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Abstract

In the present paper a boundary value problem of a cylindrical body for St Venant-

Kirchhoff materials is considered. This problem is reduced to the two-dimensional

problem by I. Vekua’s method on the midsurface of the plate. The obtained problem

is investigated by the implicit function theorem for approximation N=1 .
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The question of existence of solutions of the nonlinear boundary value
problem of three-dimensional elasticity can be approached in two ways:

In one approach, it is assumed that the material is hyperelastic, so that
particular solutions are obtained as minimizers of the energy over a set of
admissible deformations with appropriate smoothness [1];

Another approach represents applying the implicit function theorem di-
rectly to the boundary value problem of three-dimensional elasticity ([2],
[3]).

Let (ei) denote the basis of the Euclidean space R3, and let ω be a
domain in plane spanned by the vectors eα. We define the sets

Ωh := ω×]− h, h[, Γ := ∂ω×]− h, h[, Γ+ := ω × {h} , Γ− := ω × {−h} ,

∂j :=
∂

∂xj

, h = const > 0.

Under repeating indexes we mean sumation, the Latin letters taking the
values 1,2,3 and the Greek one - 1,2. Ωh is cilindre, which thickness 2h.

Let Ωh consist St Venant-Kirchhoff materials [3]. Consider the three-
dimensional boundary value problem with a vector of displacement u =
= (u1, u2, u3)
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−∂j(σij + σkj∂kui) = fi in Ωh,

ui = 0 on Γ,

σi3 + σk3∂kui = t+i3 on Γ+,

σi3 + σk3∂kui = t−i3 on Γ−,

(1)

where
σij = λEpp(u)δij + 2µEij(u), (2)

Eij(u) =
1

2
(∂iuj + ∂jui + ∂ium∂jum) , (3)

σij - are the components of the second Piola-Kirchhoff stress tensor, Eij - are
the components of the Green-St Venant strain tensor, fi - is the given density
per unit volume of the applied body forces, t+i3, t−i3 are given functions on
upper and lower plane, Eij are the components of the Creen-St Venant
strain tensor, λ > 0 and µ > 0 are the Lame’s constants, δij-is Kroneker
symbol.

Problem (1) may be written with respect to the first Piola-Kirchhoff
stress tensor, the components tij are connected with σij by the following
form

tij = σkj(δik + ∂kui) = σij + σkj∂kui. (4)




−(∂αtiα + ∂3ti3) = fi in Ωh,

ui = 0, on Γ,

ti3(x1, x2,±h) = t±i3, on Γ+ and Γ−.

(1
′
)

As well known, the components of the linearized strain have the form

eij =
1

2
(∂iuj + ∂jui), (5)

then the formulas (2) and (3) may be written as follows

σij = aijpq

(
epq +

1

2
∂puk∂quk

)
, (2

′
)

Eij = eij + ∂iuk∂juk, (3
′
)

where
aijpq = λδijδpq + µ(δipδjq + δiqδjp).

If (2
′
) substitute into (4) we get

tij = aijpqepq(u) + Nij(u), (6)
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where Nij(u) is the following nonlinear term

Nij(u) :=
1

2
aijpq∂pum∂qum + akjpq∂puq∂kui +

1

2
akjpq∂pum∂qum∂kui. (7)

The three-dimensional problem (1
′
) will be reduced to the two-dimensional

one by I.Vekua’s method on the midsurface of the plate ω ([4], [5], [6], [13]).
For this both side of equation (1

′
) multiply on the following functions

2m + 1

2h
Pm

(x3

h

)
, m = 0, 1, ..., (8)

where Pm - are Legandre polinoms of order m and integrate it from −h to
h with respect to x3.

