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1. Introduction

In applied sciences, such as plasma physics, shell and elastisity theo-
ries, hydrodynamics, oceanography etc. different problems with nonlocal
boundary conditions arise very often.

One of the first works devoted to nonlocal boundary value problems
belongs to the beginning of the 20th century [1]. Modern investigation of
nonlocal elliptic boundary value problems originates from A. Bitsadze and
A. Samarskii work [2], in which by means of the method of integral equations
the theorems of existence and uniqueness of a solution for the second order
multi-dimensional elliptic equations in rectangle domains are proved. There
are given some classes of problems for which the proposed method works.
Many works are devoted to the investigation of the problem given in [2]
and to some of its generalizations. One of the first among them was the
work [3] where the iterative method of proving the existence of a solution
for Laplace equation was proposed.

It should be noted that the usage of this method gives not only existence
of a solution, but also allows to found effective algorithms for numerical reso-
lution of such problems. By the approach proposed in work [3], the nonlocal
problem reduces to classical Dirichlet problems, that yields the possibility
to apply the elaborated effective methods for numerical resolution of these
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problems. After this work many scientists have been investigating nonlo-
cal problems by using the same or different methods for elliptic equations
and, among them, nonlinear models as well (see, for example, [4-25] and
references therein).

It is well known that, in order to find the approximate solutions, it is im-
portant to construct useful economical algorithms. For constructing of such
algorithms, the method of domain decomposition has a great importance.
There are several reasons why the domain decomposition techniques might
be attractive. Applying this method the whole problem can be reduced to
relative subproblems on the domains which are comparatively less in size,
than the one considered at the beginning. At the same time, we should
note that, together with the sequential count algorithm on each of these
domains, it is frequently possible to apply parallel count algorithm, too. In
the works [5-7, 15, 20, 24] domain decomposition method based on Schwarz
alternative method [26] are displayed for study of nonlocal problems for
Laplace and nonlinear elliptic equations [6, 7, 20].

To solve two or more dimensional problems by using operator decompo-
sition method is important as well. Naturally, among them the research of
nonlocal tasks is essential. Note that, combination of domain as well as op-
erator decomposition is very important too. In this direction, for nonlocal
problems some results are already done (see, for example, [13]).

It is known, how great role takes place variational formulation of bound-
ary problems in modern mathematics. This question for nonlocal elliptic
problems is in the beginning of study yet (see, for example, [23, 25]).

In the present work we give some results, devoted to the domain decom-
position and Schwarz-type iterative methods for Bitsadze-Samarskii nonlo-
cal boundary value problem. Operator decomposition is done as well. More
attention is paid on study of possibility of variational formulation.

Results of this paper are partly published in the works [23, 24].

The outline of this paper is as follows. In section 2, for the Poisson
equation in a rectangle, we state Bitsadze-Samarskii nonlocal problem. In
section 3 the convergence of the Schwarz-type iterative sequential algorithm
as well as the same question for parallel algorithm is studied. The opera-
tor decomposition combining with domain ones is given too. In section 4
variational formulation is stated and discussed.

2. Formulation of the problem

In the plane Oxy, let us consider the rectangle G = {(x, y)|−a < x < 0,
0 < y < b}, a and b are the given positive constants. By ∂G we denote the
boundary of the rectangle G, and by Γt the intersection of the line x = t
with the set G = G ∪ ∂G.

Consider the following nonlocal Bitsadze-Samarskii boundary value prob-
lem [2]:

−∆u(x, y) = f(x, y), (x, y) ∈ G,
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u(x, y)
∣∣
Γ

= 0, (2.1)

u(x, y)
∣∣
Γ−ξ

= u(x, y)
∣∣
Γ0

,

where ∆ = ∂2

∂x2 + ∂2

∂y2 is the Laplace operator, Γ = ∂G\Γ0, ξ ∈ (0, a), f(x, y)

is a given function f(x, y) ∈ C(G) and u(x, y) ∈ C(G) ∩ C(2)(G) is an
unknown function.

Let’s notice that the uniqueness of the solution of problem (2.1) follows
from the extremum principle. It is known, that if f is continuous function
on G, then there exists unique regular solution of problem (2.1) u(x) ∈
C2(G) ∩ C(G) [2].

