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1. Differential Schemes

Let us consider Cauchy problem in Banach space X:
u'(t) + Au(t) = f(t), u(0)=¢p, t>0, (1.1)

where A is linear densely defined closed operator in X represented in the
following form: A = A; + As; A; and A,y are also densely defined closed
operators in X.

We consider approximate solution of the problem (1.1) by D.Gordeziani
averaged decomposition scheme. Our aim is to obtain explicit estimates
for error of approximate solution. Under the explicit estimates we imply
such a priori estimates for solution approximation, where constants on the
right-hand side do not depend on the solution of initial continuous problem,
i.e. they are absolute constants.

Different types of decomposition schemes are examined in G.Marchuk’s
well-known book (see [1] and extensive bibliography added to it).

D. Gordeziani averaged decomposition differential scheme for approxi-
mate solution of problem (1.1) have the form (see [2]):

dv (¢) (1) (1)
—d + Aju(t) = oo f(t), vy (tke1) = wr—1(tk—1), uo(0) = ¢,
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T Al (1) = (M=) f(0), vl (o) =0 (), (12)
(1)
P4 A (0) = o), wf? (1) = weata), w0(0) =,
(2)
dw’;ﬁ(t) + A (1) = 1 —o)f(t),  wP(tia) =w(t),  (1.3)

t € [th1, te], wi(tr) = %(U/(f)(tk) +wd (), (1.4)

where k =1,2,...,tp = k- 7,7 > 0 is step of time.

The following theorem takes place.

Theorem 1.1. Assume the following conditions are fulfilled:

(a) There exists such wy > 0, that for any X\ > wy, operator A + A is
wnvertible and the estimate is valid:

(A + XD 7F|| < M =const >0, k=1,2,---.

M
(/\ — (,do)k7

(b) There exists such wy > 0, that for any & > wy, operators A;+&I, i =
1,2 are invertible and the following estimates are valid:

(A + D)7 <

§—wr
(¢) D(A™) C D(A"), m=1,2,3 (i = 1,2), operators A; map D(A™),

m = 2,3, in D(A™) (A; : D(A™) — D(A™)) and the following inequal-
ities are valid:

[AFull + | AiAs—sull < | AGull, u e D(A?),

14T ull + | A7 As—sull + | A1 A2 Avull < cl|Agull,  w € D(AY),

where Ag = A — X\oI, N\ is reqular point operator of A, ¢ = const > 0.

(d) f(t) is continuously differentiable function and f'(t) satisfies Lips-
chitz condition; for each fized t from [0;+oc[, f(t) € D(A®), f'(t) € D(A)
and ¢ € D(A%).

Then, if o1 = 1 — aq, for error of scheme (1.2)-(1.4) the following esti-
mate is valid:

ti
lu(tr) — wr(t)ll < e7? [e" (te]| Al + / [ Aof'(t)||dt
0

k bk
+TZ (ASf DN + 1A f (£ )II) + te) +/(tk — 5)e* )| AS £ (s)|ds],
) ’ (1.5)

where w = max(wy, 2wy), ¢ = const > 0.
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To prove Theorem 1.1, we need two lemmas.
Lemma 1.2. If operators Ay, Ay and A satisfy the conditions of Theo-
rem 1.1, then for any natural number n the following estimate is valid:

t

Io® = V() el < ‘”t||A390H p € D(A), (1.6)

V(t) = %[U1 (t)Us(t) + U2 (1)UL (1)],

where U(t) = exp(—tA) and U;(t) = exp(—tA;) are strongly continuous
semigroups generated by operators A and A; (i = 1,2) respectively.

Proof. It is easy to prove that for the semigroup U(t) the following
expansion is valid:

n

Uty =S (- >k,Ak+R““<> (L.7)

k=0

where

t s1 S2
ROD (1) = (=A™ / / / / s)dsdspds,_y - - - dsy.

