
Proceedings of I. Vekua Institute
of Applied Mathematics
Vol. 56-57, 2006-2007

MACHINE TRANSLATION FROM GEORGIAN LANGUAGE INTO
ANOTHER

Antidze J., Gulua N.

Iv. Javakhishvili Tbilisi State University
2 University Str., 0186 Tbilisi, Georgia

e.mail: jeantidze@yahoo.com

Abstract. In the article there is considered the problem of machine translation
of text from Georgian to another language, an approach is proposed, using special
method for morphological, syntactic and semantic analysis. Programming means
are created which simplify whole process of translation.

Keywords and phrases: Machine translation, parsing, formal grammar, finite
automaton, automaton with memory, feature structure, transfer.

AMS subject classification (2000): 68T50.

1. Introduction

Machine translation from one language into another is important prob-
lem, full resolution of which will resolve successfully many other problems
of artificial intelligence as well. Automatic recognition of a text’s content
is basic difficulty on the road of the problem’s resolution. For now, there
is not such algorithm, which will fully resolve the problem. Because of the
problem is simplified by splitting of text into sentences and considering each
sentence separately. But it rests word’s ambiguity yet and entire sentence
may be ambiguous as well.

Word’s ambiguity is widely propagated phenomenon in natural lan-
guages. Especially, it is difficult belles-lettres’ translation. Therefore it
is considered scientific-technical texts were word’s ambiguity is compara-
tively less. For recognition of an ambiguous word into a sentence it is used
context of the word. In most case context gives positive result. If the con-
text does not get result then it is taken more frequently used meaning or
all meanings.

Machine translation from one language into another contains the follow-
ing stages:

1. Morphological analysis of words;

2. Syntactic analysis of sentence;

3. Construction of a sentence structure on target language corresponding
to syntactic structure found in original sentence (transfer);

Machine Translation from Georgian 45

4. Composition of word forms of sentence in target language.

In most case the stages do not separated strictly one from another. It
is possible parallel consideration of 1 and 2 stages. Resolution of ambiguity
is considered in all parts. 1 and 2 stages call analysis of original language
and 3 and 4 stages call synthesis. Let’s consider each part separately for
machine translation from Georgian language into another.

2. Morphological Analysis

It means recognition of each word of a sentence and establishing of mor-
phological categories for them. Under full morphological analysis, we under-
stand all possible splitting of a word-form in morphemes and establishment
of morphological categories for it. It is widely spread the following ambigu-
ity:

1. Graphical coincidence for different(by meaning) verb-forms in pres-
ence circle, which have the same root. For instance, verb-form ”agebs”,
which may be signify loss many(”agebs fuls”), build of plans(”agebs
gegmebs”), he corrects the bed(”agebs logins”) and so on;

2. Graphical coincidence of a verb-form with its infinitive. For instance,
”amoxsna” may signify resolution or he has resolved.

3. In time of splitting verb-form, graphical coincidence different mor-
phemes. For instance, ”a” as preverbal or vowel prefix or first letter
of a verb’s root in the following verb-forms: ”a-a-alebs”, ”a-alebs”
and ”aldeba”. When we see first letter of the verb-forms, we can not
say, which morpheme we have, before have seen following two letters.
This means, that Georgian verbs splitting in morphemes needs at least
parsing algorithm for LL(2) grammar [1-2] i.e. complete morphologi-
cal analysis of Georgian words by finite automaton impossible.

In the case of second example, morphological analysis for verb-form ”amoxsna”
must give two different parsings: one for verb’s infinitive and second for
verb-form.

For this, we need nondeterministic algorithm. Deterministic algorithm
can not give two different parses for the same word-form. And so determin-
istic algorithm not valid for complete morphological analysis of Georgian
words. All morphological analysis for Georgian words are fulfilled by finite
automaton or by deterministic algorithm.

From this follows, we must apply nondeterministic algorithm, for in-
stance, from left to right in depth search algorithm with backtracking. As
far, as backtracking take down the speed of the algorithm, we must find a
method to reduce backtracking. It exists such possibility. We can exclude
morphemes, which conflicts with found morphemes in a moment In other
case, we can divide morphemes in classes so, that one representative of each
classis may meet as maximum one times in a word-form.

46 Antidze J., Gulua N.

Among morphemes of a verb-form, it is important roots. We can divide
roots by classes so, that to fix morphemes, which can meet with one repre-
sentative of each classis as maximum. All this reduce considerably numbers
of backtracking. After splitting a word by morphemes, establishment mor-
phological categories of the word is easy. We have developed instrumental
tool by which realized morphological analysis of Georgian words [3-5].