3. Decomposition algorithms

For the investigation of the problem (2.1) stated in the previous section,
let’s consider the following sequential iterative procedure:

−∆un
1 (x, y) = f(x, y), (x, y) ∈ G1,

un
1 (x, y)|Γ1 = 0, un

1 (x, y)|Γ−ξ1
= un−1

2 (x, y)
∣∣
Γ−ξ1

, (3.1)

n = 1, 2, ...;

−∆un
2 (x, y) = f(x, y), (x, y) ∈ G2,

un
2 (x, y)|Γ2 = 0, un

2 (x, y)|Γ−ξ
= un

2 (x, y)|Γ0
= un

1 (x, y)|Γ−ξ
, (3.2)

n = 1, 2, ... .

Here we utilize the following notations:

G1 = {−a < x < −ξ1, 0 < y < b}, G2 = {−ξ < x < 0, 0 < y < b},

where −ξ1 is a fixed point of the interval (−ξ, 0), Γ1 = ∂G1 \ Γ−ξ1 , Γ2 =
∂G2 \ (Γ−ξ ∪ Γ0) and u0

2(−ξ1, y) ≡ 0.
The iterative procedure (3.1), (3.2) reduces our nonlocal nonclassical

problem (2.1) to the sequence of classical Dirichlet boundary value problems
on every step of the iteration.

The following statement is true [5].
Theorem 3.1. The sequential iterative process (3.1), (3.2) converges

to a solution of problem (2.1) uniformly in the domain G, and the following
estimations are valid:

|u(x, y)− un
1 (x, y)| ≤ Cqn−1, (x, y) ∈ G1,

|u(x, y)− un
2 (x, y)| ≤ Cqn−1, (x, y) ∈ G2,

where q ∈ (0, 1) and C are constants independent of functions u(x, y),
un

1 (x, y), un
2 (x, y).
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As we have already noted, algorithm (3.1), (3.2) for the solution of
the problem (2.1) has a sequential form. Now, let us consider one more
approach to the solution of the problem (2.1). In this case the searching
of approximate solutions on domains G1 and G2 will be carried out not by
means of a sequential algorithm, but in a parallel way.

Consider the following overlapping parallel iterative process:

−∆un
1 (x, y) = f(x, y), (x, y) ∈ G1,

un
1 (x, y)|Γ1 = 0, un

1 (x, y)|Γ−ξ1
= un−1

2 (x, y)
∣∣
Γ−ξ1

, (3.3)

n = 1, 2, ...;

−∆un
2 (x, y) = f(x, y), (x, y) ∈ G2,

un
2 (x, y)|Γ2 = 0, un

2 (x, y)|Γ−ξ
= un

2 (x, y)|Γ0 = un−1
1 (x, y)

∣∣
Γ−ξ

, (3.4)

n = 1, 2, ... ,

where u0
1(−ξ, 0) ≡ u0

2(−ξ1, 0) ≡ 0.
The following statement takes place [15].
Theorem 3.2. The parallel iterative process (3.3), (3.4) converges to a

solution of the problem (2.1) uniformly in the domain G, and the following
estimations are valid:

|u(x, y)− un
1 (x, y)| ≤ Cq

n
2
−1, (x, y) ∈ G1,

|u(x, y)− un
2 (x, y)| ≤ Cq

n
2
−1, (x, y) ∈ G2,

where q ∈ (0, 1) and C are constants independent of functions u(x, y),
un

1 (x, y), un
2 (x, y).

Remark 3.1. The theorems analogical to theorems above are also true
for Bitsadze-Samarskii boundary value problem for the following nonlinear
equation

F (x, y, u, p, q, r, s, t) = 0,

where F is the analitic function of its arguments, u = u(x, y), p = ux,
q = uy, r = uxx, s = uxy, t = uyy, and:

4FrFt − F 2
s ≥ const > 0, Fu ≤ 0.

Remark 3.2. Bitsadze-Samarskii nonlocal boundary value problem for
the abovementioned nonlinear equation by using iterative process analogical
to [3] at first was studied in [4] and by domain decomposition method with
Schwarz alternative algorithm in [6, 7, 20].

Remark 3.3. Theorems analogical to theorems above are valid for the
sequential as well as parallel algorithms for multi-grid domain decomposi-
tion case.
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Some developing in investigation of nonlocal problems happened after
publishing of work [8]. In particular, by using specially defined scalar prod-
uct [8], uniqueness of solution of various problems, for which extremum
principle do not takes place, are shown.

In work [13] proof of convergence of corresponding operator and domain
decomposition iterative processes for nonlocal value problem for Poisson
equation are given.

