Proceedings of I. Vekua Institute
of Applied Mathematics
Vol. 53, 2003

INVESTIGATION ON ONE NONLINEAR PROBLEM OF ISOTROPIC
PLATE BY I. VEKUA'S METHOD FOR APPROXIMATION N=1
Devdariani G., Janjgava R., Mosia M.
I. Vekua Institute of Applied Mathematics, 2 University Str., 380043 Tbilisi, Georgia
e.mail: giadevd@viam.hepi.edu.ge
(Received: 17.12.2003; revised: 11.03.04)

Abstract

In the present paper a boundary value problem of a cylindrical body for St VenantKirchhoff materials is considered. This problem is reduced to the two-dimensional problem by I. Vekua's method on the midsurface of the plate. The obtained problem is investigated by the implicit function theorem for approximation $\mathrm{N}=1$.

Key words and phrases: boundary value problem, St Venant Venant-Kirchhoff materials, Implicit function theorem .

AMS subject classification: 35G30, 74B20.
The question of existence of solutions of the nonlinear boundary value problem of three-dimensional elasticity can be approached in two ways:

In one approach, it is assumed that the material is hyperelastic, so that particular solutions are obtained as minimizers of the energy over a set of admissible deformations with appropriate smoothness [1];

Another approach represents applying the implicit function theorem directly to the boundary value problem of three-dimensional elasticity ([2], [3]).

Let $\left(\mathbf{e}_{\mathbf{i}}\right)$ denote the basis of the Euclidean space \mathbb{R}^{3}, and let ω be a domain in plane spanned by the vectors \mathbf{e}_{α}. We define the sets

$$
\begin{gathered}
\left.\Omega^{h}:=\omega \times\right]-h, h[, \quad \Gamma:=\partial \omega \times]-h, h\left[, \quad \Gamma_{+}:=\omega \times\{h\}, \quad \Gamma_{-}:=\omega \times\{-h\},\right. \\
\partial_{j}:=\frac{\partial}{\partial x_{j}}, \quad h=\text { const }>0 .
\end{gathered}
$$

Under repeating indexes we mean sumation, the Latin letters taking the values $1,2,3$ and the Greek one - 1,2 . Ω^{h} is cilindre, which thickness $2 h$.

Let Ω^{h} consist St Venant-Kirchhoff materials [3]. Consider the threedimensional boundary value problem with a vector of displacement $\mathbf{u}=$ $=\left(u_{1}, u_{2}, u_{3}\right)$

$$
\left\{\begin{array}{l}
-\partial_{j}\left(\sigma_{i j}+\sigma_{k j} \partial_{k} u_{i}\right)=f_{i} \text { in } \Omega^{\mathrm{h}}, \tag{1}\\
u_{i}=0 \text { on } \Gamma, \\
\sigma_{i 3}+\sigma_{k 3} \partial_{k} u_{i}=t_{i 3}^{+} \text {on } \Gamma_{+} \\
\sigma_{i 3}+\sigma_{k 3} \partial_{k} u_{i}=t_{i 3}^{-} \text {on } \Gamma_{-}
\end{array}\right.
$$

where

$$
\begin{gather*}
\sigma_{i j}=\lambda E_{p p}(\mathbf{u}) \delta_{i j}+2 \mu E_{i j}(\mathbf{u}) \tag{2}\\
E_{i j}(\mathbf{u})=\frac{1}{2}\left(\partial_{i} u_{j}+\partial_{j} u_{i}+\partial_{i} u_{m} \partial_{j} u_{m}\right) \tag{3}
\end{gather*}
$$

$\sigma_{i j}$ - are the components of the second Piola-Kirchhoff stress tensor, $E_{i j}$ - are the components of the Green-St Venant strain tensor, f_{i} - is the given density per unit volume of the applied body forces, $t_{i 3}^{+}, t_{i 3}^{-}$are given functions on upper and lower plane, $E_{i j}$ are the components of the Creen-St Venant strain tensor, $\lambda>0$ and $\mu>0$ are the Lame's constants, $\delta_{i j}$-is Kroneker symbol.

Problem (1) may be written with respect to the first Piola-Kirchhoff stress tensor, the components $t_{i j}$ are connected with $\sigma_{i j}$ by the following form

$$
\begin{align*}
& t_{i j}=\sigma_{k j}\left(\delta_{i k}+\partial_{k} u_{i}\right)=\sigma_{i j}+\sigma_{k j} \partial_{k} u_{i} \tag{4}\\
& \left\{\begin{array}{l}
-\left(\partial_{\alpha} t_{i \alpha}+\partial_{3} t_{i 3}\right)=f_{i} \text { in } \Omega^{\mathrm{h}} \\
u_{i}=0, \quad \text { on } \Gamma, \\
t_{i 3}\left(x_{1}, x_{2}, \pm h\right)=t_{i 3}^{ \pm}, \quad \text { on } \Gamma_{+} \text {and } \Gamma_{-} .
\end{array}\right.
\end{align*}
$$

As well known, the components of the linearized strain have the form

$$
\begin{equation*}
e_{i j}=\frac{1}{2}\left(\partial_{i} u_{j}+\partial_{j} u_{i}\right), \tag{5}
\end{equation*}
$$

then the formulas (2) and (3) may be written as follows

$$
\begin{gather*}
\sigma_{i j}=a_{i j p q}\left(e_{p q}+\frac{1}{2} \partial_{p} u_{k} \partial_{q} u_{k}\right), \\
E_{i j}=e_{i j}+\partial_{i} u_{k} \partial_{j} u_{k}
\end{gather*}
$$

where

$$
a_{i j p q}=\lambda \delta_{i j} \delta_{p q}+\mu\left(\delta_{i p} \delta_{j q}+\delta_{i q} \delta_{j p}\right)
$$

If $\left(2^{\prime}\right)$ substitute into (4) we get

$$
\begin{equation*}
t_{i j}=a_{i j p q} e_{p q}(\mathbf{u})+N_{i j}(\mathbf{u}) \tag{6}
\end{equation*}
$$

where $N_{i j}(\mathbf{u})$ is the following nonlinear term

$$
\begin{equation*}
N_{i j}(\mathbf{u}):=\frac{1}{2} a_{i j p q} \partial_{p} u_{m} \partial_{q} u_{m}+a_{k j p q} \partial_{p} u_{q} \partial_{k} u_{i}+\frac{1}{2} a_{k j p q} \partial_{p} u_{m} \partial_{q} u_{m} \partial_{k} u_{i} . \tag{7}
\end{equation*}
$$