3. Software Tools

The ”Software Tools for Morphological and Syntactic Analysis of nat-
ural Language Texts” is a software system designed for natural language
texts processing. The system is used to analyze syntactic and morphologi-
cal structure of the natural language texts. Specific formalisms, that have
been worked out for this purpose, allow us to write down syntactic and
morphological rules defined by particular natural language grammar [5].

These formalisms represent a new, complex approach, that solves some of
the problems connected with the natural language processing. A software
system has been implemented according to these formalisms. Syntactic
analysis of sentences and morphological analysis of word-forms can be done
within this software system. Several special algorithms were designed for
this system. To use formalisms, which are described in [6-7] is very difficult
for Georgian language.

The system consists of two parts: syntactic analyzer and morphological
analyzer. Purpose of the syntactic analyzer is to parse an input sentence,
to build a parsing tree, which describes relations between the individual
words within the sentence, and to collect all important information about
the input sentence, which has been figured out during the analysis process.

It is necessary to provide a grammar file to the syntactic analyzer. There
must be written syntactic rules of particular natural language grammar in
that file. Syntactic analyzer also needs information about the grammar
categories of the word-forms of natural language. Information about the
grammar categories of the word-forms is used during the analysis process.

However, it may be quite difficult to include all of the word-forms from
the natural language into a dictionary file. To avoid this problem and to
reduce size of dictionary file, morphological analyzer is used. Morphological
analyzer uses a dictionary file of unchanged parts of words. Therefore this
file will be considerably smaller, because many word-forms can be produced
by single unchanged part of word.

The morphological analyzer also needs its own grammar file. According
to the specific formalism, morphological rules of natural language must be
written in that grammar file. An input word is divided into morphemes
when applying these rules and important information about the grammar
categories of word-form can be deduced during the analysis.

An input sentence is passed to syntactic analyzer. Syntactic analyzer
passes each word from the sentence to morphological analyzer. Morphologi-
cal analyzer will analyze the words according to the rules from the grammar

Machine Translation from Georgian 47

file, using a dictionary of words’ unchanged parts. After the successful anal-
ysis each word-form will obtain information about its grammar categories,
and this information will be returned to the syntactic analyzer. At the end
syntactic analyzer will try to parse the sentence according to the rules from
the syntax file.

Basic methods and algorithms, which were used to develop the system
are operations defined on the feature structures, trace back algorithm (for
morphological analyzer), general syntactic parsing algorithm and feature
constraints method.

Feature structures are widely used on all level of analysis. As an abstract
data types they are used to hold various information about dictionary en-
tries. Each symbol defined in a morphological or syntactic rule has an
associated feature structure, which is initially filled from the dictionary, or
it is filled by the previous levels of analysis.

Feature structures and operations defined on them are used to build
up feature constraints. With general parsing algorithm it is possible to
get a syntactic analysis of any sentence defined by a context free grammar
and simultaneously check feature constraints, that may be associated with
grammatical rules. Feature constraints are logical expressions composed by
the operations, which are defined on the feature structures.

Feature constraints can be attached to rules, which are defined within
a grammar file. If the constraint is not satisfied during the analysis, then
the current rule will be rejected and the search process will go on. Feature
constraints also can be attached to morphological rules. However, unlike
the syntactic rules, constraints can be attached at any place within a mor-
phological rule, not at the end only.

This speeds up morphological analysis, because constraints are checked
as soon as they are met in the rule, and incorrect word-form divisions into
morphemes will be rejected in a timely manner.

Formalisms that were developed for the syntactic and morphological
analyzers are highly comfortable for human. They have many constructions
that make it easier to write grammar files. Morphological analyzer has a
built-in preprocessor, which has a capability to process macros.

The software system is written in c++ programming language standard.
It utilizes STL standard library. The system operates in UNIX and Win-
dows operating systems. Although, it could be compiled and used in any
other platform, which contains modern c++ compiler.

4. Feature Structures

A feature structure is a specific data structure. It essentially is a list
of ”Attribute - Value” type pairs. The value of an attribute(field) may
be either atomic, or may be a feature structure itself. This is a recursive
definition; therefore we can build a complex feature structure, with any level
of depth of nested sub-structures.

Feature structures are widely used in Natural Language Processing.