−


∂α

(m)

t iα +
2m + 1

2h

h∫

−h

∂3ti3Pm

(x3

h

)
dx3



 =

(m)

f i, m = 0, 1, 2, ..., (9)

where

(m)

t ij(x1, x2) :=
2m + 1

2h

h∫

−h

tij(x1, x2, x3)Pm

(x3

h

)
dx3,

(m)

f i(x1, x2) :=
2m + 1

2h

h∫

−h

fi(x1, x2, x3)Pm

(x3

h

)
dx3.

(10)

Take into account that the functions (8) are complete in L2(] − 1, 1[), the
infinite system (9) is formal equivalent to (1

′
).

Integration by parts of (9) and using following formula

P
′
m(x) = (2m− 1)Pm−1(x) + (2m− 5)Pm−3(x) + ..., Pm(±1) = (±1)m,

m = 0, 1, ...,

we obtain

−
{

∂α

(m)

t iα − 2m + 1

h

(
(m−1)

t i3 +
(m−3)

t i3 + · · ·
)}

=
(m)

f i +
2m + 1

2h

(
t+i3 − (−1)mt−i3

)
, m = 0, 1, ... .

(11)

From (6) by use (10) we get

(m)

t ij = aijpq

(m)
e pq(u) +

(m)

N ij, m = 0, 1, ..., (12)
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where

(
(m)
e ij,

(m)

N ij

)
:=

2m + 1

2h

h∫

−h

(eij, Nij)Pm

(x3

h

)
dx3, m = 0, 1, ... .

From (5) for the quantite
(m)
e ij we get the following formulas

(m)
e αβ =

1

2

(
∂α

(m)
u β + ∂β

(m)
u α

)
,

(m)
e α3 =

1

2

(
∂α

(m)
u 3 +

1

h

(m)
u

′
α

)
,

(m)
e 33 =

1

h

(m)
u

′
3,

(13)

where

(m)
u j =

2m + 1

2h

h∫

−h

ujPm

(x3

h

)
dx3, m = 0, 1, ...,

(m)
u

′
j = (2m + 1)

(
(m+1)

u j +
(m+3)

u j + · · ·
)

, m = 0, 1, ....

From (7) for
(m)

N ij, m = 0, 1, ..., we get [13]

(m)

N ij =
∞∑

m1,m2=0

m1∑
r1=0

αm1m2r1

{(
1

2
aijαβ∂α

(m1)
u l ∂β

(m2)
u l +

1

h
aijα3∂α

(m1)
u l

(m2)
u

′
l

+
1

2h2
aij33

(m1)
u

′
l

(m2)
u

′
l + aαjβq∂β

(m1)
u q∂α

(m2)
u i +

1

h
aαj3q

(m1)
u q∂α

(m2)
u i

+
1

h
a3jβq∂β

(m1)
u q

(m2)
u

′
i +

1

h2
a3j3q

(m1)
u

′
q

(m2)
u

′
i

)
δm1+m2−2r1
m

+
∞∑

m3=0

m3∑
r2=0

αm3mr2

(
1

2
aαjβγ∂β

(m1)
u l ∂γ

(m2)
u l∂α

(m3)
u i

+
1

2h
a3jβγ∂β

(m1)
u l∂γ

(m2)
u l

(m3)
u

′
l +

1

h2
a3j3γ

(m1)
u

′
l∂γ

(m2)
u l

(m3)
u

′
i

+
1

h
aαj3γ

(m1)
u

′
l∂γ

(m2)
u l∂α

(m3)
u i +

1

2h2
aαj33

(m1)
u

′
l

(m2)
u

′
l∂α

(m3)
u i

+
1

2h3
a3j33

(m1)
u

′
l

(m2)
u

′
l

(m3)
u

′
i

)
(2m + 1)δm1+m2−2r1

m+m3−2r2

2(m + m3 − 2r2) + 1

}
. (14)
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where

αmnr =
Am−rArAn−r

Am+n−r

2(m + n)− 4r + 1

2(m + n)− 2r + 1
, Am =

(2m− 1)!!

m!
.