For solving problem (2.1) the following iterative precess is considered:
1. On G arbitrary continuous function q0(x, y) is taken;
2. Solutions of following one-dimensional problems are found:

−∂2un
1

∂x2
= qn(x, y) + f1(x, y), (x, y) ∈ G,

un
1 (−a, y) = 0, un

1 (0, y) = un
1 (−ξ, y), y ∈ (0, b),

n = 0, 1, 2, . . . ;

(3.5)

−∂2un
2

∂y2
= −qn(x, y) + f2(x, y), (x, y) ∈ G,

un
2 (x, 0) = 0, un

2 (x, b) = 0, x ∈ (−a, 0),

n = 0, 1, 2, . . . ,

(3.6)

where f1 and f2 are continuous functions such that f1 + f2 = f .
3. The new approximations are defined as follows:

qn+1(x, y) = qn(x, y) + ρn [un
1 (x, y)− un

2 (x, y)] , (x, y) ∈ G, (3.7)

where ρn are parameters of iteration.
In the work [13] following scalar product is used

(v, w) =

b∫

0

0∫

−ξ

x∫

−a

v(s, y) w(s, y) ds dx dy, (3.8)

which is the same (to within a constant multiplayer) as scalar product given
in [8] for multidimensional parallelepiped. For the corresponding norm of
scalar product (3.8) we will use following notation |[ · ]|.

Let us consider following differences:

q(x, y) = −∂2u

∂x2
− f(x, y), zn

1 (x, y) = un
1 (x, y)− u(x, y),

zn
2 (x, y) = un

2 (x, y)− u(x, y), Qn(x, y) = qn(x, y)− q(x, y).

The following statement takes place [13].
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Theorem 3.3. If parameters ρn of the iterative process (3.5)-(3.7) sat-
isfy the following conditions 0 < ρ0 < ρn < 1, then for all n the following
relations take place:

|[Qn+1]| ≤ |[Qn]|, lim
n→∞

∣∣∣∣
[

∂zn
1

∂x

]∣∣∣∣ = 0,

lim
n→∞

∣∣∣∣
[

∂zn
2

∂y

]∣∣∣∣ = 0, lim
n→∞

|[zn
1 − zn

2 ]| = 0.

Let us consider one more parallel (nonoverlapping) iterative process,
corresponding to domain decomposition [13]. Divided domain G in two
subdomains Ω1 and Ω2: Ω1 = (−a,−ξ)× (0, b), Ω2 = (−ξ, 0)× (0, b). Let’s
denote Γ̄1 = ∂Ω1\Γ−ξ, Γ̄2 = ∂Ω2\ (Γ−ξ ∪ Γ0) and construct sequences of
functions pn(y), un

1 (x, y), un
2 (x, y) in the following way:

1. Initial approximations is taken as follows p0(y) and u0
2|Γ−ξ

= 0;
2. We solve following problems on subdomains:

−∆un
1 (x, y) = f(x, y), (x, y) ∈ Ω1,

un
1 (x, y)|Γ̄1 = 0,

∂un
1 (x, y)

∂x

∣∣∣∣
Γ−ξ

= pn(y),

n = 1, 2, . . . ;

(3.9)

and
−∆un

2 (x, y) = f(x, y), (x, y) ∈ Ω2,

un
2 (x, y)|Γ̄2 = 0,

∂un
2 (x, y)

∂x

∣∣∣∣
Γ−ξ

= pn(y),

un
2 (x, y)|Γ0

= un−1
2 (x, y)

∣∣
Γ−ξ

,

n = 1, 2, . . . ;

(3.10)

3. The new approximations are defined as follows:

pn+1(y) = pn(y)− ρn [un
2 (x, y)− un

1 (x, y)]|Γ−ξ
.

Theorem 3.4. If p0 ∈ L2(0, b), then parameter ρn = ρ can be found such
that sequences constructed from (3.9), (3.10) satisfy relations:

un
i (x, y) → ui(x, y) = u(x, y)|Ωi

strongly in H1(Gi),

un
i (x, y)|Γ−ξ

→ u(x, y)|Γ−ξ
strongly in L2(0, 1),

∂un
i (x, y)

∂x

∣∣∣∣
Γ−ξ

→ ∂u(x, y)

∂x

∣∣∣∣
Γ−ξ

strongly in L2(0, 1), i = 1, 2.
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4. Variational formulation

