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Abstract

The large time asymptotic behavior of solutions to the nonlinear integro-differential

equation associated with the penetration of a magnetic field into a substance is studied.

The rates of convergence are given too.

Key words and phrases: nonlinear integro-differential equation, magnetic field,

asymptotic behavior.

AMS subject classification: 35K55, 45K05

1. Introduction

Process of diffusion of the magnetic field into a substance is modelled by
Maxwell’s system of partial differential equations [1]. As it is shown in [2] if the
coefficient of thermal heat capacity and electroconductivity of the substance
depend on temperature, then in the simple case the Maxwell’s system can be
rewritten in the following form

∂U

∂t
=

∂

∂x


a




t∫

0

(
∂U

∂x

)2

dτ


 ∂U

∂x


 , (1.1)

where function a = a(S) is defined for S ∈ [0,∞).
Note that the integro-differential equation (1.1) is complex and still yields

to the investigation only for particular cases [2-8].
The existence, uniqueness and asymptotic behavior of the solutions of the

initial-boundary value problems for the equations of type (1.1) in suitable
classes are studied in the works [2-12] and in a number of other works as well.
The existence theorems, that are proved in [2-4], [8] are based on a priori
estimates, Galerkin’s method and compactness arguments as in [11], [12] for
nonlinear parabolic equations. Investigations for multidimensional space cases
at first are carried out in the work [4].
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In the work [7] is proposed some generalization of the equations of type
(1.1)

∂U

∂t
= a




t∫

0

1∫

0

(
∂U

∂x

)2

dxdτ


 ∂2U

∂x2
. (1.2)

The purpose of this note is to study the asymptotic behavior of solutions
of the equation (1.2). Our object is to give large time asymptotic behavior as
t → ∞ of the solutions of the first boundary value problems for the equation
(1.2). The attention is paid on the case a(S) = (1 + S)p, p > 0. The solvabil-
ity, uniqueness and asymptotic behavior to the solutions of (1.2) type models
are studied in [8-10]. The rest of the paper is organized as follows. In the
second section we discuss the initial-boundary value problem with zero lateral
boundary data. Section three is devoted to the study of the problem with non
zero boundary data in part of lateral boundary.

Mathematical results, that are given below, show difference between stabi-
lization rates of solutions with homogeneous and nonhomogeneous boundary
conditions.

2. The problem with zero boundary conditions

In the domain Q = (0, 1) × (0,∞) let us consider the following initial-
boundary value problem:

∂U

∂t
= a(S)

∂2U

∂x2
, (x, t) ∈ Q, (2.1)

U(0, t) = U(1, t) = 0, t ≥ 0, (2.2)

U(x, 0) = U0(x), x ∈ [0, 1], (2.3)

where

S(t) =

t∫

0

1∫

0

(
∂U

∂x

)2

dxdτ,

a(S) = (1 + S)p, p > 0; U0 = U0(x) is given function.
The existence and uniqueness of the solution of such problems in suitable

classes have been proved in [8].
Now we are going to estimate the solution of the problem (2.1)-(2.3). Let

us introduce usual L2-inner product and norm:

(u, v) =

1∫

0

u(x)v(x)dx, ‖u‖ = (u, u)1/2.

Denote by W k
2 (0, 1) and

o

W k
2 (0, 1) the usual Sobolev spaces of real functions

on (0,1) which first k derivatives are square integrable.
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Theorem 2.1. If U0 ∈
o

W 1
2 (0, 1), then for the solution of the problem

(2.1)-(2.3) the following estimate is true

‖U‖+

∥∥∥∥
∂U

∂x

∥∥∥∥ ≤ C exp

(
− t

2

)
.

Here and below C denotes positive constant independent from t.
Proof. Let us multiply the equation (2.1) by U and integrate over (0, 1).

After integrating by parts using the boundary conditions (2.2) we get

1

2

d

dt
‖U‖2 +

1∫

0

(1 + S)p

(
∂U

∂x

)2

dx = 0.