By substituting (12) into (11) we obtain

− 1

2m + 1

{
∂α

[
aiαpq

(m)
e pq+

(m)

N iα

]
− 2m + 1

h

[
ai3pq

(
(m−1)

e pq

+
(m−3)

e pq + · · ·
)

+
(m−1)

N i3 +
(m−3)

N i3 + · · ·
]}

=
(m)
ϕ i, (15)

where
(m)
ϕ i :=

1

2m + 1

(m)

f i +
1

2h

(
t+i3 − (−1)mt−i3

)
. (16)

Assume, that the displacement vector u is polinomial of order N with
respect to coordinate x3, where N is any non-negativ integer number

u(x1, x2, x3) ≈
N∑

m=0

(m)
u (x1, x2)Pm

(x3

h

)
.

Assume, that
(k)

F = 0 if k > N, or k < 0.
Introduce the following notation

1
u :=

(
(0)
u 1,

(0)
u 2,

(0)
u 3,

(1)
u 1,

(1)
u 2,

(1)
u 3

)
=

1∑
m=0

(m)
u i

m
e i,

where (
m
e i), m = 0, 1 - are components of the basis vector of the 6-

dimensional Euclidian space

0
e 1 = (1, 0, 0, 0, 0, 0),
0
e 2 = (0, 1, 0, 0, 0, 0),
0
e 3 = (0, 0, 1, 0, 0, 0),
1
e 1 = (0, 0, 0, 1, 0, 0),
1
e 2 = (0, 0, 0, 0, 1, 0),
1
e 3 = (0, 0, 0, 0, 0, 1).

Hence we get six equations with six unknowns



−
1∑

m=0

1

2m + 1

{
∂α

[
aiαpq

(m)
e pq(

1
u) +

(m)

N iα

]
− 2m + 1

h

×
[
ai3pq

(m−1)
e pq(

1
u) +

(m−1)

N i3

]}
m
e i =

1∑
m=0

(m)
ϕ i

m
e i in ω,

1
u =

1∑
m=0

(m)
u i

m
e i = 0 on ∂ω.

(17)
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Problem (17) we can be written by the following form





−
1∑

m=0

1

2m + 1

{
∂α

(
λ

(m)
e pp (

1
u)δiα + 2µ

(m)
e iα(

1
u) +

(m)

N iα

)

−2m + 1

h

[
λ

(m−1)
e pp(

1
u)δi3 + 2µ

(m−1)
e i3(

1
u) +

(m−1)

N i3 ]}m
e i

=
1
ϕ :=

1∑
m=0

(m)
ϕ i

m
e i in ω,

1
u =

1∑
m=0

(m)
u i

m
e i = 0 on ∂ω.

Introduce the following notation

A(v) := −
1∑

m=0

1

2m + 1

{
∂α

[
aiαpq

(m)
e pq(v) +

(m)

N iα

]

−2m + 1

h

[
ai3pq

(m−1)
e pq(v) +

(m−1)

N i3

]}
m
e i.

(18)

Lemma 1 . There exists a neighborhood V(0) of the origin in the space

W(ω) :=
(
W 2,p(ω) ∩W 1,p

0 (ω)
)6

, p > 2, such that

v ∈ V(0) ⇒ A(v) ∈ F(ω)

where F(ω) is a some neighborhood of the origin in the space (Lp(ω))6, p >
> 2. Futhermore the operator A is differentiable at v = 0 and the action of
the Frechet derivative A

′
(0) on an arbritrary element v ∈ W(ω) is given

by the formula

A
′
(0)v = −

1∑
m=0

1

2m + 1
{∂α

[
aiαpq

(m)
e pq(v)

]

− 2m + 1

h

[
ai3pq

(m−1)
e pq(v)

]}
m
e i.

(19)

Proof. The (W 1,p(ω))
6

is a Banach algebra for p > 2. [3]. As a
consequence, the operator A, maps the any element v ∈ V(0) into the
subset of the space (Lp(ω))6, p > 2.