The three-dimensional problem (1^{\prime}) will be reduced to the two-dimensional one by I.Vekua's method on the midsurface of the plate ω ([4], [5], [6], [13]). For this both side of equation (1^{\prime}) multiply on the following functions

$$
\begin{equation*}
\frac{2 m+1}{2 h} P_{m}\left(\frac{x_{3}}{h}\right), \quad m=0,1, \ldots \tag{8}
\end{equation*}
$$

where P_{m} - are Legandre polinoms of order m and integrate it from $-h$ to h with respect to x_{3}.

$$
\begin{equation*}
-\left\{\partial_{\alpha} \stackrel{(m)}{t}_{i \alpha}+\frac{2 m+1}{2 h} \int_{-h}^{h} \partial_{3} t_{i 3} P_{m}\left(\frac{x_{3}}{h}\right) d x_{3}\right\}=\stackrel{(m)}{f}_{i}, \quad m=0,1,2, \ldots, \tag{9}
\end{equation*}
$$

where

$$
\begin{align*}
& {\stackrel{(m)}{t}{ }_{i j}\left(x_{1}, x_{2}\right)}:=\frac{2 m+1}{2 h} \int_{-h}^{h} t_{i j}\left(x_{1}, x_{2}, x_{3}\right) P_{m}\left(\frac{x_{3}}{h}\right) d x_{3}, \tag{10}\\
& \stackrel{(m)}{f}_{i}\left(x_{1}, x_{2}\right):=\frac{2 m+1}{2 h} \int_{-h}^{h} f_{i}\left(x_{1}, x_{2}, x_{3}\right) P_{m}\left(\frac{x_{3}}{h}\right) d x_{3} .
\end{align*}
$$

Take into account that the functions (8) are complete in $L^{2}(]-1,1[)$, the infinite system (9) is formal equivalent to (1^{\prime}).

Integration by parts of (9) and using following formula

$$
\begin{gathered}
P_{m}^{\prime}(x)=(2 m-1) P_{m-1}(x)+(2 m-5) P_{m-3}(x)+\ldots, \quad P_{m}(\pm 1)=(\pm 1)^{m} \\
\\
m=0,1, \ldots
\end{gathered}
$$

we obtain

$$
\begin{align*}
& -\left\{\partial_{\alpha}{\left.\stackrel{(m)}{t}{ }_{i \alpha}-\frac{2 m+1}{h}\left(\begin{array}{c}
(m-1) \\
t
\end{array}{ }_{i 3}+\stackrel{(m-3)}{t}^{(m 3}+\cdots\right)\right\}}^{=\stackrel{(m)}{f}_{i}+\frac{2 m+1}{2 h}\left(t_{i 3}^{+}-(-1)^{m} t_{i 3}^{-}\right), \quad m=0,1, \ldots}\right. \tag{11}
\end{align*}
$$

From (6) by use (10) we get

$$
\begin{equation*}
\stackrel{(m)}{t}_{i j}=a_{i j p q} \stackrel{(m)}{e}_{p q}(u)+\stackrel{(m)}{N}_{i j}, \quad m=0,1, \ldots, \tag{12}
\end{equation*}
$$

where

$$
\left(\stackrel{(m)}{e}_{i j}, \stackrel{(m)}{N}_{i j}\right):=\frac{2 m+1}{2 h} \int_{-h}^{h}\left(e_{i j}, \quad N_{i j}\right) P_{m}\left(\frac{x_{3}}{h}\right) d x_{3}, \quad m=0,1, \ldots
$$

From (5) for the quantite $\stackrel{(m)}{e}_{i j}$ we get the following formulas

$$
\begin{align*}
& \stackrel{(m)}{e}_{\alpha \beta}=\frac{1}{2}\left(\partial_{\alpha} \stackrel{(m)}{u}_{\beta}+\partial_{\beta} \stackrel{(m)}{u}_{\alpha}\right), \\
& \stackrel{(m)}{e}_{\alpha 3}=\frac{1}{2}\left(\partial_{\alpha} \stackrel{(m)}{u}{ }_{3}+\frac{1}{h} \stackrel{(m)}{u}_{\alpha}^{\alpha}\right) \tag{13}\\
& \stackrel{(m)}{e}_{33}=\frac{1}{h} \stackrel{(m)}{u}_{3}
\end{align*}
$$

where

$$
\begin{gathered}
\stackrel{(m)}{u}_{j}=\frac{2 m+1}{2 h} \int_{-h}^{h} u_{j} P_{m}\left(\frac{x_{3}}{h}\right) d x_{3}, \quad m=0,1, \ldots, \\
\stackrel{(m)}{u}_{j}^{\prime}=(2 m+1)\left(\stackrel{(m+1)}{u}_{j}+\stackrel{(m+3)}{u}_{j}+\cdots\right), \quad m=0,1, \ldots
\end{gathered}
$$

From (7) for $\stackrel{(m)}{N}_{i j}, \quad m=0,1, \ldots$, we get [13]

$$
\begin{aligned}
& \stackrel{(m)}{N}_{i j}=\sum_{m_{1}, m_{2}=0}^{\infty} \sum_{r_{1}=0}^{m_{1}} \alpha_{m_{1} m_{2} r_{1}}\left\{\left(\frac{1}{2} a_{i j \alpha \beta} \partial_{\alpha} \stackrel{\left(m_{1}\right)}{u}{ }_{l} \partial_{\beta}{\stackrel{\left(m_{2}\right)}{u}}_{l}+\frac{1}{h} a_{i j \alpha 3} \partial_{\alpha}{\stackrel{\left(m_{1}\right)}{u}}_{l}^{l} \stackrel{\left(m_{2}\right)}{u}\right)_{l}\right. \\
& +\frac{1}{2 h^{2}} a_{i j 33}{\left.\stackrel{\left(m_{1}\right.}{u}\right)}_{l}{ }_{l}^{\left(m_{2}\right)}{ }_{l}{ }_{l}+a_{\alpha j \beta q} \partial_{\beta}{\stackrel{\left(m_{1}\right)}{u}}_{q} \partial_{\alpha}{\stackrel{\left(m_{2}\right)}{u}}_{i}+\frac{1}{h} a_{\alpha j 3 q}{\stackrel{\left(m_{1}\right)}{u}}_{q} \partial_{\alpha}{ }^{\left(m_{2}\right)}{ }_{i}
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{m_{3}=0}^{\infty} \sum_{r_{2}=0}^{m_{3}} \alpha_{m_{3} m r_{2}}\left(\frac{1}{2} a_{\alpha j \beta \gamma} \partial_{\beta}{\stackrel{\left(m_{1}\right)}{u}}_{l} \partial_{\gamma} \partial_{M_{2}}^{\left.m_{2}\right)}{ }_{l} \partial_{\alpha}{\stackrel{\left(m_{3}\right)}{u}}_{i}\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.\left.+\frac{1}{2 h^{3}} a_{3 j 33} \stackrel{\left(m_{1}\right)}{u} \underset{l}{ } \stackrel{\left(m_{2}\right)}{u} \underset{l}{,\left(m_{3}\right)} u_{i}\right) \frac{(2 m+1) \delta_{m+m_{3}-2 r_{2}}^{m_{1}+m_{2}-2 r_{1}}}{2\left(m+m_{3}-2 r_{2}\right)+1}\right\} . \tag{14}
\end{align*}
$$

where

$$
\alpha_{m n r}=\frac{A_{m-r} A_{r} A_{n-r}}{A_{m+n-r}} \frac{2(m+n)-4 r+1}{2(m+n)-2 r+1}, \quad A_{m}=\frac{(2 m-1)!!}{m!} .
$$

