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Abstract. Large time behavior of solutions and finite difference schemes of non-
linear integro-differential equations associated with the penetration of a magnetic
field into a substance are studied. Two types of integro-differential equations are
considered. Two initial-boundary value problems are investigated for each equa-
tion. The first with homogeneous conditions on whole boundary and the second
with nonhomogeneous boundary data on one side of lateral boundary. The rates
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properties of the corresponding finite difference schemes are also given.
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1. Introduction

The nonlinear integro-differential equations and their systems describe
various processes in physics, economics, chemistry, technology and so on.
One type of integro-differential equation arises for mathematical modeling
of the process of penetrating of magnetic field into a substance. In a qua-
sistationary case the corresponding system of Maxwell’s equations has the
form [1]:

∂H

∂t
= −rot(νmrotH), (1.1)

cν
∂θ

∂t
= νm (rotH)2 , (1.2)

where H = (H1, H2, H3) is a vector of the magnetic field, θ is temperature,
cν and νm are coefficients that characterize physical properties of the sub-
stance. System (1.1) defines the process of diffusion of the magnetic field
and equation (1.2), change of the temperature at the expense of Joule’s
heating without taking into account the heat conductivity.
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If cν and νm depend on temperature θ, i.e., cν = cν(θ), νm = νm(θ),
then the system (1.1), (1.2) can be rewritten in the following form [2, 3]:

∂H

∂t
= −rot


a




t∫

0

|rotH|2 dτ


 rotH


 , (1.3)

where function a = a(S) is defined for S ∈ [0,∞).
Note that the system (1.3) is complex. Equations and systems of (1.3)

type still yield to the investigation for special cases. The model of (1.3) type
was intensively studied by many authors and a large amount of literature is
devoted to its investigation (see, for example, [2-14] and references therein).

The existence, uniqueness and asymptotic behavior of the solutions of
the initial-boundary value problems for the equations of type (1.3) are stud-
ied in the works [2-10, 13]. The existence theorems, that are proved in [2-6,
8] are based on Galerkin’s method and compactness arguments as in [15,
16] for nonlinear problems.

If the magnetic field has the form H = (0, 0, U) and U = U(x, t), then
we have

rot(a(S)rotH) =

(
0, − ∂

∂x

(
a(S)

∂U

∂x

)
, 0

)
,

where

S(x, t) =

t∫

0

(
∂U

∂x

)2

dτ,

and from the system (1.3) we obtain the following nonlinear integro-differential
equation:

∂U

∂t
=

∂

∂x

[
a(S)

∂U

∂x

]
, (1.4)

where

S(x, t) =

t∫

0

(
∂U

∂x

)2

dτ. (1.5)

In [7] some generalization of (1.4), (1.5) is proposed. In particular, as-
suming the temperature of the considered body to be constant throughout
the material, i.e., depending on time, but independent of the space coordi-
nates, the process of penetration of the magnetic field into the material is
modeled by averaged integro-differential model, one-dimensional and scalar
variant of which has the following form

∂U

∂t
= a(S)

∂2U

∂x2
, (1.6)

where

S(t) =

t∫

0

1∫

0

(
∂U

∂x

)2

dxdτ. (1.7)
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Our aim is to study long time behavior of solutions of the first bound-
ary value problems for the equations (1.4), (1.5) and (1.6), (1.7) with zero
conditions in whole lateral boundary as well as the problem with non zero
conditions on one side of lateral boundary. To investigate the corresponding
difference schemes and their convergence properties are purpose of this note
too.