In order to compute A
′
(0)v, it suffices, to compute the terms that are

linear with respect to v in the difference {A(v)−A(0)} (this follows from
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the definition of the Frechet derivative)

A(v)−A(0) = −
1∑

m=0

1

2m + 1

{
∂α

[
aiαpq

(m)
e pq(v)

]

−2m + 1

h
ai3pq

(m−1)
e pq(v)

}
m
e i + o(‖v‖W(ω)) in F(ω).

and the assertion follows.

In order to use the implicit function theorem, consider the following
linearized boundary value problem.

Let
1
ϕ =

(
(0)
ϕ 1,

(0)
ϕ 2,

(0)
ϕ 3,

(1)
ϕ 1,

(1)
ϕ 2,

(1)
ϕ 3

)
∈ (Lp(ω))6, p > 2 is given

function. Find
1
u ∈ W(ω) such that

A
′
(0)

1
u =

1
ϕ, (20)

or





−
1∑

m=0

1

2m + 1

{
∂α

[
λ

(m)
e pp(

1
u)δiα + 2µ

(m)
e iα(

1
u)

]

−2m + 1

h

[
λ

(m−1)
e pp(

1
u)δi3 + 2µ

(m−1)
e i3(

1
u)

]}
m
e i =

1
ϕ in ω,

1
u = 0 on ∂ω.

(20
′
)

Lemma 2. The linear problem (20) is equivalent to finding a solution
1
u ∈ W(ω) of the following variational problem

B(
1
u,v) = L(v) forall v ∈ V, (21)

where

B(
1
u,v) :=

1∑
m=0

1

2m + 1

∫

ω

{
λ

(m)
e pp(

1
u)

(m)
e qq(v) + 2µ

(m)
e ij(

1
u)

(m)
e ij(v)

}
dx,

L(v) :=

∫

ω

1
ϕ ·vdx, (dx = dx1dx2). (22)
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Proof. Both side of the equation (20
′
) multiply on the vector v ∈ W(ω),

to integrate and using the Green’s formula we deduce that

−
1∑

m=0

1

2m + 1

∫

ω

{
λ

[
∂α

(m)
e pp(

1
u)δiα − 2m + 1

h

(m−1)
e pp(

1
u)δi3

]

+ 2µ

[
∂α

(m)
e iα(

1
u)− 2m + 1

h

(m−1)
e i3(

1
u)

]}
(m)
v idx

=
1∑

m=0

1

2m + 1

∫

ω

{
λ

(m)
e pp (

1
u)

(
∂α

(m)
v α +

1

h

(m)
v

′
3 )

+ 2µ

[
(m)
e αβ(

1
u)

1

2

(
∂α

(m)
v β + ∂β

(m)
v α

)

+
(m)
e α3(

1
u)

(
∂α

(m)
v 3 +

1

h

(m)
v

′
α

)
+

(m)
e 33(

1
u)

1

h

(m)
v

′
3

]}
dx

=

∫

ω

N
ϕ ·vdx,

(m)
v

′
k =

{
(1)
v j, when m = 0,
0, when m = 1.

Hence by use the correspondence (13) we get (21).

Conversely, let
1
u is a solution of (21). Using the Green’s formula again

and taking into account the space W(ω) is dense in (Lp(ω))6 we obtain,

that
1
u is a solution of problem (20).

Lemma 3. The bilinear form B(u,v) given by the formula (22) is
continuous in the space (H1(ω))6 with respect to norm ‖ · ‖1,ω, i.e. exists a
constant β such that

B(u,v) ≤ β‖u‖1,ω‖v‖1,ω forall u, v ∈ (H1(ω))6, (23)

where

‖v‖1,ω :=





1∑
m=0

∫

ω

(
(m)
v j

(m)
v j + ∂α

(m)
v j∂α

(m)
v j

)
dx





1
2

.

