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Abstract

The theory of mixtures of elastic materials was originated in 1960. Main mechan-
ical properties of a new model of elastic medium with complicated internal structure
were first formulated in the works of C. Truesdell and R. Toupin (see [1]). Later
this theory was generalized and developed in many directions. Binary and multi-
component models of different type mixtures were created and studied by means of
various mathematical methods. Intensively is being developed also plane theories
corresponding to above noted three-dimensional models.

In this paper we consider a version of linear theory for a body composed of two

isotropic homogeneous binary mixture suggested in [2],[3],[4]. The corresponding

equations system is written in any curvilinear coordinate system and obtain two-

dimensional system for shallow shells using I. Vekua’s method [5],[6],[7]. The ob-

tained equations written us in the complex form with respect to isometric coordinates

systems. The general solutions of shallow and strongly shallow spherical shells are

written by analytic functions of complex variable .
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1. Let’s consider a body composed of two isotropic homogeneous mix-
ture, which occupy three-dimensional domain Ωh. The open domain Ωh

with respect to middle-surface ω be the symmetric shell with 2h thick-
ness (in general h is smooth enough, possitive and bounded function of the
points of surface ω). The statical balance equations and the response func-
tion in any curvilinear coordinate systems (x1, x2, x3) have the following
form ([4],[12],[13])

1√
g
∂i

(√
gPi

)
+ Φ = 0 in Ωh, (1.1)

Pi = Λ(Rj∂jU)Ri + (B − Λ)(Ri∂jU)Rj + A(RiRj)∂jU, (1.2)

where ∂i :=
∂

∂xi
; g is a metric tensor discriminate of space; Pi = (P

′i,P
′′i)T

are column-matrix composed of the contravariant stress tensors P
′i and

P
′′i; Φ = (Φ

′
,Φ

′′
)T are volume forces; Ri are contravariant basis vectors;

U = (u
′
,u

′′
)T - u

′
, u

′′
are the displacements vectors;

A =




a1 c

c a2


 , B =




b1 d

d b2


 ,
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Λ =




λ1 − α2ρ2

ρ
λ3 − α2ρ1

ρ

λ4 +
α2ρ2

ρ
λ2 +

α2ρ1

ρ


 ,

a1 = µ1 − λ5, c = µ3 + λ5, a2 = µ2 − λ5, b1 = µ1 + λ1 + λ5 − α2ρ2

ρ
,

b2 = µ2 + λ2 + λ5 +
α2ρ1

ρ
, d = µ3 + λ3− λ5− α2ρ1

ρ
= µ3 + λ4 − λ5 +

α2ρ2

ρ
;

µ1, µ2, µ3, λ1, λ2, λ3, λ4, λ5 are the modulus of elasticity; ρ1, ρ2 are partial
density of mixture, ρ = ρ1 + ρ2, α2 = λ3 − λ4.

Under repeating indexes we mean summation, the Latin letters are tak-
ing values 1,2,3 and Greek letters are taking the values 1,2.

If (x1, x2, x3) is a normal coordinate system of surface ω then the radius
vector of any point M in Ωh have the following form

R = r(x1, x2) + x3n(x1, x2),

where x1, x2 are Gaussian parametyer of surface ω, r and n are radius vector
and normal of the point (x1, x2) ∈ ω. x3 is the relative lenght from point
M to the surface ω.

If a curve of surface are a coordinate’s curve on ω the covariant basis
vectors Ri have the following forms

R1 = (1− k1x
3)r1, R2 = (1− k2x

3)r2, R3 = n,

where k1 and k2 are main curvature of a surface; r1, r2 are covariant basis
vectors of ω; g has the form

√
g =

√
a(1− k1x

3)(1− k2x
3);

a is the discriminant of surface quadratic form.
Let the quantity in (1.1) (1.2) are smooth enough and take supposition

1− kαx3 ∼= 1, α = 1, 2.