Note that in this case, in accordance with formula (1.7), we have

V(1) = 5 [Ui(1)Us(7) + Us(1)Us (7)]

N)Ir—t

1 2 2
SO = r A+ S48+ BY(0) + D) (I - 741+ 5 AT+ BY (7))

= [0 ()~ TUA(r) s + UL 43 + () RE (1)

+U(r) = TUs(r) Ay + TUs(r) 43+ Ualr) BV ()]

1 2
=3 [[ —TA, + %A? + Rf’)(r) - T(I —TA] + R?) (T))A2
2
-
5 (1 + RV M) A3+ D) R (7)

2
+I —TAs + %Ag + R (1) — (I = 7As + RY (1)) Ay
2
-
g (1 B (1) AT+ Ua() B ()]

2
= L= r(A+ )+ AT+ Ay Ay + 43) 4 Ryf),

where the remainder term R3(7) is O(73).
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In view of the last formula and (1.7) we obtain (1.6) (see in [3] proof of
the analogous lemma).

Lemma 1.3. (see/3])Assume A operator and f(t) function satisfy the
conditions of Theorem 1.1. Then the following estimate is valid:

ol

I / U(t; — s)f(s)ds — TU(g)f(ti_,

ti
< cr?e( / |AS'(t)||dt + 7‘(||A2f(ti_%)|| +1)), c=const>0, (1.8)
ti—1

i—

where U(t) = exp(—tA)) is strongly continuous semigroup generated by op-
erator A, T = tz - ti—l (tz Z ti—l Z 0)

Proof of Theorem 1.1. As it is known, solution of problem (1.1), by
means of semigroup U (t) = exp(—tA), is expressed by the following formula
(see [4],[5]):

t

u(t) =U(t)p + / Ut —s)f(s)ds. (1.9)

From the system (1.2), according to formula (1.9) we obtain

o0 (t) = Uy (7)1 (b1 + 0 / Us(t — 5) f(s)ds,
v (t) = Us(m)o (8) + (1 — a9) / Us(ty — s)f(s)ds.

From these equations it follows that

Ul(f) (tr) = Ua(1) Uy (T)up—1(tr—1)

+ao/UQ(T)Ul(tk—s)f(s)ds,(l—ao)/UQ(tk—s)f(s)ds. (1.10)

From the system (1.3) similarly follows that

w? (1) = Uy (7)Us (7)1 (t—1)

+0q / U]_(T)Uz(tk — S)f(S)dS + (1 - 0'1) / Ul(tk — S)f(S)dS. (111)

te—1 te—1
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It is clear, that according to the formulas (1.10) and (1.11), we have (see
(1.4)):
(Ul(T>U2(7') -+ UQ(T)Ul(T)>uk,1<tk,1)

N —

—i—%[ao / Us(7)Us (t — $) f(s)ds + o / Uy (7)Us(ts — $)(s)ds

+(1 — 0y) / Us(ty — s)f(s)ds + (1 — oq) / Up(te — s)f(s)ds].  (1.12)

If we introduce natation:

Vo(r,t) = %(UOUQ(T)Ul(t) + o Uy (1) Us(t) + (1 — 00)Us(t) + (1 — o1)Us (1)),

then (1.12) will be expressed as

7%

ug(ty) = V(T ug—1(tg—1) + / Vo(r,te — s) f(s)ds.

th—1
We obtain
g b
w(t) = (Ve + Y [V Vot = s)fs)ds. (113)
i=1,"
From the (1.9) equations it follows that

koG
ut) = U+ > [Ub-s)r@ds (L)

It is clear that according to the formulas (1.13) and (1.14) we have

u(te) — u(te) = [(U(T)* = (V(7))"]e

kU
+ > [ IUE)T = (V) TNU (G — 5) f(s)ds
+Z(V(¢))k_i /[U(ti —8) = Vo(r,t; — 8)] f(s)ds. (1.15)

ti—1

According to Lemma 1.2 the following estimates are obtained

@@ = V() el < er’tue”* | Agell, ¢ € D(A?), (1.16)
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> / I[U ()" = (V(0)* U (t: — ) f(s)|ds
< 72 /(tk — s)e‘“(t’v’S)HAgf(s)Hds.