2. Problem with nonhomogeneous Dirichlet conditions on one
side of the lateral boundary

Consider following problem:

∂U

∂t
=

∂

∂x

[
a(S)

∂U

∂x

]
, (x, t) ∈ Q = (0, 1)× (0,∞), (2.1)

U(0, t) = 0, U(1, t) = ψ, t ≥ 0, (2.2)

U(x, 0) = U0(x), x ∈ [0, 1], (2.3)

where

S(x, t) =

t∫

0

(
∂U

∂x

)2

dτ, (2.4)

or

S(t) =

t∫

0

1∫

0

(
∂U

∂x

)2

dxdτ, (2.5)

ψ = const > 0.
In this paper everywhere we assume that a(S) = (1 + S)p. Restrictions

for the p will be concretized in the statements.
It should be noted that boundary conditions (2.2) are used by taking

into account the physical problems considered in [14].
Following statement takes place [9].
Theorem 2.1. Suppose that 0 < p ≤ 1, U0 ∈ H2(0, 1), U0(0) = 0,

U0(1) = ψ. Then for the solution of problem (2.1)-(2.4) the following
asymptotic relations hold as t →∞:

∣∣∣∣
∂U(x, t)

∂x
− ψ

∣∣∣∣ ≤ Ct−1−p,

∣∣∣∣
∂U(x, t)

∂t

∣∣∣∣ ≤ Ct−1,

uniformly in x on [0, 1].
Everywhere in this paper we use usual L2(0, 1) inner-product, corre-

sponding norm and Sobolev spaces Hk(0, 1) and Hk
0 (0, 1). As to symbols

C, as well as Ci and c, in the sections 2 and 3, denote various positive
constants, independent of t.

A series of lemmas is necessary in order to prove Theorem 2.1. We
assume that conditions of the Theorem 2.1 hold.
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Lemma 2.1. For the solution of problem (2.1)-(2.4) the following esti-
mate is true:

t∫

0

1∫

0

(
∂U

∂τ

)2

dxdτ ≤ C.

Lemma 2.2. For the function S following estimates hold:

cϕ
1

1+2p (t) ≤ 1 + S(x, t) ≤ Cϕ
1

1+2p (t),

where

ϕ(t) = 1 +

t∫

0

1∫

0

σ2(x, t)dxdτ (2.6)

and σ = (1 + S)p∂U/∂x.

Lemma 2.3. The following inequalities are true:

cϕ
2p

1+2p (t) ≤
1∫

0

σ2(x, t)dx ≤ Cϕ
2p

1+2p (t).

Lemma 2.4. The derivative ∂U/∂t satisfies the inequality

1∫

0

(
∂U

∂t

)2

dx ≤ Cϕ−
2

1+2p (t).

Lemma 2.5. For ∂S/∂x the following inequality is true

1∫

0

∣∣∣∣
∂S

∂x

∣∣∣∣ dx ≤ Cϕ−
p

1+2p (t).

It is not difficult to show that when p > 0 Lemmas 2.2, 2.3 and 2.4 are
also true for the solution of problem (2.1)-(2.3), (2.5). From these lemmas,
according to the scheme used in [9] we get analogous theorem for problem
(2.1)-(2.3), (2.5) (see [10]).

Theorem 2.2. Suppose that p > 0, U0 ∈ H2(0, 1), U0(0) = 0, U0(1) =
ψ. Then for the solution of problem (2.1)-(2.3), (2.5) the following asymp-
totic relations hold as t →∞:

∣∣∣∣
∂U(x, t)

∂x
− ψ

∣∣∣∣ ≤ Ct−1−p,

∣∣∣∣
∂U(x, t)

∂t

∣∣∣∣ ≤ Ct−1,

uniformly in x on [0, 1].
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Note that, to receive results, given in this section, the scheme simi-
lar to [17], in which the adiabatic shearing of incompressible fluids with
temperature-dependent viscosity is studied, was used.

3. Problem with homogeneous Dirichlet boundary conditions

Consider following initial-boundary value problem:

∂U

∂t
=

∂

∂x

[
a(S)

∂U

∂x

]
, (x, t) ∈ Q, (3.1)

U (0, t) = U (1, t) = 0, t ≥ 0, (3.2)

U (x, 0) = U0 (x) , x ∈ [0, 1], (3.3)

where again

S(x, t) =

t∫

0

(
∂U

∂x

)2

dτ, (3.4)

or

S(t) =

t∫

0

1∫

0

(
∂U

∂x

)2

dxdτ. (3.5)

It is easy to verify the following statement.
Lemma 3.1. If p > 0, then for the solution of problems (3.1)-(3.4) and

(3.1)-(3.3), (3.5) the following estimate is true

‖U‖ ≤ C exp(−t).