Using I. Vekua’s method we get two-dimensional infinite equations systems

1√
a
∂α(
√

a
(k)

P
α) + ∂α ln h

(k)

P
=

α − 1

h

(k)

P
−

3 +
(k)

F = 0 in ω, (1.3)

(k)

P
α = Λ(rγ∂γ

(k)

U)rα +(B−Λ)(rα∂γ

(k)

U)rγ +A(rαrγ)∂γ

(k)

U−Λ(∇ ln h
(k
′′
)

U )rα−

−(B − Λ)(rα
(k
′′
)

U )∇ ln h− A(rα∇ ln h)
(k
′′
)

U + (1.4)

+
1

h
Λ(n

(k
′
)

U )rα +
1

h
(B − Λ)(rα

(k
′
)

U )n,
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(k)

P
3 = Λ(rγ∂γ

(k)

U)n + (B − Λ)(n∂γ

(k)

U)rγ − Λ(∇ ln h
(k
′′
)

U )n−

−(B − Λ)(n
(k
′′
)

U )∇ ln h +
1

h
A

(k
′
)

U +
1

h
B(n

(k
′
)

U )n, k = 0, 1, 2, ...,

(1.5)

where (
(k)

P
j,

(k)

U

)
=

2k + 1

2h

∫ h

−h

(Pj,U)Pk

(
x3

h

)
;

Pk

(
x3

h

)
is the Legandre polinomial of order k;

(k)

P
=

α := (k + 1)
(k)

P
α + (2k + 1)(

(k−2)

P
α +

(k−4)

P
α + ...),

(k)

P
−

3 := (2k + 1)(
(k−1)

P
3 +

(k−3)

P
3 + ...),

(m)

P
j = 0, when m < 0;

rγ are contravariant basis vectors on the middle-surface;

(k
′
)

U = (2k + 1)(
(k+1)

U +
(k+3)

U +...),
(k
′′
)

U = k
(k)

U +(2k + 1)(
(k+2)

U +
(k+4)

U +...);

∇ ln h := ∂γ ln hrγ;

(k)

F =

(
k +

1

2

)
1

h

∫ h

−h

√
g

a
ΦPk

(
x3

h

)
dx3 +

(
k +

1

2

)
1

h
×

×
{√

g+

a
[P3

+ − ∂αhPα
+]− (−1)k

√
g−
a

[P3
− + ∂αhPα

−]

}
;

(1.6)

by lower symbols ” + ” and ”− ” are denoted corresponding quantity when
x3 = h and x3 = −h.

The Greak letters take values 1,2. Under reapiting indexes we mean
summation.

The second main supposition is

U(x1, x2, x3) ∼=
N∑

k=0

(k)

U(x1, x2)Pk

(
x3

h

)
,

(k)

U = 0, when k > N, (1.7)

where N is some fixed non-negative integer number.
From the (1.4) (1.5) and (1.7) we get

(k)

P
j = 0, when k > N.

Hence we obtain system of 6N + 6 equations in the components of dis-
placement vectors from with same quantity unknown functions of two vari-
able



A∇α(∇α
(k)

U β) + (B − Λ)∇α(∇β
(k)

U α) + Λ∇β(∇α

(k)

U α) +
(k)

M β +
(k)

F β = 0,

A∇α(∇α
(k)

U 3) +
(k)

M 3 +
(k)

F 3 = 0 in ω,
(1.8)
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(k = 0, 1, ..., N, β = 1, 2),

where
(k)

U β = (
(k)
u

′β,
(m)
u

′′β)T =
(k)

U rβ,
(k)

U 3 = (
(k)
u

′
3,

(k)
u

′′
3)

T =
(k)

U n;
(k)

M j =

(
(k)

M
′j,

(k)

M
′′j)T - involve the unknown functions

(k)
u

′i,
(k)
u

′′i and first order
derivatives with variable x1, x2.

Let D be a domain on the plane Oxy which on bijectively and continu-
ously maps the surface ω.