Let us express the integral in second sum in (1.15) as follows:

t;

/[U(ti L) = Vo(r s — )| f(s)ds = i + T + T,

ti—1
where .
Ji= [ Ut = 9)f(s)ds = ULt~ t )5y,
ti—1
Jo =T1lU(t; — ti—%) = Vo(r, ti — ti—%)]f@i—%)?
ti
s =1Vo(r ti —t;_1) f(t;_1) — / Vo(T,ti — s) f(s)ds.
3 2 .
It is clear that for J3 we have the following expression:
J3 = —% [00J3,1 + o150+ (1 —09)J53+ (1 — 01)J3,4},
where

ti

T = Ua()] [ Uslts = 9)f(s)ds = Ut = 1, )fE, )]

1
2
ti—1

ti

Jso = Uy(7)] / Us(ti — 5) f(s)ds — TUa(t; — tif%)f(tif%)]a

ti—1
Bia = [ Uslts = 5)(s)ds = Ut =1, ) f(t, )
iftli
J3,4 == / Ul(tz - S)f(S)dS — TUl(ti — tz—%)f(tz—%)

ti—1

In accordance with Lemmal.3 the following estimates are valid:

t;
[ J31]] < ce®177?] / | ALF Ot + (| AT ()] + D],
ti—1

7

(1.17)



Explicit Estimates for Error of Averaged ... 27

t;
sl < e 772 [ [ Aaf Ot + 71431 + D)
ti—1

i—

133l < 06‘””72[/ [Azf"(®)lldt + 7 (Il AZf (¢, )1 + 1)),

ti—1

ti
[ T3]l < cer77?[ / [ALf @)t + (| ALF (8 )] + D],

ti

t;
[71]| < ceomr?[ / IAf/ ®)lldt + (| A%f (8 )] + 1))
ti—1
These inequalities, according to condition (c¢) of Theorem 1.1 provide
the following inequalities:

[ 1] < ce*mr?[ / [Aof ()|t + (JAS (¢ )l + D], (1.18)
t;
17s]] < ce“”72[/ [Aof" ()1t + (| AGS (t,_s) 1| + 1)]. (1.19)

Let’s evaluate norm of J,. According to formula (1.7) we have

Vo(r, 2) = [l (U )+l ) + (1= o) Ua(G) +(1 =) U ()]
1 T @7 T )T
=3 [ooUs () (I — §A1 + R (5)) + o Uy (7)1 — §A2 + Ry (5))
+(1 = 00)Ua(3) + (1 = ) Uh(3)]

=%Mﬂkﬁ%%%@%&%MﬂRPg»+mamﬂ—gmwyg%mﬂRﬁ

+(1 = o0)Ua(5) + (1 = o) (3)]

= %[ao (] —TAy+ RéQ)(T) —

"‘0’1([-7’141 +R§2)(T) —

LI+ RO ()4 + U RP ()
SU+ RV (M)A + Ui(nRY(3)
HU=o0) (T + A + RO (D) + (1= o) (T + 2 A+ RO ()]

—I— %(%ao — o+ %(1 — o)A, — g(Uo — %01 + %(1 —09)) A2 + Ra(7),

-
2

))
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where
Ry(7) = ZR%(T), (1.20)
Ra(r) = Loulha(r) + (1 - o) DR (D),
Roa(1) = E(UlUl(T) +(1- UO)]>R22)(%)7

T T
R2’3(T) = —ZO'()RS) (T)Al, R274(T) = —Zlel) (T)AQ,

1 1
R2’5(T) == 50’0Ré2) (T), ngg(’r) = 50’1R§2) (7')
Thus, we obtain that
T 7,1 1
Vo(r, 5) =1- 5(500 — o1+ 5(1 —01)) 4
T 1 1
—5(0'0—50’1+5<1—0’0))A2+R2(7). (121)

For U(%), in accordance with formula (1.7), we have:

U(%) —1- %(A1 + Ay + R(Q)(%). (1.22)