From this, taking into account the relation (1 + S)p ≥ 1 and Poincare’s
inequality, we obtain

1

2

d

dt
‖U‖2 +

∥∥∥∥
∂U

∂x

∥∥∥∥
2

≤ 0,
1

2

d

dt
‖U‖2 + ‖U‖2 ≤ 0. (2.4)

Let us multiply the equation (2.1) scalarly by ∂2U/∂x2. Using again for-
mula of integrating by parts and boundary conditions (2.2) we get

∂U

∂t

∂U

∂x

∣∣∣∣
1

0

−
1∫

0

∂2U

∂x∂t

∂U

∂x
dx =

1∫

0

(1 + S)p

(
∂2U

∂x2

)2

dx,

1

2

d

dt

∥∥∥∥
∂U

∂x

∥∥∥∥
2

+

∥∥∥∥
∂2U

∂x2

∥∥∥∥
2

≤ 0,

or
d

d t

∥∥∥∥
∂U

∂x

∥∥∥∥
2

≤ 0. (2.5)

From (2.4) and (2.5) we receive

d

dt

[
exp(t)

(
‖U‖2 +

∥∥∥∥
∂U

∂x

∥∥∥∥
2
)]

≤ 0.

This inequality immediately proves Theorem 2.1.
Note that Theorem 2.1 gives exponential stabilization of the solution of the

problem (2.1)-(2.3) in the norm of the space W 1
2 (0, 1). Let us show that the

stabilization is also achieved in the norm of the space C1(0, 1). In particular,
let us show that the following statement takes place.

Theorem 2.2. If U0 ∈ W 2
2 (0, 1) ∩

o

W 1
2 (0, 1), then for the solution of the

problem (2.1)-(2.3) the following relation holds
∣∣∣∣
∂U(x, t)

∂x

∣∣∣∣ ≤ C exp

(
− t

2

)
.



68 Jangveladze T., Kiguradze Z.

At first let us prove an auxiliary statement.
Lemma 2.1. For the solution of the problem (2.1)-(2.3) the following

estimate is true ∥∥∥∥
∂U(x, t)

∂t

∥∥∥∥ ≤ C exp

(
− t

2

)
.

Proof. Let us differentiate equation (2.1) with respect to t

∂2U

∂t2
= (1 + S)p ∂3U

∂x2∂t
+ p(1 + S)p−1

1∫

0

(
∂U

∂x

)2

dx
∂2U

∂x2

and multiply scalarly by ∂U/∂t. We deduce

1

2

d

dt

1∫

0

(
∂U

∂t

)2

dx + (1 + S)p

1∫

0

(
∂2U

∂x∂t

)2

dx+

+p(1 + S)p−1

1∫

0

(
∂U

∂x

)2

dx

1∫

0

∂U

∂x

∂2U

∂x∂t
dx = 0.

After simple transformations we have

d

dt

1∫

0

(
∂U

∂t

)2

dx + (1 + S)p

1∫

0

(
∂U

∂t

)2

dx ≤ p2(1 + S)p−2




1∫

0

(
∂U

∂x

)2

dx




3

.

(2.6)
Note that Theorem 2.1 helps us to estimate function S

S(t) =

t∫

0

1∫

0

(
∂U

∂x

)2

dxdτ =

t∫

0

∥∥∥∥
∂U

∂x

∥∥∥∥
2

dτ ≤ C

t∫

0

exp(−τ)dτ ≤ C.

So, we have
1 ≤ 1 + S(t) ≤ C. (2.7)

Combining Theorem 2.1 and relations (2.6), (2.7) we arrive at

d

dt

(
exp(t)

∥∥∥∥
∂U

∂t

∥∥∥∥
2
)
≤ C exp(−2t). (2.8)

Let us integrate (2.8) from 0 to t

exp(t)

∥∥∥∥
∂U

∂t

∥∥∥∥
2

≤ C

t∫

0

exp(−2τ)dτ.
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Therefore, Lemma 2.1 is proved.
Now, let us estimate ∂2U/∂x2 in the space L1(0, 1). From (2.1) we have

∂2U

∂x2
= (1 + S)−p ∂U

∂t
.

So, applying Lemma 2.1 and (2.7) we derive

1∫

0

∣∣∣∣
∂2U

∂x2

∣∣∣∣ dx ≤



1∫

0

(1 + S)−2pdx




1/2 


1∫

0

∣∣∣∣
∂U

∂t

∣∣∣∣
2

dx




1/2

≤ C exp

(
− t

2

)
.