Regarding to investigation of nonlocal boundary problems study of their
variational formulation is important. In this direction the main difficulty
is asymmetry of corresponding operators of nonlocal boundary problems
(using scalar product (3.8), inequality of positively definiteness can be re-
ceived [8]). To solve this problem, modification of formula from [8] can
be used. This modification is connected to the function of symmetrically
continuances of operator. Such type modification, firstly was done in [22].
In this work positively definiteness of corresponding operator for Bitsadze-
Samarskii problem for the second order ordinary differential equation was
shown on the specially defined lineal of functions. The main difficulty oc-
curs, when the selection of parameters which are included in structure of
functional is necessary for finding of a variational equivalent of a considered
problem, and this selection in case of satisfaction the special conditions
for coefficients which are included in the equation can be achieved [23].
The mentioned method for showing of positively definiteness of operator
of nonlocal boundary problems for some elliptic equations can be extended.
Problem of finding corresponding coordinating function-parameter for these
issues is still difficult for this method and represents subject of future in-
vestigations. Below we consider mentioned method for Bitsadze-Samarskii
nonlocal problem (2.1).

Let us denote by D(G) the lineal of all real functions satisfying the
following conditions:

1. v(x, y) is defined almost everywhere on G, and the boundary value
v(0, y) is defined almost everywhere on Γ0.

2. v(x, y) ∈ L2(G), v(0, y) ∈ L2(0, b).
Two functions v1(x, y) and v2(x, y) are assumed as the same element of

D(G) if v1(x, y) = v2(x, y) almost everywhere on G and v1(0, y) = v2(0, y)
almost everywhere on Γ0.

Let Q be the closed rectangle
{
(x, y)

∣∣ 0 < x < ξ, 0 < y < b
}

and T be

the operator which extends elements of D(G) as follows

T v(x, y) =

{
v(x, y), if (x, y) ∈ G,
−v(−x, y) + 2v(0, y), if (x, y) ∈ Q.

Let us note that operator T associates to every function v(x, y) of the
lineal D(G) the function ṽ(x, y) = T v(x, y) in such a way that the function
ṽ(x, y) − v(0, y) is the odd function with respect to the variable x almost
everywhere for the almost all y ∈ [0, b].

For two arbitrary functions v(x, y) and w(x, y) from the lineal D(G) we
define the scalar product

[v, w] =

b∫

0

ξ∫

−ξ

x∫

−a

ṽ(s, y) w̃(s, y) ds dx dy. (4.1)
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After the introduction of the scalar product (4.1) the lineal D(G) be-
comes the Hilbert space, which we denote by H(G). The norm originated
from the scalar product (4.1) in H(G) we denote by

∥∥ ·
∥∥

H
:

∥∥v
∥∥2

H
=

b∫

0

ξ∫

−ξ

x∫

−a

ṽ2(s, y) ds dx dy.

The following statements take place [23].
Theorem 4.1. The norm defined in H(G) by the formula

∥∥v
∥∥2

=
∥∥v(x, y)

∥∥2

L2(G)
+

∥∥v(0, y)
∥∥2

L2(0,b)

is equivalent to the norm
∥∥ ·

∥∥
H

.

Theorem 4.2. Space H(G) is complete with the metric ρ(v, w) =
∥∥v −

w
∥∥

H
.

Let, the area of definition of the operator A = −∆ is the lineal DA(G)
with H(G) for elements v(x, y) of which the following conditions are fulfilled:

1. v(x, y) ∈ C(∞)(G),
∂kv(0, y)

∂xk
= 0, y ∈ [0, b], k = 1, 2, . . . ;

2. v(x, y)
∣∣
Γ

= 0, v(x, y)
∣∣
Γ−ξ

= v(x, y)
∣∣
Γ0

.

Theorem 4.3. The lineal DA(G) is dense in the space H(G).
Proof. It is enough to show that for the ε > 0 and for arbitrary function

v(x, y) ∈ H(G) function V (x, y) ∈ DA(G) can be found which satisfies
following inequality

‖v(x, y)− V (x, y)‖ < ε.

Assume, that ε0 is arbitrary positive number. We have v(0, y) ∈ L2(0, b),

so can be found such function g(y) ∈ C
(∞)
0 (0, b) that satisfies following

inequality
‖v(0, y)− g(y)‖L2(0,b) < ε0. (4.2)

Let function ϕ(x, y) ∈ C(∞)(G) such that ϕ(x, y) = 1 if (x, y) ∈ G2 =
[−ξ, 0] × [0, b] and ϕ(−a, y) = 0, for all y ∈ [0, b]. Note that v1(x, y) =
g(y)ϕ(x, y) ∈ DA(G) and v1(0, y) = g(y). From (4.2) we get

‖v(0, y)− v1(0, y)‖L2(0,b) < ε0. (4.3)

Let us take function v2(x, y) ∈ C
(∞)
0 (G2) such that

‖v(x, y)− v1(x, y)− v2(x, y)‖L2(G2) < ε0. (4.4)

We assume that function v2(x, y) is zero on the G1 = [−a,−ξ] × [0, b].
It easy to see that v2(x, y) ∈ DA(G).

