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Abstract

Linear mathematical model of gas flow in the main pipe-line is considered. The
method of disclosing the location of accidental gas escape from the complicated main
with non-stationary gas flow and determining the intensity of the escape is described
and appropriate formulas are received

The efficiency of the presented method is illustrated on a test example .
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The solution of the problem of disclosing the location of an accidental
gas escape from the main pipe-line is known not only for simple pipe-line [1]
but also for the complicated one [2] with stationary flow. The problem (with
determining the intensity of the escape) is solved also with non-stationary
flow for simple pipe-line [3]. In the presented work off-shoots from the main
pipe-line are taken into account.

Distribution of the gas pressure along the main u = u(x, t) is described
by the following equation

∂u

∂t
= a2∂2u

∂x2
+

m∑

k=1

Mkδ(x−xk)+qδ(x−x∗)σ(t−t0), 0 < x < L t > 0 (1)

where a2 = const > 0,m is number of off-shoots, Mk(k = 1,m)- expenses
of gas in the off-shoots, xk(k = 1,m)-coordinates of points of off-shoots,
q-coordinate of the point of escape, t0- the moment of the begining of the
escape, δ(.)-Dirac function, δ(.)-Heaviside function [1], L- the length of the
main x∗ is considered the point of off-shoot.

With equation (1) let us consider the following initial and boundary
conditions:

u(x, 0) = Q(x), 0 ≤ x ≤ L, (2)
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∂u

∂x
= g1 x = 0, t > 0, (3)

∂u

∂x
= g2 x = L, t > 0, (4)

where Q(x) is the initial distribution of pressure, which can be represented
in the following form:

Q(x) =
S −R

L
x + R.

Here R and S (R ≥ S) are gas pressures at the begining and ending of
the main, respectively, at the initial moment.

Sought for values are: coordinate of the escape location x∗ and intensity
of the escape q. Therefore two additional conditions are needed. For this
purpose we will use the values R an S received by measuring pressure at
the begining and ending of the main at moment of time T :

u(0, T ) = R, (5)

u(L, T ) = S. (6)

It is known [4] that the solution of the problem (1)-(4) can be represented
by the following formula:

u(x, t) =

t∫

0

L∫

0

G(x, ξ, t− τ)ω(ξ, τ)dξdτ, (7)

where G is Green function

G(x, ξ, t− τ) =
1

L

[
1 + 2

∞∑
n=1

cos
nπx

L
cos

nπξ

L
e−

n2a2π2

L2 (t−τ)

]
.

Here

ω(x, t) = Q(x)δ(t)−a2δ(x)g1+a2δ(L−x)g2+
m∑

k=1

Mkδ(x−xk)+qδ(x−x∗)σ(t−t0).

Taking into account the last equality, formula (7) will have the following
form:

u =

L∫

0

G(x, ξ, t)Q(ξ)dξ − a2g1

t∫

0

G(x, 0, t− τ)dτ + a2g2

t∫

0

G(x, L, t− τ)dτ

+
∞∑

k=1

Mk

t∫

0

G(x, xk, t− τ)dτ + q

t∫

t0

G(x, x∗, t− τ)dτ (8)
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If we retain only the first item in the expression of Green function, taking
into account formula (8), equalities (5),(6) will be rewritten as follows:

R =
2q

LP

(
1− e−P (T−t0)

)
cos

πx∗

L
+

T − t0
L

q − a2g1

L

[
T +

2

P
(1− e−PT )

]

+
a2g2

L

[
T − 2

P

(
1− e−PT

)]
+

R + S

2
+

4(R− S)

π2
e−PT

+
2

LP

(
1− e−PT

) m∑

k=1

Mkcos
πxk

L
+

T

L

m∑

k=1

Mk, (9)

S = − 2q

LP

(
1− e−P (T−t0)

)
cos

πx∗

L
+

T − t0
L

q − a2g1

L

[
T +

2

P
(e−PT − 1)

]

+
a2g2

L

[
T +

2

P

(
1− e−PT

)]
+

R + S

2
− 4(R− S)

π2
e−PT

− 2

LP

(
1− e−PT

) m∑

k=1

Mkcos
πxk

L
+

T

L

m∑

k=1

Mk, (10)

where P = a2π2/L2.
Equalities (9) and (10) form the system of equations with two unkown

values:x∗ and q. Summing up these equations item by item we will have:

R + S =
2(T − t0)

L
q − 2a2T

L
(g1 − g2) + R + S +

2T

L

m∑

k=1

Mk.

From this

q =

L(R + S −R− S) + 2a2T (g1 − g2)− 2T
m∑

k=1

Mk

2(T − t0)
. (11)

In order to calculate x∗, equations (9) or (10) might be used. In partic-
ular, from equation (10) we will have:

x∗ =
L

π
arccos

{
1

2q(1− e−P (T−t0))

[
P (T − t0)q +

LP

2
(R + S)

−LPS +
4LP (R− S)

π2
e−PT + PT

m∑

k=1

Mk + Pa2T (g2 − g1)

+2

(
a2g1 + a2g2 −

m∑

k=1

Mkcos
πxk

L

)
(
1− e−PT

)
]}

, (12)

where q is determined by formula (11).
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To illustrate the presented method, let us consider a problem, the solu-
tion of which is known beforehand. Suppose, the endings of the pipe-line
are closed.

g1 = g1 = 0 (13)

and initial pressure is the same along the pipe-line:

S = R. (14)

Also, let us assume,that there are two off-shoots at points located at the
equal distance from the begining and ending of the main:

x1 =
1

4
L, x2 =

3

4
L (15)

and with equal intensity:
M1 = M2 = M. (16)

Apart from the above said, suppose at a T moment if time, after mea-
suring pressure, it was found that pressures at the begining and ending of
the main are the same:

S = R. (17)

It is obvious that under such conditions the place of gas escape will
be the middle point of the main. Indeed, taking into account (13)-(17) in
formulas (11),(12) we will have:

q =
2L(R−R)− 4TM

2(T − t0)
, (18)

x∗ =
L

π
arccos

{
T − t0[

2L(R−R)− 4TM
]
(1− e−P (T−t0))

[
PL(R−R)

−2PTM + LPR− LPR + 2PTM − 2M(cos
π

4
+ cos

3π

4
)
(
1− e−PT

)]}

=
L

π
arccos

{
T − t0[

2L(R−R)− 4TM
]
(1− e−P (T−t0))

· 0
}

=
L

π
arccos0 =

L

π
· π

2
=

L

2
.
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