By substituting (12) into (11) we obtain

$$
\begin{align*}
& -\frac{1}{2 m+1}\left\{\partial_{\alpha}\left[a_{i \alpha p q} \stackrel{(m)}{e}_{p q}+\stackrel{(m)}{N}_{i \alpha}\right]-\frac{2 m+1}{h}\left[a _ { i 3 p q } \left(\stackrel{(m-1)}{e}_{p q}\right.\right.\right. \\
& \left.\left.\left.+\stackrel{(m-3)}{e}_{p q}+\cdots\right)+\stackrel{(m-1)}{N}_{i 3}+\stackrel{(m-3)}{N}_{i 3}+\cdots\right]\right\}=\stackrel{(m)}{\varphi}_{i} \tag{15}
\end{align*}
$$

where

$$
\begin{equation*}
\stackrel{(m)}{\varphi}_{i}:=\frac{1}{2 m+1} \stackrel{(m)}{f}_{i}+\frac{1}{2 h}\left(t_{i 3}^{+}-(-1)^{m} t_{i 3}^{-}\right) . \tag{16}
\end{equation*}
$$

Assume, that the displacement vector \mathbf{u} is polinomial of order N with respect to coordinate x_{3}, where N is any non-negativ integer number

$$
\mathbf{u}\left(x_{1}, x_{2}, x_{3}\right) \approx \sum_{m=0}^{N} \stackrel{(m)}{\boldsymbol{u}}_{\left(x_{1}, x_{2}\right) P_{m}\left(\frac{x_{3}}{h}\right)}
$$

Assume, that $\stackrel{(k)}{F}=0$ if $k>N$, or $k<0$.
Introduce the following notation

$$
\stackrel{1}{\boldsymbol{u}}:=\left(\stackrel{(0)}{u}_{1}, \stackrel{(0)}{u}_{2}, \stackrel{(0)}{u}_{3}, \stackrel{(1)}{u}_{1}, \stackrel{(1)}{u}_{2}, \stackrel{(1)}{u}_{3}\right)=\sum_{m=0}^{1} \stackrel{(m)}{u}_{i} \stackrel{m}{\boldsymbol{e}}_{i},
$$

where $\left(\stackrel{m}{\boldsymbol{e}}_{i}\right), \quad m=0,1$ - are components of the basis vector of the 6 dimensional Euclidian space

$$
\begin{aligned}
& \stackrel{0}{\boldsymbol{e}}_{1}=(1,0,0,0,0,0), \\
& \stackrel{0}{e}_{2}=(0,1,0,0,0,0), \\
& \stackrel{0}{e}_{3}=(0,0,1,0,0,0), \\
& \stackrel{1}{\boldsymbol{e}}_{1}=(0,0,0,1,0,0), \\
& \stackrel{1}{\boldsymbol{e}}_{2}=(0,0,0,0,1,0), \\
& \stackrel{1}{\boldsymbol{e}}_{3}=(0,0,0,0,0,1) .
\end{aligned}
$$

Hence we get six equations with six unknowns

$$
\left\{\begin{align*}
- & \sum_{m=0}^{1} \frac{1}{2 m+1}\left\{\partial_{\alpha}\left[a_{i \alpha p q} \stackrel{(m)}{e} p q(\stackrel{1}{\boldsymbol{u}})+\stackrel{(m)}{N} i \alpha\right]-\frac{2 m+1}{h}\right. \tag{17}\\
& \left.\times\left[a_{i 3 p q} \stackrel{(m-1)}{e}_{p q}(\stackrel{1}{\boldsymbol{u}})+\stackrel{(m-1)}{N}{ }_{i 3}\right]\right\} \stackrel{m}{\boldsymbol{e}}_{i}=\sum_{m=0}^{1} \stackrel{(m)}{\varphi}_{i} \stackrel{m}{\boldsymbol{e}}_{i} \text { in } \omega, \\
\stackrel{1}{\boldsymbol{u}}= & \sum_{m=0}^{1} \stackrel{(m)}{u}_{i} \stackrel{m}{\boldsymbol{e}}_{i}=0 \text { on } \partial \omega .
\end{align*}\right.
$$

Problem (17) we can be written by the following form

Introduce the following notation

$$
\begin{align*}
\mathbf{A}(\mathbf{v}) & :=-\sum_{m=0}^{1} \frac{1}{2 m+1}\left\{\partial_{\alpha}\left[a_{i \alpha p q} \stackrel{(m)}{e}_{p q}(\mathbf{v})+\stackrel{(m)}{N}_{i \alpha}\right]\right. \tag{18}\\
& \left.-\frac{2 m+1}{h}\left[a_{i 3 p q} \stackrel{(m-1)}{e}_{p q}(\mathbf{v})+\stackrel{(m-1)}{N}_{i 3}\right]\right\}{\underset{\sim}{e}}_{i} .
\end{align*}
$$

Lemma 1. There exists a neighborhood $\mathbf{V}(\mathbf{0})$ of the origin in the space $\mathbf{W}(\omega):=\left(W^{2, p}(\omega) \cap W_{0}^{1, p}(\omega)\right)^{6}, \quad p>2$, such that

$$
\mathbf{v} \in \mathbf{V}(\mathbf{0}) \quad \Rightarrow A(\mathbf{v}) \in \mathbf{F}(\omega)
$$

where $\mathbf{F}(\omega)$ is a some neighborhood of the origin in the space $\left(L^{p}(\omega)\right)^{6}, \quad p>$ >2. Futhermore the operator \mathbf{A} is differentiable at $\mathbf{v}=0$ and the action of the Frechet derivative $\mathbf{A}^{\prime}(\mathbf{0})$ on an arbritrary element $\mathbf{v} \in \mathbf{W}(\omega)$ is given by the formula

$$
\begin{align*}
\mathbf{A}^{\prime}(\mathbf{0}) \mathbf{v} & =-\sum_{m=0}^{1} \frac{1}{2 m+1}\left\{\partial_{\alpha}\left[a_{i \alpha p q} \stackrel{(m)}{e}_{p q}(\mathbf{v})\right]\right. \tag{19}\\
& \left.-\frac{2 m+1}{h}\left[a_{i 3 p q} \stackrel{(m-1)}{e}_{p q}(\mathbf{v})\right]\right\} \stackrel{m}{\boldsymbol{e}}_{i} .
\end{align*}
$$

Proof. The $\left(W^{1, p}(\omega)\right)^{6}$ is a Banach algebra for $p>2$. [3]. As a consequence, the operator \mathbf{A}, maps the any element $\mathbf{v} \in \mathbf{V}(0)$ into the subset of the space $\left(L^{p}(\omega)\right)^{6}, \quad p>2$.