Analogously, for the difference v(x, y) − [v1(x, y) + v2(x, y)] function

v3(x, y) ∈ C
(∞)
0 (G1) can be found such that

‖v(x, y)− v1(x, y)− v2(x, y)− v3(x, y)‖L2(G1) < ε0. (4.5)
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Let us denote V (x, y) = v1(x, y) + v2(x, y) + v3(x, y). It is obvious that
V (x, y) ∈ DA(G) and from (4.4) and (4.5) we get

‖v(x, y)− V (x, y)‖2
L2(G) = ‖v(x, y)− V (x, y)‖2

L2(G1)

+‖v(x, y)− V (x, y)‖2
L2(G2) = ‖v(x, y)− V (x, y)‖2

L2(G1)

+‖v(x, y)− v1(x, y)− v2(x, y)‖2
L2(G2) < 2 ε2

0,

i.e.,
‖v(x, y)− V (x, y)‖2

L2(G) < 2 ε2
0

and using (4.3) we have also

‖v(0, y)− V (0, y)‖2
L2(0,b) < ε2

0.

Taking into account these inequalities we get

‖v(x, y)− V (x, y)‖ <
√

3 ε0 (4.6)

and if we take ε0 =
ε√
3
, from (4.6) we get validity of the Theorem 4.3.

Thus, the operator A acts from the denser lineal DA(G) of the Hilbert
space H(G) to the space H(G).

Theorem 4.4. Operator A is positively defined on the lineal DA(G).
Remark 4.1. To show the symmetry of the operator A we use the

following two lemmas:
Lemma 4.1. For an arbitrary function v(x, y) of the lineal DA(G) the

following identity is valid
T Av = AT v.

Lemma 4.2. For two arbitrary functions v(x, y) and w(x, y) of the
lineal DA(G) we have

ξ∫

−ξ

∂ṽ(x, y)

∂x
w̃(x, y) dx = 0, y ∈ [0, b].

The scalar product given by (4.1) could be represented in the form

[v, w] =

b∫

0

0∫

−ξ

x∫

−a

v(s, y) w(s, y) ds dx dy + ξ

b∫

0

0∫

−a

v(s, y) w(s, y) dx dy

+

b∫

0

ξ∫

0

0∫

−x

(
2v(0, y)− v(s, y)

)(
2w(0, y)− w(s, y)

)
ds dx dy.
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In the case of the scalar product (3.8) we have the positively defined
operator A, but it is not symmetric.

As A is positive definite operator defined on the lineal DA(G) which is
dense in the space H(G), for the problem (2.1) we can use the standart way
of the variational formulation [27].

Let us introduce the new scalar product on DA(G)

[
v, w

]
A

= [Av, w] =

b∫

0

ξ∫

−ξ

x∫

−a

(
∂ṽ(s, y)

∂s

∂w̃(s, y)

∂s

+
∂ṽ(s, y)

∂y

∂w̃(s, y)

∂y

)
ds dx dy.

Denote by
∥∥ · ∥∥

A
the corresponding norm and by ρA(v, w) the corre-

sponding metric. By HA(G) we denote the energetic space obtained after
completion of DA(G) by the metric ρA(v, w).

Theorem 4.5. The function v(x, y) ∈ H(G) belongs to the space HA(G)
if and only if the following relations are fulfilled:

v(x, y) ∈ H1(G), v(0, y) ∈ ◦
H

1

(0, b),

v(x, y)
∣∣
Γ

= 0, v(x, y)
∣∣
Γ−ξ

= v(x, y)
∣∣
Γ0

= v(0, y).

Thus, for the functions of the space HA(G) the boundary value con-
ditions are conserved. For every function f(x, y) ∈ H(G) there exists a
unique function u(x, y) in the space HA(G), which minimizes the quadratic
functional

F (v) =
∥∥v

∥∥2

A
− 2 [f, v].

For any function v(x, y) ∈ HA(G) the following relation is fulfilled

[u, v]A = [f, v].

If the function u(x, y) is sufficiently smooth then u(x, y) is a solution in
a classical sense of problem (2.1).
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