From this, taking into account the relation

∂U(x, t)

∂x
=

1∫

0

∂U(y, t)

∂y
dy +

1∫

0

x∫

y

∂2U(ξ, t)

∂ξ2
dξdy

and the boundary conditions (2.2), it follows that

∣∣∣∣
∂U(x, t)

∂x

∣∣∣∣ =

∣∣∣∣∣∣

1∫

0

x∫

y

∂2U(ξ, t)

∂ξ2
dξdy

∣∣∣∣∣∣
≤

1∫

0

∣∣∣∣
∂2U(y, t)

∂y2

∣∣∣∣ dy ≤ C exp

(
− t

2

)
.

So, Theorem 2.2 is proved.

3. The problem with non zero data on one side of lateral
boundary

In the domain Q let us consider the following initial-boundary value prob-
lem:

∂U

∂t
= a(S)

∂2U

∂x2
, (x, t) ∈ Q, (3.1)

U(0, t) = 0, U(1, t) = ψ, t ≥ 0, (3.2)

U(x, 0) = U0(x), x ∈ [0, 1], (3.3)

where

S(t) =

t∫

0

1∫

0

(
∂U

∂x

)2

dxdτ, (3.4)

a(S) = (1 + S)p, p > 0, ψ = Const > 0; U0 = U0(x) is given function.
The main purpose of this section is to prove the following statement.
Theorem 3.1. If U0 ∈ W 2

2 (0, 1), U0(0) = 0, U0(1) = ψ, then for the
solution of the problem (3.1)-(3.4) the following estimate is true

∣∣∣∣
∂U(x, t)

∂x
− ψ

∣∣∣∣ ≤ Ct−1−p, t ≥ 1.
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Before we proceed to the proof of the Theorem 3.1, we establish some
auxiliary lemmas.

Lemma 3.1. The following estimates are true:

ϕ
1

1+2p (t) ≤ 1 + S(t) ≤ Cϕ(t)
1

1+2p , t ≥ 0,

where

ϕ(t) = 1 +

t∫

0

1∫

0

(1 + S)2p

(
∂U

∂x

)2

dxdτ. (3.5)

Here and below C denotes again positive constants independent from t.
Proof. From (3.4) it follows that

dS

dt
=

1∫

0

(
∂U

∂x

)2

dx, S(0) = 0. (3.6)

Let us multiply equation (3.6) on (1+S)2p and introduce following notation

σ = (1 + S)p ∂U

∂x
.

We have

1

1 + 2p

dS1+2p

dt
=

1∫

0

σ2dx.

Integrating this equation on (0, t) we arrive at

1

1 + 2p
(1 + S)1+2p =

t∫

0

1∫

0

σ2dxdτ +
1

1 + 2p
.

Note that 0 <
1

1 + 2p
< 1. So, we get

ϕ
1

1+2p (t) ≤ 1 + S(t) ≤ [(1 + 2p)ϕ(t)]
1

1+2p .

Lemma 3.1 is proved.
Lemma 3.2. The following estimates are true

ψ2ϕ
2p

1+2p (t) ≤
1∫

0

σ2dx ≤ Cϕ
2p

1+2p (t), t ≥ 0.

Proof. Taking into account Lemma 3.1 we get

1∫

0

σ2dx =

1∫

0

(1 + S)2p

(
∂U

∂x

)2

dx ≥ ϕ
2p

1+2p (t)

1∫

0

(
∂U

∂x

)2

dx ≥



Long Time Behavior of Solutions to Nonlinear.... 71

≥ ϕ
2p

1+2p (t)




1∫

0

∂U

∂x
dx




2

= ψ2ϕ
2p

1+2p (t),

or
1∫

0

σ2dx ≥ ψ2ϕ
2p

1+2p (t). (3.7)

Let’s multiply equation (3.1) scalarly by (1+S)−p∂U/∂t. Using formula of
integrating by parts and boundary conditions (3.2) we have

1∫

0

(1 + S)−p

(
∂U

∂t

)2

dx +
1

2

d

dt

1∫

0

(
∂U

∂x

)2

dx = 0.

After integrating from 0 to t we arrive at

t∫

0

1∫

0

(1 + S)−p

(
∂U

∂t

)2

dxdτ +
1

2

1∫

0

(
∂U

∂x

)2

dx = C.