In order to compute $\mathbf{A}^{\prime}(\mathbf{0}) \mathbf{v}$, it suffices, to compute the terms that are linear with respect to \mathbf{v} in the difference $\{\mathbf{A}(\mathbf{v})-\mathbf{A}(\mathbf{0})\}$ (this follows from
the definition of the Frechet derivative)

$$
\begin{aligned}
& \mathbf{A}(\mathbf{v})-\mathbf{A}(\mathbf{0})=-\sum_{m=0}^{1} \frac{1}{2 m+1}\left\{\partial_{\alpha}\left[a_{i \alpha p q} \stackrel{(m)}{e}_{p q}(\mathbf{v})\right]\right. \\
& \left.-\frac{2 m+1}{h} a_{i 3 p q}{ }^{(m-1)}{ }_{e}{ }_{p q}(\mathbf{v})\right\} \stackrel{m}{e}_{i}+o\left(\|\mathbf{v}\|_{\mathbf{W}(\omega)}\right) \text { in } \mathrm{F}(\omega) .
\end{aligned}
$$

and the assertion follows.

In order to use the implicit function theorem, consider the following linearized boundary value problem.

Let $\stackrel{1}{\varphi}=\left(\stackrel{(0)}{\varphi}_{1}, \stackrel{(0)}{\varphi}_{2}, \stackrel{(0)}{\varphi}_{3}, \stackrel{(1)}{\varphi}_{1}, \stackrel{(1)}{\varphi}_{2}, \stackrel{(1)}{\varphi}_{3}\right) \in\left(L^{p}(\omega)\right)^{6}, \quad p>2$ is given function. Find $\stackrel{1}{\boldsymbol{u}} \in \mathbf{W}(\omega)$ such that

$$
\begin{equation*}
\mathbf{A}^{\prime}(\mathbf{0}) \stackrel{1}{\mathbf{u}}=\stackrel{1}{\boldsymbol{\varphi}} \tag{20}
\end{equation*}
$$

or

Lemma 2. The linear problem (20) is equivalent to finding a solution $\stackrel{1}{\boldsymbol{u}} \in \mathbf{W}(\omega)$ of the following variational problem

$$
\begin{equation*}
\mathbf{B}(\boldsymbol{u}, \mathbf{v})=\mathbf{L}(\mathbf{v}) \text { forall } \mathbf{v} \in \mathbf{V} \tag{21}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathbf{B}(\stackrel{1}{\boldsymbol{u}}, \mathbf{v}):=\sum_{m=0}^{1} \frac{1}{2 m+1} \int_{\omega}\left\{\lambda \stackrel{(m)}{e}_{p p}(\stackrel{1}{\boldsymbol{u}}) \stackrel{(m)}{e}_{e^{\prime}}(\mathbf{v})+2 \mu \stackrel{(m)}{e}_{i j}(\stackrel{1}{\boldsymbol{u}}) \stackrel{(m)}{e}_{i j}(\mathbf{v})\right\} d x \\
& \mathbf{L}(\mathbf{v}):=\int_{\omega}{ }_{\omega}^{1} \cdot \mathbf{v} d x, \quad\left(d x=d x_{1} d x_{2}\right) \tag{22}
\end{align*}
$$

Proof. Both side of the equation $\left(20^{\prime}\right)$ multiply on the vector $\mathbf{v} \in \mathbf{W}(\omega)$, to integrate and using the Green's formula we deduce that

$$
\begin{aligned}
& -\sum_{m=0}^{1} \frac{1}{2 m+1} \int_{\omega}\left\{\lambda \left[\partial_{\alpha}{ }^{(m)} e_{p p}\left(\frac{1}{\boldsymbol{u}}\right) \delta_{i \alpha}-\frac{2 m+1}{h}{ }_{e}^{(m-1)}{ }_{p p}\left(\begin{array}{l}
1 \\
\boldsymbol{u}
\end{array} \delta_{i 3}\right]\right.\right. \\
& \left.+2 \mu\left[\partial_{\alpha} \stackrel{(m)}{e}_{i \alpha}(\boldsymbol{1})-\frac{2 m+1}{h} \stackrel{(m-1)}{e}{ }_{i 3}\left({ }_{\boldsymbol{u}}^{\boldsymbol{u}}\right)\right]\right\} \stackrel{(m)}{v}_{i} d x \\
& =\sum_{m=0}^{1} \frac{1}{2 m+1} \int_{\omega}\left\{\lambda \stackrel{(m)}{e}_{p p}(\stackrel{1}{\boldsymbol{u}})\left(\partial_{\alpha} \stackrel{(m)}{v}{ }_{\alpha}+\frac{1}{h} \stackrel{(m)}{v}\right)_{3}\right) \\
& +2 \mu\left[\stackrel{(m)}{e}_{\alpha \beta}\left(\frac{1}{\boldsymbol{u}}\right) \frac{1}{2}\left(\partial_{\alpha} \stackrel{(m)}{v}{ }_{\beta}+\partial_{\beta} \stackrel{(m)}{v}_{\alpha}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\omega}^{\stackrel{N}{\varphi}} \cdot \mathbf{v} d x, \quad \stackrel{(m)}{v}{ }_{k}= \begin{cases}\stackrel{(1)}{v}_{j}, & \text { when } \mathrm{m}=0, \\
0, & \text { when } \mathrm{m}=1 .\end{cases}
\end{aligned}
$$

Hence by use the correspondence (13) we get (21).
Conversely, let $\stackrel{1}{\boldsymbol{u}}$ is a solution of (21). Using the Green's formula again and taking into account the space $\mathbf{W}(\omega)$ is dense in $\left(L^{p}(\omega)\right)^{6}$ we obtain, that $\stackrel{1}{\boldsymbol{u}}$ is a solution of problem (20).