We can set following classical boundary value problem: Find
(k)

U ∈
C2(D) ∩ C1(D) which satisfy the following boundary conditions

Problem I.
(k)

U |∂ω =
(k)

f (k = 0, 1, ..., N);

Problem II.
(k)

P (l) =
(k)
ϕ (k = 0, 1, ..., N),

where

(k)

P (l) = Λ(rγ∂γ

(k)

U)l + (B − Λ)(l∂γ

(k)

U)rγ + A(lrγ)∂γ

(k)

U−Λ(∇ ln h
(k
′′
)

U )l

−(B − Λ)(l
(k
′′
)

U )∇ ln h− A(l∇ ln h)
(k
′′
)

U +
1

h
Λ(n

(k
′
)

U )l +
1

h
(B − Λ)(l

(k
′
)

U )n,

l is tangential normal of ∂ω; l × s = n;
(k)

f ,
(k)
ϕ are given functions on the

boundary.
Furthermore, can be given several mixed boundary conditions (see [6]).

2. Approximation N = 0. If N = 0, then from the (1.3) (1.4) and

(1.5) we obtain (
(0
′
)

U =
(0
′′
)

U = 0)

1√
a
∂α(
√

a
(0)

P
α) + ∂α ln h

(0)

P
α +

(0)

F = 0, (2.1)

(0)

P
α = Λ(rγ∂γ

(0)

U)rα + (B − Λ)(rα∂γ

(0)

U)rγ + A(rαrγ)∂γ

(0)

U, (2.2)

(0)

P
3 = Λ(rγ∂γ

(0)

U)n + (B − Λ)(n∂γ

(0)

U)rγ. (2.3)

The vectors
(0)

P j,
(0)

U and
(0)

F in the covariant basis have the following
forms

(0)

P
j =

(0)

P
jβrβ +

(0)

P
j3n,

(0)

U =
(0)

U
βrβ +

(0)

U 3n,
(0)

F =
(0)

F
βr β +

(0)

F 3n,

where
(0)

P ij = (
(0)

P
′ij,

(0)

P
′′ij)T are the contravariant components of stress

tensors, we get the following system

∇α

(0)

P
αβ − bβ

α

(0)

P
α3 + ∂α ln h

(0)

P
αβ +

(0)

F
β = 0, β = 1, 2,

∇α

(0)

P
α3 + bαβ

(0)

P
αβ + ∂α ln h

(0)

P
α3 +

(0)

F 3 = 0 in ω,

(2.4)
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(0)

P
αβ = Λ

(0)

θ aαβ + 2M
(0)∈ αβ − 2λ5

(0)

~ αβ,
(0)

P α3 = 2M
(0)∈ α3 − 2λ5

(0)

~ α3,

(0)

P
α3 = 2M

(0)∈ α3 − 2λ5

(0)

~ α3,

(0)

P
3α = 2M

(0)∈ α3 + 2λ5

(0)

~ α3,

(0)

P
33 = λ

(0)

θ ;

(2.5)

(0)∈ αβ := (
(0)
e

′αβ,
(0)
e

′′αβ)T =
1

2
(∇α

(0)

U
β +∇β

(0)

U
α − 2bαβ

(0)

U 3),

(0)∈ α3 := (
(0)
e

′α3,
(0)
e

′′α3)T =
1

2
(∇α

(0)

U 3 + bαβ
(0)

U β),

(0)

~ αβ := (
(0)

h
αβ,

(0)

h
βα)T =

1

2
S(∇α

(0)

U
β −∇β

(0)

U
α),

(0)

~ α3 := (
(0)

h
α3,

(0)

h
3α)T =

1

2
S(∇α

(0)

U 3 + bαβ
(0)

U β),

(0)

θ :=∈γ
γ= ∇γ

(0)

U
γ − 2H

(0)

U 3,

(2.6)

where
(0)
e

′αj,
(0)
e

′′αj are zero approximation of the contravariant compo-

nents of srain tensors;
(0)

~ αj are zero approximation of the contravariant

components of rotation tensor (
(0)

h αj = −
(0)

h jα). bαβ, bαβ, bα
β are covariant,

contravariant and mixed components of curvature surface tensors accord-
ingly; H = 1

2
(k1 + k2) = 1

2
bγ
γ is mean curvature of surface ω; ∇α, ∇α are

covariant and contravariant derivative;

M :=




µ1 µ3

µ3 µ2


 , S :=

(
1 −1

−1 1

)
.