48 Antidze J., Gulua N.

They are commonly used:

1. To hold initial properties of lexical entries in the dictionary;

2. To put constraints on parser rules. Certain operations defined on
feature structures are used for this purpose;

3. To pass data across different levels of analysis.

We use following notation to represent feature structures in our formalism.
List of ”Attribute-Value” pairs is enclosed in square braces. Attributes and
values are separated by colon ”:”. For example:

S = [A: V1

B: [C: V2]]

It is possible to use short-hand notation for constructing feature struc-
tures. We can rewrite above example this way:

T1 = [A: V1]

T2 = [C: V2]

S = [(S, T1) B: T2]

Content of the feature structures listed in the parenthesis at the be-
ginning is copied to the newly constructed feature structure. Below is a
fragment of a formal grammar for defining feature structures in our formal-
ism:

〈feature−structure〉 ::= ”[”[〈initialization−part〉] [〈list−of−pairs〉]
”]”

〈initialization− part〉 ::= ”(” {〈initializer〉} ”)”

〈initializer〉 ::= 〈variable− reference〉 | 〈constant− reference〉
〈list− of − pairs〉 ::= {〈pair〉}
〈pair〉 ::= 〈name〉 : 〈value〉
〈name〉 ::= 〈identifier〉
〈value〉 ::= ” + ” | ” − ” | 〈number〉 | 〈identifier〉 | langlestring〉 |

〈feature− structure〉
. . .

There are several operations defined on feature structures to perform
comparison and/or data manipulation. Mostly well-known operation de-
fined on feature structures is unification. In addition to the unification, we
have introduced other useful operations that simplify composing of gram-
mar files in practice. The result of each operation is a Boolean constant
”true” or ”false”. Below is a list of all implemented operations and their
semantics:

• A := B(Assignment) Content of the RHS (Right Hand Side) operand
B is assigned to the LHS (Left Hand Side) operand A. Consequently,
their content becomes equal after the assignment. The assignment
operation always returns ”true” value.

Machine Translation from Georgian 49

• A = B (Check on equality) This operation does not modify content of
the operands. Result of the operation is ”true” when both operands
(A and B) have the same fields (attributes) with identical values. If
there is a field in one feature structure, which is not represented in
the second feature structure, or the same fields does not have an equal
values, then the result is ”false”.

• A〈== B(Unification) Unification returns ”true”, when the values of
the similar field in each feature structure does not conflict with each
other. That means, either the values are equal, or one of the value is
undefined. Otherwise the result of the unification operator is ”false”.
Fields, that are not defined in LHS feature structure and are defined
in RHS feature structure are copied and added to the LHS operand.
If there is an undefined value in LHS feature structure, and the same
field in the RHS feature structure is defined, that value is assigned to
the corresponding LHS feature structure field.

• A == B(Check on unification) Returns the same truth value as uni-
fication operator, but the content of operands is not modified.

Check on equality or unification operations (”=” and ”==”) may take mul-
tiple arguments. For example:

X == (A,B,C)

Where X, A, B, and C are feature structures. Left hand side of an operation
is checked against each right hand side argument that way. And the result is
”true” only when all individual operations return ”true”, otherwise ”false”.
There is also a functional way to write operations. For example, we can
write ”equal(A, B)” instead of A = B.

Following functions are defined: ”equal”(check on equality), ”assign”
(assignment), ”unify”(unification), ”unicheck”(check on unification), ”meq”
(multiple equality checking) and ”muc”(multiple unification checking).

5. Constraints

In our system feature structures and operations defined on them are used
to put constraints on parser rules. That makes parser rules more suitable
for natural language analysis than pure CFG rules. We have generalized
notation of constraint [8].

Constraint is any logical expression built up with operations defined
on feature structures and basic logical operations and constants: &(and), |
(or),˜(not), 0(false), 1(true). Parser rules are written following way

S → A1{C1}A2{C2} . . . AN{CN}
Where S is an LHS nonterminal symbol, Ai(I = 1, . . . , N) are terminal or
nonterminal symbols (for morphological analyzer only terminal symbols are
used) and Ci(I = 1, . . . , N) are constraints.

50 Antidze J., Gulua N.

Each constraint is check as soon as all of the RHS symbols located before
the constraint are matched to the input. If a constraint evaluates to ”true”
value then parser will continue matching, otherwise if constraint evaluates to
”false” parser will reject this alternative and it will try another alternative.

There is a feature structure associated with each(S and Ai) symbol in a
rule. If a symbol is a terminal symbol then initial content of its associated
feature structure is taken from the dictionary or from the morphological
analyzer(for syntactic analyzer).

Content for a nonterminal symbols is taken from the previous levels of
analysis. Constraints are used not only to check the correctness of parsing
and reduce unnecessary variants. They are also used to transfer data to
a LHS symbol, thus move all necessary information to the next level of
analysis.