Lemma 3. The bilinear form $\mathbf{B}(\mathbf{u}, \mathbf{v})$ given by the formula (22) is continuous in the space $\left(H^{1}(\omega)\right)^{6}$ with respect to norm $\|\cdot\|_{1, \omega}$, i.e. exists a constant β such that

$$
\begin{equation*}
\mathbf{B}(\mathbf{u}, \mathbf{v}) \leq \beta\|\mathbf{u}\|_{1, \omega}\|\mathbf{v}\|_{1, \omega} \text { forall } \mathbf{u}, \mathbf{v} \in\left(\mathrm{H}^{1}(\omega)\right)^{6} \tag{23}
\end{equation*}
$$

where

$$
\|\mathbf{v}\|_{1, \omega}:=\left\{\sum_{m=0}^{1} \int_{\omega}\left(\stackrel{(m)}{v}_{j} \stackrel{(m)}{v}_{j}+\partial_{\alpha} \stackrel{(m)}{v}_{j} \partial_{\alpha} \stackrel{(m)}{v}_{j}\right) d x\right\}^{\frac{1}{2}} .
$$

Proof. From the definition bilinear form $\mathbf{B}(\mathbf{u}, \mathbf{v})$, to take into consid-
eration the formula (13) we have

$$
\begin{aligned}
& \mathbf{B}(\mathbf{u}, \mathbf{v})=\sum_{m=0}^{1} \int_{\omega} \frac{1}{2 m+1}\left\{\lambda\left[\partial_{\gamma} \stackrel{(m)}{u}{ }_{\gamma} \partial_{\eta} \stackrel{(m)}{u}{ }_{\eta}+\frac{1}{h} \partial_{\gamma} \stackrel{(m)}{u}_{\gamma} \stackrel{(m)}{v}\right)_{3}\right. \\
& \left.+\frac{1}{h} \partial_{\eta} \stackrel{(m)}{v}_{\eta} \stackrel{(m)}{u}_{u_{3}}{ }_{3}\right]+\frac{\mu}{2}\left(\partial_{\alpha} \stackrel{(m)}{u}_{\beta}+\partial_{\beta} \stackrel{(m)}{u}_{\alpha}\right)\left(\partial_{\alpha} \stackrel{(m)}{v}_{\beta}+\partial_{\beta} \stackrel{(m)}{v}_{\alpha}\right)
\end{aligned}
$$

Now using Cauchy-Schwarz inequality, we obtain exists a constant $k>0$ such that

$$
\begin{aligned}
\mathbf{B}(\mathbf{u}, \mathbf{v}) & \leq k \sum_{m=0}^{1} \sum_{i=1}^{3}\left[\left(\int_{\omega} \stackrel{(m)}{u}_{i}^{2} d x\right)^{\frac{1}{2}}+\sum_{\alpha=1}^{2}\left(\int_{\omega}\left(\partial_{\alpha} \stackrel{(m)}{u}_{i}\right)^{2} d x\right)^{\frac{1}{2}}\right] \\
& \times \sum_{l=0}^{1} \sum_{j=1}^{3}\left[\left(\int{ }_{\omega} \stackrel{(l)}{v}_{j}^{2} d x\right)^{\frac{1}{2}}+\sum_{\beta=1}^{2}\left(\int_{\omega}\left(\partial_{\beta} \stackrel{(l)}{v}\right)_{j}^{2} d x\right)^{\frac{1}{2}}\right]
\end{aligned}
$$

for all $\mathbf{u}, \mathbf{v} \in\left(H^{1}(\omega)\right)^{6}$, it follows the inequality (23).
We show that holds a first generalized Korn's inequality ([7], [8]), i.e.

Lemma 4. There exists a constant $c>0$ such that

$$
\begin{equation*}
\|\mathbf{v}\|_{1, \omega} \leq c\left\{\sum_{m=0}^{1} \int_{\omega} \stackrel{(m)}{e}_{i j} \stackrel{(m)}{e}_{i j} d x\right\}^{\frac{1}{2}} \tag{24}
\end{equation*}
$$

for all $\mathbf{v}=\left(\stackrel{(0)}{v}_{1}, \stackrel{(0)}{v} 2, \stackrel{(0)}{v}_{3}, \stackrel{(1)}{v}_{1}, \stackrel{(1)}{v}_{2}, \stackrel{(1)}{v}_{3}\right) \in\left(H_{0}^{1}(\omega)\right)^{6}$
Proof. For fixed $m=0,1$ are used following notations

$$
\begin{aligned}
\mathbf{B}_{m}(\mathbf{v}, \mathbf{v}) & :=\int_{\omega} \stackrel{(m)}{e}_{i j}(\mathbf{v}) \stackrel{(m)}{e}{ }_{i j}(\mathbf{v}) d x=\int_{\omega} \stackrel{(m)}{e}_{\alpha \beta}(\mathbf{v}) \stackrel{(m)}{e}{ }_{\alpha \beta}(\mathbf{v}) d x \\
& +2 \int_{\omega} \stackrel{(m)}{e}_{\alpha 3}(\mathbf{v}) \stackrel{(m)}{e}{ }_{\alpha 3}(\mathbf{v}) d x+\int_{\omega} \stackrel{(m)}{e}_{33}(\mathbf{v}) \stackrel{(m)}{e}{ }_{33}(\mathbf{v}) d x \\
\mathbf{B}_{m}^{1}(\mathbf{v}, \mathbf{v}) & :=\int_{\omega} \stackrel{(m)}{e}_{\alpha \beta}(\mathbf{v}) \stackrel{(m)}{e}{ }_{\alpha \beta}(\mathbf{v}) d x \\
\mathbf{B}_{m}^{2}(\mathbf{v}, \mathbf{v}) & :=2 \int_{\omega} \stackrel{(m)}{e}_{\alpha 3}(\mathbf{v}) \stackrel{(m)}{e}{ }_{\alpha 3}(\mathbf{v}) d x,
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{B}_{m}^{3}(\mathbf{v}, \mathbf{v}) & :=\int_{\omega} \stackrel{(m)}{e}_{e} 33(\mathbf{v}) \stackrel{(m)}{e} 33(\mathbf{v}) d x \\
\mathbf{B}_{m}(\mathbf{v}, \mathbf{v}) & =\mathbf{B}_{m}^{1}(\mathbf{v}, \mathbf{v})+\mathbf{B}_{m}^{2}(\mathbf{v}, \mathbf{v})+\mathbf{B}_{m}^{3}(\mathbf{v}, \mathbf{v})
\end{aligned}
$$