If we substitute (2.6) into (2.5) and obtained results substitute into (2.4)
we get the following system of equations in the components of displacement
vector

A∇α∇α
(0)

U
β + B∇β∇α

(0)

U
α + [(B − Λ)Kaβ

γ − Abβ
αbα

γ ]
(0)

U
γ−

−[2ΛHaαβ + (2M + A)bαβ]∇α

(0)

U 3 − 2∇α(ΛHaαβ + Mbαβ)
(0)

U 3+

+∂αlnh[(Λ∇γ

(0)

U
γ − 2ΛH

(0)

U 3)a
αβ + A∇α

(0)

U
β+
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+(B − Λ)∇β
(0)

U
α − 2Mbαβ

(0)

U 3] +
(0)

F
β = 0,

A∇α∇α
(0)

U 3 + A∇α(bα
γ

(0)

U
γ)− 2[2ΛH2 + Mbα

γ bγ
α]

(0)

U 3+ (2.7)

+2ΛH∇α

(0)

U
α + 2Mbγ

α∇α
(0)

U γ + ∂α ln h[A∇α
(0)

U 3 + Abαγ
(0)

U γ] +
(0)

F 3 = 0,

where K = k1k2 = b1
1b

2
2 − b2

1b
1
2 are Gaussian curvature of surface ω.

The obtained equations for constant thickness shell in the complex form
will be written on an isometric coordinate system of middle-surface. The
first main quadratic form has the following form

ds2 =
.

Λ(dx2 + dy2),
.

Λ > 0.

If h = const the system (2.4) can be written as follows (for simplicity we
don’t write , , (0)

′′
)

.

Λ
−1∂z(P11 − P22 + i(P12 + P21)) + ∂z̄(P

1
1 + P 2

2 + i(P 1.
.2 − P 2.

.1 ))−
−HP+ + QP+ + X+ = 0,

.

Λ
−1∂z(P+ + ∂z̄P+) + H(P 1

1 + P 2
2 )+ (2.8)

Re[Q(P 1
1 − P 2

2 + i(P 1.
.2 + P 2.

.1 ))] + X3 = 0,

where
z = x + iy, P+ = P13 + iP23, X+ = X1 + iX2,

∂z̄ =
1

2
(∂x + i∂y), ∂z =

1

2
(∂x − i∂y), Q =

1

2
(b1

1 − b2
2 + 2ib1

2).

Pij, P
i.
.j are covariant and mixed components of stress tensor accordingly.

From the (2.5), (2.6) we get

P11 − P22 + i(P12 + P21) = 4M(
.

Λ ∂z̄U
+ − .

Λ QU3),

P 1
1 + P 2

2 + i(P 1.
.2 − P 2.

.1 ) = 2Bθ̃ − 4(B − λ5S)HU3 − 4λ5S
.

Λ
−1∂zU+,

P+ = 2A(∂z̄U3 +
1

2
HU+ +

1

2
QU+), (2.9)

+P = 2(B − A)(∂z̄U3 +
1

2
HU+ +

1

2
QU+),

where U+ =
.

Λ −1U+ = U1+iU2, θ̃ = ∇αUα =
.

Λ −1(∂zU++∂z̄U+), +P =
= P31 + iP32.

3. Spherical shell. Let’s consider the case of constant thickness spher-
ical shell. The equation of sphere with radius R and center in the spring of
coordinate system has the form

r = Rn, (3.1)
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where n is an unit vector of sphere. By derivation oh both-side of the (3.1)
we get

rα = Rnα = −Rbβ
αrβ = −Rbαβr

β.

We obtain

aαβ = −Rbαβ, aα
β = −Rbα

β , (3.2)

i.e.,

k1 = k2 = − 1

R
, H = − 1

R
, K =

1

R2
. (3.3)

From (3.2) and (3.3) we obtain Q = 0 and the system of equations (2.8),
(2.9) is taking the following form

·
Λ

−1∂z(P11−P22+i(P12+P21))+∂z̄(P
1
1 +P 2

2 +i(P 1.
.2 −P 2.