Therefore, Lemma 3.1 gives exponential stabilization of the solution of
problems (3.1)-(3.4) and (3.1)-(3.3), (3.5) in the norm of the space L2(0, 1).
As it was shown in [12, 18] the stabilization take place in the norm of the
space H1(0, 1) as well. In particular, following statement hold.

Theorem 3.1. Assume that U0 ∈ H2(0, 1)∩H1
0 (0, 1). If 0 < p ≤ 1 then

for the solution of problem (3.1)-(3.4) and if p > 0 then for the solution of
problem (3.1)-(3.3), (3.5) the following estimate is true as t →∞

∥∥∥∥
∂U

∂x

∥∥∥∥ +

∥∥∥∥
∂U

∂t

∥∥∥∥ ≤ C exp

(
− t

2

)
.

Let’s strengthen the Theorem 3.1. In particular, let us show that stabi-
lization can be achieved in the stronger norm.

The main result of this section has the following form.
Theorem 3.2. Suppose that U0 ∈ H2(0, 1) ∩ H1

0 (0, 1). If 0 < p ≤ 1
then for the solution of problem (3.1)-(3.4) and if p > 0 then for the solution
of problem (3.1)-(3.3), (3.5) the following estimates hold as t →∞:

∣∣∣∣
∂U(x, t)

∂x

∣∣∣∣ ≤ C exp

(
− t

2

)
,

∣∣∣∣
∂U(x, t)

∂t

∣∣∣∣ ≤ C exp

(
− t

2

)
,
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uniformly in x on [0, 1].
Theorem 3.1 helps us to deduce that Lemma 2.2 holds also for the so-

lution of problem (3.1)-(3.4) and (3.1)-(3.3), (3.5). Therefore using this
lemma, (2.6) and again Theorem 3.1 we obtain

dϕ(t)

dt
=

1∫

0

(1 + S)2p

(
∂U

∂x

)2

dx ≤ Cϕ
2p

1+2p (t) exp(−t).

After integrating this inequality, taking into account (2.6), we arrive at

1 ≤ ϕ(t) ≤ C.

From this, keeping in mind Lemma 2.2, we get

1 ≤ 1 + S(x, t) ≤ C. (3.6)

From (3.6) and Theorem 3.1, by taking into account identity

σ2(x, t) =

1∫

0

σ2(y, t)dy +

1∫

0

x∫

y

∂σ2(ξ, t)

∂ξ
dξdy

=

1∫

0

σ2(y, t)dy + 2

1∫

0

x∫

y

σ(ξ, t)
∂U(ξ, t)

∂t
dξdy,

we get

σ2(x, t) ≤ 2

1∫

0

(1 + S)2p

(
∂U

∂x

)2

dx

+

1∫

0

(
∂U

∂t

)2

dx ≤ C exp(−t).

(3.7)

At last if we remind definition of σ, from (3.7) it will be obvious validity
of the first part of the Theorem 3.2.

Now let us estimate derivative ∂U/∂t. For this differentiate equation
(3.1) with respect to t

∂2U

∂t2
− ∂

∂x

[
∂(1 + S)p

∂t

∂U

∂x
+ (1 + S)p ∂2U

∂t∂x

]
= 0. (3.8)

Multiplying (3.8) by ∂U/∂t and carrying integration by parts we get

1

2

d

dt

1∫

0

(
∂U

∂t

)2

dx +

1∫

0

(1 + S)p

(
∂2U

∂t∂x

)2

dx

+p

1∫

0

(1 + S)p−1

(
∂U

∂x

)3
∂2U

∂t∂x
dx = 0.