By Korn's inequality $\left(\stackrel{(m)}{v}{ }_{\gamma} \in H_{0}^{1}(\omega)\right)$, exists the number $k_{1}>0$ such that

$$
\mathbf{B}_{m}^{1}(\mathbf{u}, \mathbf{v}) \geq k_{1} \int_{\omega}\left(\stackrel{(m)}{v}_{\gamma} \stackrel{(m)}{v}_{\gamma}+\partial_{\gamma} \stackrel{(m)}{v}_{\alpha} \partial_{\gamma} \stackrel{(m)}{v}_{\alpha}\right) d x
$$

for all $\stackrel{(m)}{v}_{\beta} \in H_{0}^{1}(\omega)$.

$$
\begin{aligned}
\mathbf{B}_{m}^{2}(\mathbf{v}, \mathbf{v}) & =\frac{1}{2} \int\left(\partial_{\alpha} \stackrel{(m)}{v}{ }_{3}+\frac{1}{h} \stackrel{(m)}{v}{ }_{\alpha}\right)\left(\partial_{\alpha} \stackrel{(m)}{v}{ }_{3}+\frac{1}{h} \stackrel{(m)}{v}{ }_{\alpha}\right) \\
& \geq \frac{1-\varepsilon}{2} \int_{\omega} \partial_{\alpha} \stackrel{(m)}{v}{ }_{3} \partial_{\alpha} \stackrel{(m)}{v}{ }_{3} d x-\frac{1-\varepsilon}{2 \varepsilon h^{2}} \int_{\omega}{ }_{\omega}^{(\underset{v}{v})}{ }_{\alpha}{ }_{\alpha}^{(m)}{ }_{\alpha}{ }_{\alpha} d x
\end{aligned}
$$

for any $\varepsilon>0$ (here using the inequality $(a+b)^{2} \geq(1-\varepsilon) a^{2}-\frac{1-\varepsilon}{\varepsilon} b^{2}$).

$$
\int_{\omega} \stackrel{(m)}{v}_{\alpha} \stackrel{(m)}{v}_{\alpha} d x \leq \sum_{l=0}^{1} \int_{\omega} \stackrel{(l)}{v}{ }_{\gamma} \stackrel{(l)}{v}{ }_{\gamma} d x, \quad m=0,1
$$

Hence

$$
\mathbf{B}_{m}^{2}(\mathbf{v}, \mathbf{v}) \geq \frac{1-\varepsilon}{2} \int_{\omega} \partial_{\alpha} \stackrel{(m)}{v}{ }_{3} \partial_{\alpha} \stackrel{(m)}{v}{ }_{3} d x-\frac{1-\varepsilon}{2 \varepsilon h^{2}} \sum_{l=0}^{1} \int_{\omega} \stackrel{(l)}{v}_{\alpha} \stackrel{(l)}{v}{ }_{\alpha} d x .
$$

It follows

$$
\begin{gathered}
\mathbf{B}_{m}(\mathbf{v}, \mathbf{v}) \geq k_{1} \int_{\omega}\left(\stackrel{(m)}{v}{ }_{\alpha} \stackrel{(m)}{v}{ }_{\alpha}+\partial_{\gamma} \stackrel{(m)}{v}{ }_{\alpha} \partial_{\gamma} \stackrel{(m)}{v}{ }_{\alpha}\right) d x+\frac{1-\varepsilon}{2} \int_{\omega} \partial_{\alpha} \stackrel{(m)}{v}{ }_{3} \partial_{\alpha} \stackrel{(m)}{v}{ }_{3} d x \\
-\frac{1-\varepsilon}{2 \varepsilon h^{2}} \sum_{l=0}^{1} \int_{\omega} \stackrel{(l)}{v}_{\alpha} \stackrel{(l)}{v}{ }_{\alpha} d x .
\end{gathered}
$$

Let $0<\varepsilon<1$. From the last inequality we have

$$
\begin{align*}
& \mathbf{B}_{0}(\mathbf{v}, \mathbf{v})+\mathbf{B}_{1}(\mathbf{v}, \mathbf{v}) \geq \sum_{m=0}^{1}\left\{k_{1} \int_{\omega} \partial_{\gamma} \stackrel{(m)}{v}{ }_{\alpha} \partial_{\gamma} \stackrel{(m)}{v}{ }_{\alpha} d x+\frac{1-\varepsilon}{2} k_{1}\right. \tag{25}\\
& \left.\quad \times \int_{\omega} \partial_{\alpha} \stackrel{(m)}{v}{ }_{3} \partial_{\alpha} \stackrel{(m)}{v}{ }_{3} d x+\left(k_{1}-\frac{1-\varepsilon}{2 \varepsilon h^{2}}\right) \int_{\omega} \stackrel{(m)}{v}_{\alpha} \stackrel{(m)}{v}_{\alpha} d x\right\} .
\end{align*}
$$

$$
k_{1}-\frac{1-\varepsilon}{2 \varepsilon h^{2}}>0
$$

since $\stackrel{(m)}{v}_{3} \in H_{0}^{1}(\omega)$, hence holds the Fridrix inequality.

$$
\int_{\omega}\left(\stackrel{m}{v}_{v}\right)^{2} d x \leq k_{2} \int_{\omega} \partial_{\alpha} \stackrel{(m)}{v}_{3} \partial_{\alpha} \stackrel{(m)}{v}_{3} d x .
$$

From (25) taking into account the last two inequalites we get (24).
From (22) and (24) we have

$$
\begin{equation*}
\mathbf{B}(\mathbf{v}, \mathbf{v}) \geq \frac{2 \mu}{3} \sum_{m=0}^{1} \int_{\omega} \stackrel{(m)}{e}_{i j}(\mathbf{v}) \stackrel{(m)}{e}_{i j}(\mathbf{v}) d x \geq \frac{2 \mu}{3^{2}}\|\mathbf{v}\|_{1, \omega} \tag{26}
\end{equation*}
$$

for all $\mathbf{v} \in\left(H_{0}^{1}(\omega)\right)^{6}$.