.1 ))+
1

R
P++X+ = 0,

(3.4)
·
Λ

−1(∂zP+ + ∂z̄P+)− 1

R
(P 1

1 + P 2
2 ) + X3 = 0, (3.5)

P11 − P22 + i(P12 + P21) = 4M(
·
Λ ∂z̄U

+) = 4M
·
Λ ∂z̄(

·
Λ

−1U+), (3.6)

P 1
1 + P 2

2 + i(P 1.
.2 − P 2.

.1 ) = 2Bθ +
4

R
(B − λ5S)U3 − 4λ5S

·
Λ

−1∂zU+, (3.7)

P+ = A

(
2∂z̄U3 − 1

R
U+

)
, (3.8)

+P = (B − Λ)

(
2∂z̄U3 − 1

R
U+

)
, (3.9)

where

θ =
·
Λ

−1(∂zU+ + ∂z̄U+).

In this case the system (2.7) has the following form





A∇α∇αUβ + B∇β∇αUα +
2λ5

R2
SUβ +

1

R
Â∇βU3 + F β = 0,

A∇α∇αU3 − 4

R2
(Λ + M)U3 − 1

R
Â∇αUα + F 3 = 0,

(a)

where

Â := A+2M+2Λ =




2λ1 + 3µ1 − λ5 − 2α2ρ2

ρ
2λ3 + 2µ3 + λ5 − 2α2ρ1

ρ

2λ3 + 2µ3 + λ5 − 2α2ρ1

ρ
2λ2 + 3µ2 − λ5 +

2α2ρ1

ρ


 .

Let’s take the isometric coordinate system on the sphere as follows

x = tg
ϑ

2
cosϕ, y = tg

ϑ

2
sinϕ, (3.∗)
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where ϕ, θ are geographical coordinate of the point of sphere.

·
Λ =

4R2

(1 + x2 + y2)2
=

4R2

(1 + zz̄)2
= 4R2cos4ϑ

2
,

where

z = tg
ϑ

2
eiϕ = x + iy.

Consider the homogeneous case X+ = X3 = 0.

Let action on the equation (3.4) the operator
·
Λ −1∂z. After considering

the real part of obtained expression, and taking into account (3.6) we get

4M
·
Λ

−1∂z

·
Λ

−1∂z

·
Λ ∂z̄

·
Λ

−1U+ + 4M
·
Λ

−1∂z̄

·
Λ

−1∂z̄

·
Λ ∂z

·
Λ

−1U+

+2
·
Λ

−1∂2
zz̄(P

1
1 + P 2

2 ) +
1

R

·
Λ

−1(∂zP+ + ∂z̄P+) = 0. (3.10)

Here we use the following well-know formula (see [6])

·
Λ

−1∂z

·
Λ

−1∂z

·
Λ ∂z̄

·
Λ

−1U+ =
1

4

(
∇2 +

2

R2

)
·
Λ

−1∂zU+, (3.11)

where ∇2-is Laplacian on the sphere

∇2 =
·
Λ

−1

(
∂2

∂x2
+

∂2

∂y2

)
= 4

·
Λ

−1∂2
zz̄.

Taking into account of (3.5) and (3.11) we can rewrite (3.10) in the following
form (

∇2 +
2

R2

)(
Mθ +

1

2
(P 1

1 + P 2
2 )

)
= 0. (3.12)

From (3.7) we get

P 1
1 + P 2

2 = 2(B − λ5S)

(
θ +

2

R
U3

)
. (3.13)

After substituting (3.13) into (3.12) we obtain
(
∇2 +

2

R2

)(
(A + B)θ +

2

R
(B − λ5S)U3

)
= 0. (3.14)

The general solution of (3.14) has the following form

(A + B)θ +
2

R
(B − λ5S)U3 = Dω1, (3.15)

where ω1 = (ω
′
1, ω

′′
1 )T is the general solution of corresponding homogeneous

equation, D is any non-degenerate matrix 2× 2,

ω1 = [ϕ(z) + ϕ(z)]
1− |z|2
1 + |z|2 + zϕ

′
(z) + z̄ϕ′(z),
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ϕ(z) = (ϕ1(z), ϕ2(z))T is the column-matrix composed analytic function of
variable z.