Proof. From the definition bilinear form B(u,v), to take into consid-
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eration the formula (13) we have

B(u,v) =
1∑

m=0

∫

ω

1

2m + 1

{
λ

[
∂γ

(m)
u γ∂η

(m)
u η +

1

h
∂γ

(m)
u γ

(m)
v

′
3

+
1

h
∂η

(m)
v η

(m)
u

′
3

]
+

µ

2

(
∂α

(m)
u β + ∂β

(m)
u α

)(
∂α

(m)
v β + ∂β

(m)
v α

)

+µ

(
∂α

(m)
u 3 +

1

h

(m)
u

′
α

)(
∂α

(m)
v 3 +

1

h

(m)
v

′
α

)
+

λ + 2µ

h2

(m)
u

′
3

(m)
v

′
3

}
dx.

Now using Cauchy-Schwarz inequality, we obtain exists a constant k > 0
such that

B(u,v) ≤ k

1∑
m=0

3∑
i=1







∫

ω

(m)
u 2

i dx




1
2

+
2∑

α=1




∫

ω

(∂α

(m)
u i)

2dx




1
2




×
1∑

l=0

3∑
j=1







∫

ω

(l)
v 2

jdx




1
2

+
2∑

β=1




∫

ω

(∂β

(l)
v j)

2dx




1
2




for all u, v ∈ (H1(ω))6, it follows the inequality (23).

We show that holds a first generalized Korn’s inequality ([7], [8]), i.e.

Lemma 4. There exists a constant c > 0 such that

‖v‖1,ω ≤ c





1∑
m=0

∫

ω

(m)
e ij

(m)
e ijdx





1
2

, (24)

for all v = (
(0)
v 1,

(0)
v 2,

(0)
v 3,

(1)
v 1,

(1)
v 2,

(1)
v 3) ∈ (H1

0 (ω))6

Proof. For fixed m = 0, 1 are used following notations

Bm(v,v) :=

∫

ω

(m)
e ij(v)

(m)
e ij(v)dx =

∫

ω

(m)
e αβ(v)

(m)
e αβ(v)dx

+ 2

∫

ω

(m)
e α3(v)

(m)
e α3(v)dx +

∫

ω

(m)
e 33(v)

(m)
e 33(v)dx,

B1
m(v,v) :=

∫

ω

(m)
e αβ(v)

(m)
e αβ(v)dx,

B2
m(v,v) := 2

∫

ω

(m)
e α3(v)

(m)
e α3(v)dx,
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B3
m(v,v) :=

∫

ω

(m)
e 33(v)

(m)
e 33(v)dx,

Bm(v,v) = B1
m(v,v) + B2

m(v,v) + B3
m(v,v).

By Korn’s inequality (
(m)
v γ ∈ H1

0 (ω)), exists the number k1 > 0 such
that

B1
m(u,v) ≥ k1

∫

ω

(
(m)
v γ

(m)
v γ + ∂γ

(m)
v α∂γ

(m)
v α

)
dx

for all
(m)
v β ∈ H1

0 (ω).

B2
m(v,v) =

1

2

∫ (
∂α

(m)
v 3 +

1

h

(m)
v

′
α

)(
∂α

(m)
v 3 +

1

h

(m)
v

′
α

)
dx

≥ 1− ε

2

∫

ω

∂α

(m)
v 3∂α

(m)
v 3dx− 1− ε

2εh2

∫

ω

(m)
v

′
α

(m)
v

′
αdx

for any ε > 0 (here using the inequality (a + b)2 ≥ (1− ε)a2 − 1− ε

ε
b2).

∫

ω

(m)
v

′
α

(m)
v

′
αdx ≤

1∑

l=0

∫

ω

(l)
v γ

(l)
v γdx, m = 0, 1.

Hence

B2
m(v,v) ≥ 1− ε

2

∫

ω

∂α

(m)
v 3∂α

(m)
v 3dx− 1− ε

2εh2

1∑

l=0

∫

ω

(l)
v α

(l)
v αdx.