On the basis of expressions (1.21) and (1.22) we make conclusion: if
parameters op and oy satisfy the following system

1 1

§UQ+01+§(1—01)=1
1 1

O'0+§O'1+§(1—O'0)21,

then difference U(Z) — Vy(7, %) will be of the same order as O(7?). Hence
o1 = 1-— agg-
Thus, when , 01 = 1 — 0y. we have:
T T
) = Vol7,5) = Ra(r) = R(Q)(§)>

), respectively, are calculated by formulas (1.20) and

U(

N[

where Ry(7) and R®)(
(1.7).
It is clear that

T
2

[(Vo(r. 5) = UGNl < Do IRyl + IRD el (1:23)

According to conditions (a) and (b) of Theorem 1.1 we have:

U@ < Me", (1.24)
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[U:(0)]] < e (1.25)

According to estimates (1.24) and (1.25) and condition (c) of Theorem
1.1 we have:

1Rz (m)ll < em®e® 7| AGell, ¢ € D(A%), j =1, 6, (1.26)

HR(Q) ng < HAQ// s)pdsds, || < em?e*03 || A2p||, ¢ € D(A?).

(1.27)
From (1.23), taking into account estimates (1.26) and (1.27), we obtain

[(V4(r, 2) = U9l < ere [ a3gl, € D(4%). (1.29)

From (1.15), taking into account estimates (1.25), (1.16), (1.17), (1.18),
(1.19) and (1.28), estimates (1.5) is obtained. O

2. Difference Analogue

To find approximate solution of problem (1.1) we apply difference ana-
logue of differential decomposition scheme (1.2) — (1.4) :

(1) (1) (1) (1)
v, — vy v+ v
b bl + A b bl Uof(tk—l)> U;(:_)l = Ug—1, Uo = ¥,
T 2 2
(2) (2) (2) (2)
v, — U v+ v
d - ALy Ag% =(1-0)fltye1) v=v", (21
(1) (1) (1) (1)
w,’ —w + w;
i =1 g,Y EL oy f 1), wi = we, uo = o,
T 2 2
(2) (2) (2) (2)
w, —w,; w,, " +w
A = (o) () =, (22)
L@, ©
we= 0l +0f?), 23

The following theorem takes place:

Theorem 2.1. Let us assume that the conditions (a),(c),(d) of Theorem
1.1 and additionally the following condition are fulfilled:

For any 7 > 0, operators I + TA;, i = 1,2, are invertible and the
following inequalities are valid:

(I —7A)I +74)7 | < e, wy = const >0,

(I +7A) 7 < e, ¢ = const > 0; (2.4)
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then, if o1 = 1 — 0y, for error of scheme (2.1)-(2.3) the following estimate
18 valid:

Jut) = unl) < e[ () Al + / I40f (®)de+

k tr

7 (A )l + Ao f (ti 1)) + ) + /(tk — 5)e || AT f(s) | ds],
i=1 :
(2.5)
where w = max(wy, 2wy), ¢ = const > 0.
Proof. From (2.1) and (2.2), respectively, the following is obtained:

v,(f) = 82(7)51(7')1},22_)1 + 70052(T) La(7) f (1) + 7(1 — 00) La(7) f (£ 1),

= Si(n)Ss(T)wy + 7151 (T) La(7) f(ty_1) + T(1 = 01) L () F(t_1),

Si(r) = (I - %Ai)(l v %Ai)*l, Li(r) = (I + %Ai)*{ i=1.2.

Consequently, according to (2.3), we have:

up = V(T)ugp_1 + TL(T)f(tk_%). (2.6)
where )
V(r) = 5(52( 7)S1(7) + S1(7)S2(7)),
and
L(r) = %(0052( )Ly (1) + 0151(7) La(7) + (1 = 00) La(7) 4+ (1 — 01) Ly (7))

From (2.6) by induction we have:

Q0+TZ VUL(T) f(t,_1). (2.7)

2

Taking into consideration the identity
Uty —s) = U(ty—)U(t; — 8) = (U(T))""U(t; — s),

then (1.14) could be written as:
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According to the formulas (2.7) and (2.8) the following is obtained:

ulty) —we = [(U(7)" = (V(7))"]

k

+Zl /(U(T))kiU(ti —5))f(s)ds — Z<V(T>>k7iL(T)f(ti,;)ds.