If we substitute (3.8) and (3.13) into (3.5) we get

A∇2U3 − 4

R2
(Λ + M)U3 − 1

R
Âθ = 0. (3.16)

det(A + B) > 0, hence from (3.15) we obtain

θ = − 2

R
(A + B)−1(Λ + M)U3 + (A + B)−1Dω1. (3.17)

After substituting (3.17) into (3.16) we have

∇2U3− 2

R2
A−1(2I−Â(A+B)−1)(Λ+M)U3 =

1

R
A−1Â(A+B)−1Dω1. (3.18)

We imply that matrix Ã := A−1(2I−Â(A+B)−1)(Λ+M) has simple proper
numbers æ1 and æ2. Then the general solution of (3.18) can be written as
follows

U3 = ω1 + ω2, (3.19)

where ω2 = Lχ, χ = (χ1, χ2)
T , χ1 and χ2 are the general solutions of

following Helmholtz’s equations

∇2χ1 − 2æ1

R2
χ1 = 0, ∇2χ2 − 2æ2

R2
χ2 = 0,

L is matriz 2 × 2, which column are coresponding proper vector of proper
numbers æ1 and æ2,

D = − 2

R
(A + B)Â−1A[A−1(2I − Â(A + B)−1)(Λ + M) + I].

By substituting (3.19) into (3.17) we get

θ = A1ω1 + A2ω2, (3.20)

where

A1 = (A + B)−1

(
D − 2

R
(Λ + M)

)
, A2 = − 2

R
(A + B)−1(Λ + M).

From (3.20) we have

∂zU+ + ∂z̄U+ = −2R2∂2
zz̄(A1ω1 − A2Ã

−1ω2). (3.21)

From (3.21) the function U+ have the following form

U+ = −R2∂z̄

{
A1ω1 − A2Ã

−1ω2 + iv
}

,
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where v = (v1, v2)
T are column matrix composed the unknown real func-

tions,
U+ = ∂z̄V ; (3.22)

V = (V
′
, V

′′
)T = −R2

{
A1ω1 − A2Ã

−1ω2 + iv
}

. (3.23)

The function v must choose such that it satisfys equations (3.4). Let’s
Substitute (3.22) into (3.6)-(3.8) and then let substitute obtained relations
into (3.4). Taking into account the following well-known formula

·
Λ

−1∂z

·
Λ ∂z̄

·
Λ

−1∂z̄u =
1

4
∂z̄

(
∇2 +

2

R2

)
u,

we get

∂z̄

[
A∇2V +

B − Λ

R2
V +

B

2
∇2(V + V ) +

2Â

R2
U3

]
= 0.

From which we have

A∇2V +
B − Λ

R2
V +

B

2
∇2(V + V ) +

2Â

R2
U3 = ψ(z), (3.24)

where ψ(z) = (ψ1(z), ψ2(z))T is the column-matrix composed with the
analytic function of variable z. If we substitute (3.23) into (3.24) we get that
the left-hand side of the last expression is imaginary i.e. ψ(z) = i(c1, c2)

T =
= iC and we get

A∇2v +
1

R2
(B − Λ)v = C.

But v1 and v2 are define with exachness any constant hence we can write
C = 0 and we have

∇2v +
1

R2
A−1(B − Λ)v = 0.

The general solution of last equation has the following form

v = L0χ0,

where χ0 = (χ1
0, χ2

0)
T , χα

0 is the general solution of the following Helmholtz’s
equation

∇2χα
0 +

æα
0

R2
χα

0 = 0,

æ1
0, æ2

0 are the proper numbers of the matrix A−1(B − Λ), the column of
matrix L0 are the corresponding proper-vector of values æ1

0, æ2
0.

