nf(swap(f_Ordering))) :: s_X ==> s_Y.

The PρLog query

?(bubble_sort(=<)::(1,3,4,3,2) ==> s_X,Result).

Programming with Sequence and Context 29

produces the result

Result = [s_X ---> (1, 2, 3, 3, 4)] ;

false.

The following example illustrates how easily one-step rewriting can be
implemented in PρLog.

Example 3. One-step rewriting without regular constraint.

rewrite_one_step(i_Str) :: c_X(i_X) ==> c_X(i_Y) :-

i_Str :: i_X ==> i_Y.

If we want to rewrite direct subterms of the function symbol f, then
we have to restrict value of the context variable c_X by the regular tree
expressions c_(f(s_,hole,s_) as is shown in Example

Example 4. One-step rewriting with regular constraint.

rewrite_under_f(i_Str) :: c_X(i_X) ==>

c_X(i_Y) where ([c_X in c_(f(s_,hole,s_))]) :-

i_Str :: i_X ==> i_Y.

Now, we can see how PρLog rewrites terms using rewriting defined by
Example and Example with respect to one-rule rewriting system a → b.

?(rewrite_one_step(st):: f(f(g(a),a),a) ==> s_x,Result).

Result = [s_x ---> f(f(g(b), a), a)] ;

Result = [s_x ---> f(f(g(a), b), a)] ;

Result = [s_x ---> f(f(g(a), a), b)] ;

false.

?(rewrite_under_f(st):: f(f(g(a),a),a) ==> s_x,Result).

Result = [s_x ---> f(f(g(a), a), b)] ;

Result = [s_x ---> f(f(g(a), b), a)] ;

false.

Leftmost innermost strategy traversals given term by leftmost innermost
order and returns first successful result nondeterministically. Implementa-
tion of leftmost innermost strategy is given in Example

Example 5. Leftmost innermost strategy

rewrite_left_in(i_str) :: c_Ctx(f_F(s_Args)) ==>

c_Ctx(i_Contractum) :-

rewrites_at_least(i_str) :: s_Args ==> false,

i_str :: f_F(s_Args) ==> i_Contractum, !.

rewrites_at_least(i_str) :: (s_,i_X,s_) ==> true :-

rewrite(i_str) :: i_X ==> i_, !.

rewrites_at_least(i_str) :: s_ ==> false.

30 Dundua B.

Application of the leftmost innermost rewriting strategy to a term
f(f(g(a),a),a) results

?(rewrite_left_in(st):: f(f(g(a),a),a) ==> s_X,Result).

Result = [s_X ---> f(f(g(b), a), a)] ;

false.

4. Future work

We plan to further experiment with PρLog, implementing various prov-
ing systems, solvers and simplifiers on it. We also would like to extend
PρLog calculus by second order terms containing sequence variables and to
implement it in the new version of PρLog system.

R E F E R E N C E S

1. Baldan P., Bertolissi C., Cirstea H., Kirchner C. A rewriting calculus for cyclic
higher-order term graphs. Mathematical. Structures in Comp. Sci., 17, 3 (2007), 363–
406.

2. Borovanský P., Kirchner C., Kirchner H., Moreau P.E. Elan from a rewriting logic
point of view. Theor. Comput. Sci., 285, 2 (2002), 155–185.

3. Clavel M., Durán F., Eker S, Lincoln P., Narciso M.O., Meseguer J., Quesada J.
Maude: Specification and programming in rewriting logic. Theoretical Computer Science,
2001.

4. Coelho J., Florido M. Clp(flex): Constraint logic programming applied to xml
processing. In On the Move to Meaningful Internet Systems 2004: CoopIS, DOA, and
ODBASE. Proc. of Confederated Int. Conferences, volume 3291 of LNCS, pages 1098–
1112. Springer, 2004.

5. Dundua B., Kutsia T., Marin M. Pρlog. http://www.risc.uni-linz.ac.at/people
/tkutsia/software.html.

6. Ginsberg M.L. The MVL theorem proving system. SIGART Bull., 2, 3 (1991),
57–60.

7. Hamana M. Term rewriting with sequences. Technical Report 97-20, RISC,
Johannes Kepler University, Linz, Austria, 1997.

8. Koller A. Evaluating context unification for semantic underspecification. In Pro-
ceedings of the Third ESSLLI Student Session, Saarbrücken, Germany, 1998.

9. Kutsia T., Marin M. Matching with regular constraints. In Voronkov A Sut-
cliffe G., editor, International Conference on Logic for Programming Artificial Intelli-
gence and Reasoning, volume 3835 of LNAI, pages 215–229. Springer, 2005.

10. Marin M., Kutsia T. Foundations of the rule-based system rholog. Journal of
Applied Non-Classical Logics, 16, 1-2 (2006), 151-168.

11. Niehren J., Pinkal M. A uniform approach to underspecification and parallelism.
In In Proceedings ACL’97, pages 410–417, 1997.

12. Ohlebusch E. Termination of logic programs: Transformational methods revis-
ited. Appl. Algebra Eng. Commun. Comput., 12, 1/2 (2001), 73–116.

13. Paulson L. Isabelle: The next 700 theorem provers. In P. Odifreddi, editor, Logic
and Computer Science, pages 361–386. Academic Press, 1990.

14. RTA List of Open Problems. Problem #90. Are context unification and linear
second order unification decidable? http://rtaloop.mancoosi.univ-paris-diderot.fr/

Programming with Sequence and Context 31

15. Volpano D.M. Haskell-style overloading is np-hard. In Proceedings of the 1994
International Conference on Computer Languages, pages 88–94, 1994.

16. Wolfram S. The Mathematica Book. Wolfram Media, fifth edition, August 2003.

Received: 5.02.2008; revised: 2.07.2008; accepted: 16.10.2008.