It follows

Bm(v,v) ≥ k1

∫

ω

(
(m)
v α

(m)
v α+∂γ

(m)
v α∂γ

(m)
v α)dx+

1− ε

2

∫

ω

∂α

(m)
v 3∂α

(m)
v 3dx

−1− ε

2εh2

1∑

l=0

∫

ω

(l)
v α

(l)
v αdx.

Let 0 < ε < 1. From the last inequality we have

B0(v,v) + B1(v,v) ≥
1∑

m=0



k1

∫

ω

∂γ

(m)
v α∂γ

(m)
v αdx +

1− ε

2
k1

×
∫

ω

∂α

(m)
v 3 ∂α

(m)
v 3dx +

(
k1 − 1− ε

2εh2

) ∫

ω

(m)
v α

(m)
v αdx



 .

(25)
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k1 − 1− ε

2εh2
> 0.

since
(m)
v 3 ∈ H1

0 (ω), hence holds the Fridrix inequality.
∫

ω

(
(m)
v 3)

2dx ≤ k2

∫

ω

∂α

(m)
v 3∂α

(m)
v 3dx.

From (25) taking into account the last two inequalites we get (24).

From (22) and (24) we have

B(v,v) ≥ 2µ

3

1∑
m=0

∫

ω

(m)
e ij(v)

(m)
e ij(v)dx ≥ 2µ

32
‖v‖1,ω (26)

for all v ∈ (H1
0 (ω))6.

Theorem 1. (existence of a weak solution). Let the
1
ϕ ∈ (Lp(ω))6,

p > 1 be a given function. Then there is one and only function
1
u ∈

∈ (H1
0 (ω))6, that satisfies

B(
N
u,v) = L(v) forall v ∈ (H1

0(ω))6,

also
‖ 1

u ‖1,ω ≤ C‖ 1
ϕ ‖0,p,ω,

where C > 0 is independent from
1
ϕ

1
u .

In addition

J(
1
u) = inf

v∈(H1
0 (ω))6

J(v), where J(v) =
1

2
B(v,v)− L(v).

Proof. The Sobolev imbedding theorem imply that the linear form L is

cuntinuous on the space (H1
0 (ω))6 if

1
ϕ ∈ (Lp(ω))6, p > 1. The symmetric

form B is continuous and (H1
0 (ω))6-elliptic by inequalites (23) and (26).

Hence the conclusion follows by the Riesz representation theorem [9].

The weak solution possesses additional regularity if the boundary ∂ω

and the right-hand side
1
ϕ also possess additional regularity.

Theorem 2. Let ω be a domain R2 with a boundary ∂ω of class C2, let
1
ϕ ∈ (Lp(ω))6, p > 1. Then the weak solution

1
u ∈ (H1

0 (ω))6 of the linearized
pure displacement problem is in the space (W 2,p(ω))6 and it satisfies

−
1∑

m=0

1

2m + 1

{
∂α

[
aiαpq

(m)
e pq(

1
u)

]
− 2m + 1

h
ai3pq

(m−1)
e pq(

1
u)

}
m
e i

=
1
ϕ in (Lp(ω))6.
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Proof. Because the linear operator A
′
(0) is strongly elliptic, the impli-

cation
1
ϕ ∈ (Lp(ω))6 ⇒ 1

u ∈ (H2(ω))6 ∩ (H1
0 (ω))6,

holds it the boundary ∂ω is of class C2 [10]. Hence the announced regularity
holds for p = 2.

Because the linearized problem is uniformly elliptic and satisfies the
comlpementing conditions ([11], [12]). That the mapping

A
′
(0) : v ∈ Vp :=

{
v ∈ (W 2,p(ω))6; v = 0 on ∂ω

} →

−
1∑

m=0

1

2m + 1

{
∂α

[
aiαpq

(m)
e pq(

1
u)

]
− 2m + 1

h
ai3pq

(m−1)
e pq(

1
u)

}
m
e i

∈ (Lp(ω))6

has an index indA
′
(0) that is independent of p ∈]1,∞[. In our case, we

know that indA
′
(0) = 0 for p = 2, since A

′
(0) is a bijection in this case.