2
1=1

Let us rewrite the right-hand side as:

u(ty)—ur = [(U(T))k—(V(T))’“]sOJrZ /[(U(T))ki_(v(T))ki]U(ti_S)f(S)dS

=Y (VENHEE) - UG ty)
HUG )~ [ U= 9)f(5)ds)]. (2.9

ti—1

Let us estimate the difference L(7) — U(3).
The following formulas are valid:

(]

S =I1+R"(), RU()=—SAU+S(n); (210

2

Si(r) =1 =74+ RP(7), RP(7) = AT+ Si(7)); (2.11)

7

(2

2 3
Si(r) =1 —7Ai+ A7+ RO(7), RO(7) = —%A?(I +8i(r); (2.12)
T 2
According to the formulas (2.13) and (2.10) - (2.12), we have:

L(r) = %[UOSQ(T)[q(T) + 0151(7)La(T) + (1 — 09) La(7) + (1 — Ul)Ll(T)}

= %[0052“) (I = A + AL (7)) + o1Su(7) (I = S Az + T A3La(7))
+(1—00) (1 = %Az + %ASLQ(T») +(1—o)(I - %Al + %Aﬁle))]
1

= 5[00(Sa(r) = 5521 AL + 1 Sa(r) AT La(7))

+01($1(7) = S81(7)Ar + 51 (7) A La (7))
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H1 = a0) (I = T4y + TARLa(7) + (1= o) (1 = DAy + 430 (7)]

1

+0'1([—TA1 +R§2)(T) — z

2 2
+(1 = 00) (T — = Ay + —A2Lo(7))) + (1 — ) (T — = Ay + — A2

2 4
7,1 1 T
:]_5(

2 4
1

2 2 2 2 2

where

Hence

T 1 1
—5(0'0 — 50’1 + 5(1 — Ug))AQ + RQ(T),

For U(%), according to formula (1.7) we have:

Ty T @
WQ I %m+Ag+R(Q.

(1) 7 2
S+ RV(7) Az + T81(7) A3 La(7)

2
= S [oo(I =742+ RY(7) = S+ B (1) A1 + $2(7) AL (7))

Li(7)))]

—op—o;+ =(1 — 01))A1 — —(00 — -0 + 1(1 - 00))A2 + Ry(7),

(2.14)

(2.15)

(2.16)

On the basis of expressions (2.15) and (2.16) conclude that if parameters

0o and oy satisfy the following system

1 1
§UQ+01+§(1—01):1
ot =1
g b~ —\1l—09) =
0 2 1 2 0 )

then difference U(Z) — L(%) will be of the same order as O(7?).

2
0'1:1—0'0.

Thus, when o7 = 1 — 0, we have:

U(5) = L(r) = Ra(r) = RO(Z),

Hence
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where Ry(7) and R®(Z), respectively, are calculated by formulas (2.14) and
(1.7).
It is clear that inequality:

I(LT) = UGl < Yol Ras (el + RO Gl (27)

From (2.17), taking into account evaluations (1.26) and (1.27), the fol-
lowing is obtained:
-
2
According to (2.4)inequality, we have:

I(L(7) = U(5))ell < er’e"[|AGell, ¢ € D(A?). (2.18)

IVl = 15080 + SimS@] < 7. (219)
Analogously to (1.16) we obtain
@@ = V() el < er’tue”* | Ajell, ¢ € D(A?). (2.20)

From (2.9), taking into account estimates (1.18), (1.24), (2.18), (2.19) and
(2.20), estimate (2.5) is obtained. O

The estimates, given in Theorems 1.1 and 1.2, are obtained earlier and
appeared in [6].
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