Assignment or unification operations can be used for this purpose. To
access a feature structure for particular symbol, a path notation can be
used. Path is written using angle brackets.For example, 〈A〉 represents a
feature structure associated with the A symbol. Individual fields can be
accessed by listing all path components in angle brackets.

The formal syntax for a constraint is defined this way(fragment):
〈constraint〉 ::= 〈constraint−term〉” | ”〈constraint−term〉〈constraint−

term〉 ::= 〈constraint− fact〉”&”〈constraint− fact〉
〈constraint − fact〉 ::= [”˜ ”] (〈logical − constant〉 | ” + ” | ” − ” |

〈constraint− operation〉 | ”(” 〈constraint− fact〉 ”)”)
〈logical − constant〉 ::= ”0” | ”1”
〈constraint − operation〉 ::= 〈constraint − operator〉 | 〈constraint −

function〉
〈constraint− operator〉 ::= 〈constraint− argument〉(” := ” | ” == ” |

” <== ”, ” = ”)
(〈constraint− argument〉 | langlelist− of − constraint− arguments〉)
〈constraint − function〉 ::= 〈identifier〉 〈constraint − function −

arguments〉
. . .

6. Morphological Analyzer

Purpose of morphological analyzer is to split an input word into the
morphemes and figure out grammar categories of the word. Morphologi-
cal analyzer may be invoked manually, or automatically by the syntactic
analyzer.

Special formalism has been created to describe morphology of natural
language and pass it to the morphological analyzer. There are two main
constructions in the grammar file of morphological analyzer: morpheme
class definition, and morphological rules. Morpheme class definition is used
to list all possible morphemes for a given morpheme class. For example:

Machine Translation from Georgian 51

”@”M1 M1=
{
”morpheme 1” [. . . ” features ” . . .]
”morpheme-2” [. . . ” features ” . . .]
. . .
”morpheme-N” [. . . ” features ” . . .]
}
It is possible to declare empty morpheme, which means that the mor-

pheme class may be omitted in morphological rules. Below is formal syntax
for morpheme class definition:

〈morphem− definition〉 ::=”@”〈identifier〉
” = ””{”〈list− of −morphemes〉”}”
〈list− of −morphemes〉 ::= 〈morpheme〉{”, ”〈morpheme〉}
〈morpheme〉 ::= 〈string〉〈feature− structure〉
Morphological rules are defined following way:
word → M1{C1}M2{C2} . . . MN{CN}
Where Mi are morpheme classes, and Ci(I = 1, . . . , N) are constraints

(optional).

7. Syntactic analyzer

Purpose of syntactic analyzer is to analyze sentences of natural language
and produce parsing tree and information about the sentence. In order to
accomplish this task, syntactic analyzer needs a grammar file and a dictio-
nary(or it may use morphological analyzer instead of complete dictionary).
Grammar rules for syntactic analyzer are written like CFG rules. But they
may have constraints and symbol position regulators. The rule can be writ-
ten according to these constructions:

S → A1{C1}A2{C2} . . . AN{CN}
S → A1A2 . . . AN R{C}
Where S is an LHS non-terminal symbol, Ai(I = 1 . . . N) are RHS

terminal or non-terminal symbols, C and Ci(I = 1 . . . N) are constraints,
and R is a set of symbol position regulators. Position regulators declare
order of RHS symbols in the rule, consequently making non-fixed word
ordering. There are two types of position regulators:

1. Ai < Aj means that symbol Ai must be placed somewhere before the
symbol Aj

2. Ai − Aj means that symbol Ai must be placed exactly before the
symbol Aj.

8. Example of Special Program Composition

Suppose we will develop morphological analysis of nouns by instrumental
tool(IT). Firstly, we should fix morphemes’ classes for nouns and enumer-
ate them by it meeting in a noon. By reason of example’s simplifying, we

52 Antidze J., Gulua N.

will consider stems, number signs and declension signs only. Stems class
consist of all noun’s stems. Number signs’ class consist of ”eb”, ”n”, ”t”
and ””(wide) morphemes. Declension’s signs class consist of all nouns’ de-
clension morphemes. We should they pass to IT as starting information.
For uniquely recognition declension category of a noun-form, we need to
classify noun’s stems by attachment of declension signs, for instance, non-
compressed nouns’ stems, which end by consonant. They attached declen-
sion signs uniquely determine declensions of noun-forms.