Since Vp(ω) is continuously imbedded in H1
0 (ω))6, i.e. Vp(ω) ↪→ (H1

0 (ω))6

for p ≥ 1 [9], A
′
(0) : Vp(ω) → (Lp(ω))6 of p; hence dimKerA

′
(0) = 0.

Since indA
′
(0) = 0 on the other hand, the mapping A

′
(0), is also surjective

in this case. Hence the regularity result holds for p > 1.

The weak solution
1
u ∈ (W 2,p(ω))6 ∩ (H1

0 (ω))6 satisfies

∫

ω

1∑
m=0

1

2m + 1

{
λ

(m)
e pp(

1
u)

(m)
e qq(v) + 2µ

(m)
e ij(

1
u)

(m)
e ij(v)

}
dx =

∫

ω

1
ϕ ·vdx

for all v ∈ (D(ω))6, (D(ω) denote the space of functions whose support
is a compact subset of ω. Hence we can apply the Green formula to the
left-hand sides; this gives

∫

ω

1∑
m=0

1

2m + 1

{
λ

(m)
e pp(

1
u)

(m)
e qq(v) + 2µ

(m)
e ij(

1
u)

(m)
e ij(v)

}
dx

= −
∫

ω

1∑
m=0

1

2m + 1

{
∂α

[
λ

(m)
e pp(

1
u)δiα + 2µ

(m)
e iα(

1
u)

]

−2m + 1

h

[
λ

(m−1)
e pp(

1
u)δi3 + 2µ

(m−1)
e i3(

1
u)

]}
(m)
v idx.

and the conclusion follows since {D(ω)}− = Lp(ω).

The above nonlinear problem can be converted into a problem: Find a

vector field
1
u : ω → R6, that satisfies

{
A(

1
u) =

1
ϕ in ω,

1
u = 0 on ∂ω,

(27)
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where operator A is defined by the formula (18).

Theorem 3. Let ω be a domain R2 with a boundary ∂ω of class C2, and
assume

(m)

t ij(
1
u) = aijpq

(m)
e pq(

1
u) +

(m)

N ij(
1
u), m = 0, 1.

Then for each number p > 2 there exists a neighborhood Fp of the origin
in the space (Lp(ω))6 and a neighborhood Up of the origin in the space

V(ω) :=
{
v ∈ (W 2,p(ω))6, v = 0 on ∂ω

}
,

such that, for each
1
ϕ ∈ Fp the boundary value problem (25) has exactly one

solution
1
u ∈ Up.

Proof. The Sobolev space (W 1,p(ω))6 is a Banach algebra for p > 3. As
a consequence, the nonlinear operator A maps the space (W 2,p(ω))6 into the
space (Lp(ω))6 and it is infinitely differentiable between these two spaces,
since it is a sum of continuous linear, bilinear and trilinear mappings (hence
all it’s derivatives of order ≥ 4 vanish).

Since
1
u = 0 is clearly a solution of problem (25) corresponding to

1
ϕ =

= 0. In order to use the implicit function theorem, we must verify that the
derivative A

′
(0) is an isomorphism between the spaces Vp(ω) (Lp(ω))6.

But the problem: Find
1
u such that

A
′
(0)

1
u =

1
ϕ

is the linearized pure displacement problem:





−
1∑

m=0

1

2m + 1

{
∂αaiαpq

(m)
e pq(

1
u)− 2m + 1

h
ai3pq

(m−1)
e pq(

1
u)

}
ei =

1
ϕ in ω.

1
u = 0 on ∂ω,

which have one and only one solution.
Hence the continuous linear operator A

′
(0) : Vp(ω) → (Lp(ω))6 is bijec-

tive. Since, by the closed graph theorem [9] its inverse is also continuous.
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