From this we get
1∫

0

(
∂U

∂x

)2

dx ≤ C. (3.8)

Using (3.8) and Lemma 3.1 we conclude

1∫

0

σ2dx = (1 + S)2p

1∫

0

(
∂U

∂x

)2

dx ≤ Cϕ
2p

1+2p (t).

Now taking into account (3.7) from the last inequality the prove of the
Lemma 3.2 is over.

From Lemma 3.2 and relation (3.5) we have following estimates:

ψ2ϕ
2p

1+2p (t) ≤ dϕ(t)

dt
≤ Cϕ

2p
1+2p (t). (3.9)

Lemma 3.3. ∂U/∂t satisfy the inequality

1∫

0

(
∂U

∂t

)2

dx ≤ Cϕ−
2

1+2p (t), t ≥ 0.

Proof. From (2.6), using Lemma 3.1 and relation (3.8), we get

d

dt

1∫

0

(
∂U

∂t

)2

dx + ϕ
p

1+2p (t)

1∫

0

(
∂U

∂t

)2

dx ≤ Cϕ
p−2
1+2p (t).



72 Jangveladze T., Kiguradze Z.

Using Gronwall’s inequality we have

1∫

0

(
∂U

∂t

)2

dx ≤ exp


−

t∫

0

ϕ
p

1+2p (τ)dτ







1∫

0

(
∂U

∂t

)2

dx

∣∣∣∣∣∣
t=0

+

+ C

t∫

0

exp




τ∫

0

ϕ
p

1+2p (ξ)dξ


 ϕ

p−2
1+2p (τ)dτ


 .

(3.10)

Noting that ϕ(t) ≥ 1, applying L’Hopital’s rule and estimate (3.9), we have

lim
t→∞

t∫
0

exp

(
τ∫
0

ϕ
p

1+2p (ξ)dξ

)
ϕ

p−2
1+2p (τ)dτ

exp

(
t∫

0

ϕ
p

1+2p (τ)dτ

)
ϕ−

2
1+2p (t)

=

= lim
t→∞

exp

(
t∫

0

ϕ
p

1+2p (τ)dτ

)
ϕ

p−2
1+2p (t)

exp

(
t∫

0

ϕ
p

1+2p (τ)dτ

) (
ϕ

p−2
1+2p (t)− 2

1+2p
ϕ
−3−2p
1+2p (t)dϕ

dt

) ≤ (3.11)

≤ lim
t→∞

1

1− C
1+2p

ϕ−
p+1
1+2p (t)

≤ C.

Therefore, Lemma 3.2 follows from (3.10) and (3.11).
Now according to the method applying in the section 2, taking into account

Lemmas 3.1 and 3.3, we derive

∣∣∣∣
∂U(x, t)

∂x
− ψ

∣∣∣∣ =

∣∣∣∣∣∣

1∫

0

x∫

y

∂2U(ξ, t)

∂ξ2
dξdy

∣∣∣∣∣∣
≤

1∫

0

∣∣∣∣
∂2U(x, t)

∂x2

∣∣∣∣ dx ≤

≤
1∫

0

∣∣∣∣
∂U

∂t
(1 + S)−p

∣∣∣∣ dx ≤



1∫

0

(1 + S)−2pdx




1/2 


1∫

0

∣∣∣∣
∂U

∂t

∣∣∣∣
2

dx




1/2

≤

≤ Cϕ−
p

1+2p (t)ϕ−
1

1+2p (t) = Cϕ−
p+1
1+2p (t).

Hence, we have ∣∣∣∣
∂U(x, t)

∂x
− ψ

∣∣∣∣ ≤ Cϕ−
p+1
1+2p (t). (3.12)

After integrating from (3.9) it is easy to show that

ψ2t1+2p ≤ ϕ(t) ≤ Ct1+2p, t ≥ 1.

From this taking into account estimate (3.12) we receive validity of the
Theorem 3.1.
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For the adiabatic shearing of incompressible fluids with temperature-depen-
dent viscosity the results similar to the Theorem 3.1 are obtained in [13].

The existence of a globally defined solutions of the problems (2.1)-(2.3)
and (3.1)-(3.3) can now be reobtained by a routine procedure. One first estab-
lishes the existence of the local solutions on a maximal time interval and then
inferring from the estimates that this solution cannot escape in a finite time.
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