Hence the general solutions of the homogeneous equations systems spher-
ical shell composed the binary mixture in case of approximation N = 0 have
the form

U3 = ω1 + ω2 = ω1 + Lχ,



30 Janjgava R.

U+ = −R2∂z̄(A1ω1 − A2LKχ− iL0χ0),

where

K :=

( 1
æ1

0

0 1
æ2

)
.

If substitute (3.5) (3.26) into (3.6)-(3.9) we get the complex combination of
stress tensor.

Thus the solution may be written by six analytic functions of complex
variables z = tg θ

2
eiϕ, (the integral representation by analytic function for

metaharmonic equation see I. Vekua [8]). Hence we can satisfy six indepen-
dent boundary conditions.

4. Strongly shallow spherical shell. Let’s consider the case when in
the (3.∗) formula the angle ϑ changes in the small interval beside of zero,
we mean

cos ϑ ∼= 1, sin ϑ ∼= 0,

from which we get
·
Λ ∼= R2,

then we can assume that x and y are Cartesian coordinate, besides in the
equation system (a) we can neglect the terms which contain R−2 with item.
As a result we get simplity system of equations.

The system of equations in the complex form when right-hand side is 0
has the following form





A∆U+ + 2B∂z̄θ +
2

R
Â∂z̄U3 = 0,

A∆U3 − 1

R
Âθ = 0.

(b)

After integration the first equation of (b) we get

2A∂zU+ + Bθ +
Â

R
U3 = 2Aϕ

′
(z), (4.1)

where ϕ(z) = (ϕ1(z), ϕ2(z))T is the column-matrix composed with any ana-
lytic functions. If we look for the real part of both side of (4.1) we get (θ =
= ∂zU+ + ∂z̄U+)

(A + B)θ +
Â

R
U3 = A(ϕ

′
(z) + ϕ′(z)).

From the second equation of (b) we have

θ = RÂ−1A∆U3. (4.2)

By substituting (4.2) into (4.1) we obtain

∆U3 +
1

R2
A−1Â(A+B)−1ÂU3 =

1

R
A−1Â(A+B)−1A(ϕ

′
(z)+ϕ′(z)). (4.3)
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We take the following notation

Ã := A−1Â(A + B)−1Â.

The general solution of (4.3) has the form

U3 = RÂ−1A(ϕ
′
(z) + ϕ′(z)) + Lχ(z, z̄), (4.4)

where χ = (χ1, χ2)
T ,

∆χα +
æα

R2
χα = 0,

the column of matrix L are the proper numbers æ1 and æ2 of Ã coresponding
proper vector.

From (4.4) and (4.2) we get

θ = − 1

R
(A + B)−1ÂLχ(z, z̄). (4.5)

By substituting (4.4), (4.5) into (4.1) and by integrating obtained formula
we get

2U+ = ϕ(z)− zϕ′(z)− ψ(z) + 4RĂL∂z̄χ(z, z̄),

where ψ(z) = (ψ1(z), ψ2(z))T are any analytic functions,

Ă := A−1(I −B(A + B)−1)ÂÃ−1.

Thus the general solution of system (b) may be written by four any
analytic functions and two Helmholtz’s equations solutions.

Let the radius R is sufficiently large number and the term partial differ-
ential of U3 throw we obtain





A∆U+ + 2B∂z̄θ = 0,

A∆U3 − 1

R
Âθ = 0.

(c)

The first equation of system (c) independent from second equation and
coincide to the plane strain equations. The general solution of (c) have the
form as follows (see [9],[10],[11])

2U+ = A∗ϕ(z)− zϕ′(z)− ψ(z),

U3 =
1

4R
A−1ÂB−1A(z̄ϕ(z) + zϕ(z)) + g(z) + g(z),

where A∗ := I + 2B−1A; ϕ(z) = (ϕ1(z), ϕ2(z))T , ψ(z) = (ψ1(z), ψ2(z))T ,
g(z) = (g1(z), g2(z))T are the column-matrixs composed any analytic func-
tion.
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