Theorem 1. (existence of a weak solution). Let the $\stackrel{1}{\boldsymbol{\varphi}} \in\left(L^{p}(\omega)\right)^{6}$, $p>1$ be a given function. Then there is one and only function $\stackrel{1}{\boldsymbol{u}} \in$ $\in\left(H_{0}^{1}(\omega)\right)^{6}$, that satisfies

$$
\mathbf{B}(\stackrel{N}{\boldsymbol{u}}, \mathbf{v})=\mathbf{L}(\mathbf{v}) \text { forall } \mathbf{v} \in\left(\mathrm{H}_{0}^{1}(\omega)\right)^{6},
$$

also

$$
\|\stackrel{1}{\boldsymbol{u}}\|_{1, \omega} \leq C\|\stackrel{1}{\boldsymbol{\varphi}}\|_{0, p, \omega},
$$

where $C>0$ is independent from $\stackrel{1}{\boldsymbol{\varphi}} \stackrel{1}{\boldsymbol{u}}$.
In addition

$$
\mathbf{J}(\boldsymbol{u})=\inf _{\mathbf{v} \in\left(H_{0}^{1}(\omega)\right)^{6}} \mathbf{J}(\mathbf{v}), \quad \text { where } \mathbf{J}(\mathbf{v})=\frac{1}{2} \mathbf{B}(\mathbf{v}, \mathbf{v})-\mathbf{L}(\mathbf{v}) .
$$

Proof. The Sobolev imbedding theorem imply that the linear form \mathbf{L} is cuntinuous on the space $\left(H_{0}^{1}(\omega)\right)^{6}$ if $\stackrel{1}{\varphi} \in\left(L^{p}(\omega)\right)^{6}, \quad p>1$. The symmetric form \mathbf{B} is continuous and $\left(H_{0}^{1}(\omega)\right)^{6}$-elliptic by inequalites (23) and (26). Hence the conclusion follows by the Riesz representation theorem [9].

The weak solution possesses additional regularity if the boundary $\partial \omega$ and the right-hand side $\stackrel{1}{\varphi}$ also possess additional regularity.

Theorem 2. Let ω be a domain \mathbb{R}^{2} with a boundary $\partial \omega$ of class \mathcal{C}^{2}, let $\stackrel{1}{\boldsymbol{\varphi}} \in\left(L^{p}(\omega)\right)^{6}, \quad p>1$. Then the weak solution $\stackrel{1}{\boldsymbol{u}} \in\left(H_{0}^{1}(\omega)\right)^{6}$ of the linearized pure displacement problem is in the space $\left(W^{2, p}(\omega)\right)^{6}$ and it satisfies

$$
\begin{array}{r}
-\sum_{m=0}^{1} \frac{1}{2 m+1}\left\{\partial_{\alpha}\left[a_{i \alpha p q} \stackrel{(m)}{e}_{p q}\left(\frac{1}{\boldsymbol{u}}\right)\right]-\frac{2 m+1}{h} a_{i 3 p q} \stackrel{(m-1)}{e}_{p q}\left(\dot{1}_{\boldsymbol{u}}\right)\right\} \stackrel{m}{\boldsymbol{e}}_{i} \\
=\stackrel{1}{\boldsymbol{\varphi}} \text { in }\left(\mathrm{L}^{\mathrm{p}}(\omega)\right)^{6} .
\end{array}
$$

Proof. Because the linear operator $\mathbf{A}^{\prime} \mathbf{(0)}$ is strongly elliptic, the implication

$$
\stackrel{1}{\boldsymbol{\varphi}} \in\left(L^{p}(\omega)\right)^{6} \Rightarrow \stackrel{1}{\boldsymbol{u}} \in\left(H^{2}(\omega)\right)^{6} \cap\left(H_{0}^{1}(\omega)\right)^{6},
$$

holds it the boundary $\partial \omega$ is of class \mathcal{C}^{2} [10]. Hence the announced regularity holds for $p=2$.

Because the linearized problem is uniformly elliptic and satisfies the comlpementing conditions ([11], [12]). That the mapping

$$
\begin{array}{r}
\mathbf{A}^{\prime}(\mathbf{0}): \mathbf{v} \in \mathbf{V}^{p}:=\left\{\mathbf{v} \in\left(W^{2, p}(\omega)\right)^{6} ; \mathbf{v}=\mathbf{0} \text { on } \partial \omega\right\} \rightarrow \\
-\sum_{m=0}^{1} \frac{1}{2 m+1}\left\{\partial_{\alpha}\left[a_{i \alpha p q}{ }_{\left({ }^{(m)}\right.}^{e}{ }_{p q}(\mathbf{u})\right]-\frac{2 m+1}{h} a_{i 3 p q}{\left.\underset{p q}{(m-1)}{ }_{p q}(\boldsymbol{u})\right\}{\underset{\boldsymbol{u}}{ }}^{m}{ }_{i}}_{\in\left(L^{p}(\omega)\right)^{6}}\right.
\end{array}
$$

has an index $\operatorname{ind} d \mathbf{A}^{\prime}(\mathbf{0})$ that is independent of $\left.p \in\right] 1, \infty[$. In our case, we know that $\operatorname{ind} \mathbf{A}^{\prime}(\mathbf{0})=0$ for $p=2$, since $\mathbf{A}^{\prime}(\mathbf{0})$ is a bijection in this case.

Since $\mathbf{V}^{\mathbf{p}}(\omega)$ is continuously imbedded in $\left.H_{0}^{1}(\omega)\right)^{6}$, i.e. $\mathbf{V}^{\mathbf{p}}(\omega) \hookrightarrow\left(H_{0}^{1}(\omega)\right)^{6}$ for $p \geq 1[9], \mathbf{A}^{\prime}(\mathbf{0}): \mathbf{V}^{\mathbf{p}}(\omega) \rightarrow\left(L^{p}(\omega)\right)^{6}$ of p; hence $\operatorname{dimKer} \mathbf{A}^{\prime}(\mathbf{0})=\mathbf{0}$. Since $\operatorname{ind} \mathbf{A}^{\prime}(\mathbf{0})=0$ on the other hand, the mapping $\mathbf{A}^{\prime}(\mathbf{0})$, is also surjective in this case. Hence the regularity result holds for $p>1$.