We must attach to such stem the feature(stem-type equal to ”1”), where
stem-type is the attribute and ”1” is its value and signify non-compressed
stem ended by a consonant. Then establishment of declension for such
noun-forms is easy. We must compose the rule, which is expressed so:

separate from a noun-form stem, number’s sign and declension sign and
if the noun-form coincide with founded morphemes completely and if stem-
type equal to ”1” and declension sign equal to ”i” then the noun-form
has as declension sign morpheme i and declension equal to nominative or
declension sign equal to ”ma” . . . and so on. The special program will be:

noun − form → stem{〈noun − form stem〉 := 〈stemlex〉 }number
{〈noun − form number − lex〉 := 〈number lex〉 } declension { 〈noun −
form declension − lex〉 := 〈declension lex〉 & (〈stem − type〉 = ”1” &
〈declension declension − sign〉 =”i” & 〈noun − form declension − sign〉
:= ”nominative”)}.

The program can establish nominative declension for noun-forms which
have non-compressed stems ended with a consonant. To compose complete
special program, we must add to the program all cases such is other pos-
sible declension for the type of stems, other types of stems and rules for
establishment of the number of noun-forms.

noun-form designates non-terminal symbol for noun-forms, stem, num-
ber and declension are names of morpheme’s classes, constraints are placed
in figural scopes. We can assign to one feature another feature’s value or
textual constant. If the rule is satisfied then noun-form’s features gives
concrete noun-forms’ partitioning by morphemes and its morphological cat-
egories. Denotations in a rule are not restricted, but it is suitable to use
meaningful denotation.

It is obvious from the example, that composition of such program does
not need the knowledge of programming. Such program is recorded in gram-
mar file.

9. Semantic Analysis

Complications of semantic analysis are caused by peculiarities of sen-
tences. Let discuss some of them:

1. A sentence can be true or false. The total of inner corners of a rectan-
gle is equal to 360, whether it is true or false can be proved logically,
but the truth of the sentence which describes some historical event

Machine Translation from Georgian 53

can not be proved logically. It must be accepted by historians as a
fact or denied by them as such;

2. A sentence can be universal or typical, e.g. All humans are mortal is
universal, but All men like alcohol is not universal, but is typical

3. A sentence can be trustworthy or unbelievable;

4. A sentence can be rare or approximately trust-worthy;

5. A sentence can be homonymous in sense of its meaning.

We can present the peculiarities by constraints on feature structure [8] mod-
ifying syntactic rules by adding new constraints and express them by our
tools.

10. Transfer

After receiving the syntactic structure of a sentence (syntactic tree) in
original language, we must compose corresponding syntactic structure in
the target language. For this, we must have for each syntactic rule corre-
sponding syntactic and semantic rule in target language. In this case, we
can compose syntactic tree in target language and form each word using
information in the syntactic tree and using rules of target language mor-
phology.

11. Conclusion

In the article, we have outlined marginal problems of machine translation
from one language into another, presented problems of automatic analysis
of Georgian texts and our approach of their resolution.

R E F E R E N C E S

1. Aho A.V., Ulman J.D. The Theory of Parsing, Translation and Compiling, vol.
1, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs,
N.J., 1972, 420 p.

2. Antidze J. Formal Languages and Grammars, Natural Language Computer Mod-
eling, 2007, Nekeri, Tbilisi, http://fpv.science.tsu.ge/mon-2007.pdf

3. Antidze J., Mishelashvili D. Software tools for morphological and syntactic anal-
ysis of natural language texts,Internet Academy, Georgian Electronic Scientific Jour-
nals, Computer Sciences and Telecommunications, 1, 12 (2007), 50-58, ISSN 1512-1232,
http://gesj.
internet-academy.org.ge/gesj articles/1345.pdf.

4. Antidze J., Mishelashvili D. Instrumental tool for morphological analysis of some
natural languages, Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math., 19 (2004),
15-19.

5. Melikishvili D. Conjugation system of the Georgian verb. Logos Press, Tbilisi,
2001, 362 p. (in Georgian).

54 Antidze J., Gulua N.

6. McConnell S. PC-PATR Reference Manual, a unification based syntactic parser.
version 1.2.2., 20 p. http://www.sil.org/pcpatr/manual/pcpatr.html.

7. Antworth E., McConnell S. PC-Kimmo Reference Manual, a two-level processor
for morphological analysis. version 2.1.0., 57 p. http://www.sil.org/pckimmo

8. Antidze J., Gulua N. On selection of Georgian texts computer analysis formalism,
Bull. Georgian Acad. Sci. 162, 2 (2000), 54-57, http://fpv.science.tsu.ge/pub5.mht.

Received 18.06.2007; revised 15.10.2007; accepted 20.12.2007.