(3.9)
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Identity (3.9) yields

d

dt

1∫

0

(
∂U

∂t

)2

dx +

1∫

0

(1 + S)p

(
∂2U

∂t∂x

)2

dx

≤ p2

1∫

0

(1 + S)p−2

(
∂U

∂x

)6

dx.

(3.10)

Let’s multiply (3.10) scalarly by exp(2t) and integrate it on (0, t). Us-
ing (3.6), Theorem 3.1 and the first part of the Theorem 3.2, after simple
transformations we have

t∫

0

exp(2τ)
d

dτ

1∫

0

(
∂U

∂τ

)2

dx dτ +

t∫

0

exp(2τ)

1∫

0

(1 + S)p

(
∂2U

∂x ∂τ

)2

dx dτ

≤ p2

t∫

0

exp(2τ)

1∫

0

(1 + S)p−2

(
∂U

∂x

)6

dx dτ,

t∫

0

exp(2τ)

1∫

0

(
∂2U

∂x ∂τ

)2

dx dτ ≤ − exp(2t)

1∫

0

(
∂U

∂t

)2

dx+

1∫

0

(
∂U

∂t

)2

dx

∣∣∣∣∣∣
t=0

+2

t∫

0

exp(2τ)

1∫

0

(
∂U

∂τ

)2

dx dτ + C

t∫

0

exp(−τ) dτ

or
t∫

0

exp(2τ)

1∫

0

(
∂2U

∂x ∂τ

)2

dx dτ ≤ C exp(t). (3.11)

Multiplying (3.8) scalarly by exp(2t)∂2U/∂t2, using the first part of the
Theorem 3.2 and a priori estimates (3.6), (3.11), we get

t∫

0

exp(2τ)

1∫

0

(
∂2U

∂τ 2

)2

dxdτ +
1

2

t∫

0

1∫

0

exp(2τ)(1 + S)p ∂

∂τ

(
∂2U

∂τ∂x

)2

dxdτ

+p

t∫

0

1∫

0

exp(2τ)(1 + S)p−1

(
∂U

∂x

)3
∂

∂τ

(
∂2U

∂τ∂x

)
dxdτ = 0,

exp(2t)

2

1∫

0

(
∂2U

∂t∂x

)2

dx ≤ 1

2

1∫

0

(
∂2U

∂t∂x

)2

dx

∣∣∣∣∣∣
t=0
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+

t∫

0

1∫

0

exp(2τ)(1 + S)p

(
∂2U

∂τ∂x

)2

dxdτ

+
p

2

t∫

0

1∫

0

exp(2τ)(1 + S)p−1

(
∂U

∂x

)2 (
∂2U

∂τ∂x

)2

dxdτ

− exp(2t)p

1∫

0

(1 + S)p−1

(
∂U

∂x

)3
∂2U

∂t∂x
dx

+ p

1∫

0

(
∂U

∂x

)3
∂2U

∂t∂x
dx

∣∣∣∣∣∣
t=0

+ 2p

t∫

0

1∫

0

exp(2τ)(1 + S)p−1

(
∂U

∂x

)3
∂2U

∂τ∂x
dxdτ

+p(p− 1)

t∫

0

1∫

0

exp(2τ)(1 + S)p−2

(
∂U

∂x

)5
∂2U

∂τ∂x
dxdτ

+3p

t∫

0

1∫

0

exp(2τ)(1 + S)p−1

(
∂U

∂x

)2 (
∂2U

∂τ∂x

)2

dxdτ

≤ C1 + C2 exp(t) + C3

t∫

0

exp(2τ) exp(−τ)

1∫

0

(
∂2U

∂τ∂x

)2

dxdτ

+
exp(2t)

4

1∫

0

(
∂2U

∂t∂x

)2

dx + C4 exp(−t) + C5

t∫

0

exp(2τ)

1∫

0

(
∂2U

∂τ∂x

)2

dxdτ

+C5

t∫

0

exp(−τ)dτ + C6

t∫

0

exp(2τ)