The weak solution $\stackrel{1}{\boldsymbol{u}} \in\left(W^{2, p}(\omega)\right)^{6} \cap\left(H_{0}^{1}(\omega)\right)^{6}$ satisfies
$\int_{\omega} \sum_{m=0}^{1} \frac{1}{2 m+1}\left\{\lambda \stackrel{(m)}{e}_{p p}(\stackrel{1}{\boldsymbol{u}}) \stackrel{(m)}{e}_{q q}(\mathbf{v})+2 \mu \stackrel{(m)}{e}_{i j}\left(\frac{1}{\boldsymbol{u}}\right) \stackrel{(m)}{e}_{i j}(\mathbf{v})\right\} d x=\int_{\omega}{ }_{\omega}^{\boldsymbol{\varphi}} \cdot \mathbf{v} d x$
for all $\mathbf{v} \in(D(\omega))^{6},(D(\omega)$ denote the space of functions whose support is a compact subset of ω. Hence we can apply the Green formula to the left-hand sides; this gives

$$
\begin{aligned}
& \int_{\omega} \sum_{m=0}^{1} \frac{1}{2 m+1}\left\{\lambda \stackrel{(m)}{e}_{p p}\left(\mathbf{u}_{\boldsymbol{u}} \stackrel{(m)}{e}_{q q}(\mathbf{v})+2 \mu \stackrel{(m)}{e}_{i j}\left(\frac{1}{\boldsymbol{u}}\right) \stackrel{(m)}{e}_{i j}(\mathbf{v})\right\} d x\right. \\
& =-\int_{\omega} \sum_{m=0}^{1} \frac{1}{2 m+1}\left\{\partial_{\alpha}\left[\lambda \stackrel{(m)}{e}{ }_{p p}\left(\frac{1}{\boldsymbol{u}}\right) \delta_{i \alpha}+2 \mu \stackrel{(m)}{e}{ }_{i \alpha}\left(\mathcal{u}_{\boldsymbol{u}}\right)\right]\right.
\end{aligned}
$$

and the conclusion follows since $\{D(\omega)\}^{-}=L^{p}(\omega)$.
The above nonlinear problem can be converted into a problem: Find a vector field $\stackrel{1}{\boldsymbol{u}}: \bar{\omega} \rightarrow \mathbb{R}^{6}$, that satisfies

$$
\left\{\begin{array}{l}
\mathbf{A}(\boldsymbol{u})=\stackrel{1}{\boldsymbol{\varphi}} \text { in } \omega \tag{27}\\
\stackrel{1}{\boldsymbol{u}}=\mathbf{0} \text { on } \partial \omega
\end{array}\right.
$$

where operator \mathbf{A} is defined by the formula (18).

Theorem 3. Let ω be a domain \mathbb{R}^{2} with a boundary $\partial \omega$ of class \mathcal{C}^{2}, and assume

$$
\stackrel{(m)}{t}_{i j}\left(\stackrel{1}{\boldsymbol{u}}^{\prime}\right)=a_{i j p q} \stackrel{(m)}{e}_{p q}(\stackrel{1}{\boldsymbol{u}})+\stackrel{(m)}{N}_{i j}(\stackrel{1}{\boldsymbol{u}}), \quad m=0,1 .
$$

Then for each number $p>2$ there exists a neighborhood \mathbf{F}^{p} of the origin in the space $\left(L^{p}(\omega)\right)^{6}$ and a neighborhood \mathbf{U}^{p} of the origin in the space

$$
\mathbf{V}(\omega):=\left\{\mathbf{v} \in\left(W^{2, p}(\omega)\right)^{6}, \quad \mathbf{v}=\mathbf{0} \text { on } \partial \omega\right\}
$$

such that, for each $\stackrel{1}{\varphi} \in \mathbf{F}^{p}$ the boundary value problem (25) has exactly one solution $\stackrel{1}{\boldsymbol{u}} \in \mathbf{U}^{p}$.

Proof. The Sobolev space $\left(W^{1, p}(\omega)\right)^{6}$ is a Banach algebra for $p>3$. As a consequence, the nonlinear operator A maps the space $\left(W^{2, p}(\omega)\right)^{6}$ into the space $\left(L^{p}(\omega)\right)^{6}$ and it is infinitely differentiable between these two spaces, since it is a sum of continuous linear, bilinear and trilinear mappings (hence all it's derivatives of order ≥ 4 vanish).

Since $\stackrel{1}{\boldsymbol{u}}=\mathbf{0}$ is clearly a solution of problem (25) corresponding to $\stackrel{1}{\boldsymbol{\varphi}}=$ $=0$. In order to use the implicit function theorem, we must verify that the derivative $\mathbf{A}^{\prime}(\mathbf{0})$ is an isomorphism between the spaces $\mathbf{V}^{p}(\omega) \quad\left(L^{p}(\omega)\right)^{6}$. But the problem: Find $\stackrel{1}{\boldsymbol{u}}$ such that

$$
\mathbf{A}^{\prime}(\mathbf{0}) \stackrel{1}{\boldsymbol{u}}=\stackrel{1}{\boldsymbol{\varphi}}
$$

is the linearized pure displacement problem:

$$
\left\{\begin{array}{l}
-\sum_{m=0}^{1} \frac{1}{2 m+1}\left\{\partial_{\alpha} a_{i \alpha p q}{ }_{e}^{(m)}{ }_{p q}(\stackrel{1}{\boldsymbol{u}})-\frac{2 m+1}{h} a_{i 3 p q}{ }_{e}^{(m-1)}{ }_{p q}(\stackrel{1}{\boldsymbol{u}})\right\} \mathbf{e}_{i}=\stackrel{1}{\varphi} \text { in } \omega . \\
\stackrel{1}{\boldsymbol{u}}=\mathbf{0} \text { on } \partial \omega,
\end{array}\right.
$$

which have one and only one solution.
Hence the continuous linear operator $\mathbf{A}^{\prime}(\mathbf{0}): \mathbf{V}^{p}(\omega) \rightarrow\left(L^{p}(\omega)\right)^{6}$ is bijective. Since, by the closed graph theorem [9] its inverse is also continuous.

REFERENCES

1. Ball J. M.// Arch. Rational Mech. Anal. 1977. 63. P. 337-403.
2. Ciarlet P., Rabier P. Uravnenia Karmana. M., 1983.
3. Ciarlet P. Matematicheskaia teoria uprugosti. M., 1992.
4. Vekua I.N.// Nekotorye obshie metody postroenia razlichnyx variantov teorii obolochek. M., 1982.
5. Vekua I.N. Ob odnom metode raschota prizmaticheskikh obolochek. Tbilisi, 1955. 6. Meunargia T.V.// Trudy instituta prikl. mat. im. I.N. Vekua TGU , 1990. N38. 5-43.
6. Gordeziani D.G.//Dokl. AN SSSR. 1974. T. 215. N6. C. 1289-1292. 8. Khoma I.U. Obobshennaia teoria anizotropnyx obolochek. Kiev. 1986.
7. Sobolev S.L. Nekotorye primenenia funkcional'nogo analiza v mat. fizike. M., 1988.
8. Necas J. Les Methodes Directes en Theorie des Equations Elliptiques. Paris. 1967.
9. Agmon S., Douglis A., Nirenberg L.// Comm. Pure Appl. Math. 1964. 17. P. 35-92.
10. Geymonat G.// Ann. Mat. Pura Appl. 1965. 69. P. 207-284.
11. Meunargia T.V.// Proceeding of A. Razmadze Math. Institute 119. 1999. P.131-154.