1∫

0

(
∂2U

∂τ∂x

)2

dxdτ + C6

t∫

0

exp(−3τ)dτ

+C7

t∫

0

exp(2τ) exp(−τ)

1∫

0

(
∂2U

∂τ∂x

)2

dxdτ,

i.e.,
1∫

0

(
∂2U

∂t∂x

)2

dx ≤ C exp(−t). (3.12)

Using Theorem 3.1 from (3.12), taking into account the relation

∂U(x, t)

∂t
=

1∫

0

∂U(y, t)

∂t
dy +

1∫

0

x∫

y

∂2U(ξ, t)

∂t∂ξ
dξdy,
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we prove the second part of the Theorem 3.2.

Results of Theorems 2.1, 2.2, 3.1 and 3.2 show the difference between
stabilization character of solutions with homogeneous and nonhomogeneous
boundary conditions.

4. Finite difference schemes and numerical solution

Now, assume that p = 1 and rewrite systems (2.1), (2.4) and (2.1), (2.5)
in the following forms

∂U

∂t
=

∂

∂x






1 +

t∫

0

(
∂U

∂x

)2

dτ


 ∂U

∂x



 (4.1)

and

∂U

∂t
=


1 +

t∫

0

1∫

0

(
∂U

∂x

)2

dxdτ


 ∂2U

∂x2
. (4.2)

For the equations (4.1) and (4.2) let us consider the following initial-
boundary value problem:

U(0, t) = U(1, t) = 0, t ≥ 0, (4.3)

U(x, 0) = U0(x), x ∈ [0, 1]. (4.4)

On [0, 1] × [0, T ] let us introduce a net with mesh points denoted by
(xi, tj) = (ih, jτ), where i = 0, 1, ...,M ; j = 0, 1, ..., N , with h = 1/M, τ =
T/N . The initial line is denoted by j = 0. The discrete approximation at
(xi, tj) is designed by uj

i and the exact solution to problems (4.1), (4.3),
(4.4) and (4.2)-(4.4) by U j

i . We will use the following known notations:

rj
t,i =

rj+1
i − rj

i

τ
, rj

t̄,i = rj−1
t,i =

rj
i − rj−1

i

τ
.

For problem (4.1), (4.3), (4.4) let us consider the finite difference scheme:

uj+1
i − uj

i

τ
−

{[
1 + τ

j+1∑

k=1

(uk
x̄,i)

2

]
uj+1

x̄,i

}

x

= 0,

i = 1, 2, ..., M − 1; j = 0, 1, ..., N − 1,

uj
0 = uj

M = 0, j = 0, 1, ..., N,

u0
i = U0,i, i = 0, 1, ...,M,

(4.5)
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and the corresponding scheme for averaged problem (4.2)-(4.4):

uj+1
i − uj

i

τ
−

[
1 + τh

M∑
i=1

j+1∑

k=1

(uk
x̄,i)

2

]
uj+1

x̄x,i = 0,

i = 1, 2, ..., M − 1; j = 0, 1, ..., N − 1,

uj
0 = uj

M = 0, j = 0, 1, ..., N,

u0
i = U0,i, i = 0, 1, ...,M.

(4.6)

Theorem 4.1. If problems (4.1), (4.3), (4.4) and (4.2)-(4.4) have suffi-
ciently smooth solution U = U(x, t), then the solutions uj = (uj

1, u
j
2, . . . , u

j
M−1),

j = 1, 2, . . . , N of the difference schemes (4.5) and (4.6) tend to the solu-
tions of continuous problems U j = (U j

1 , U
j
2 , . . . , U

j
M−1), j = 1, 2, . . . , N as

τ → 0, h → 0 and the following estimate is true

‖uj − U j‖h ≤ C(τ + h), j = 1, 2, . . . , N.

Note that, in Theorem 4.1 the positive constant C is independent of h
and τ .
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