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Abstract

The paper deals with admissible static and dynamical problems for an Euler-

Bernoulli cusped beam with a continuously varying cross-section of an arbitrary form.

The beam may have both the ends cusped. The setting of boundary conditions at

the beam ends depends on the geometry of sharpening of beam ends (they can

become weighted or disappear completely), while the setting of initial conditions is

independent of the beam ends geometry. An up-to-date survey of results concerning

cusped beams is also given.
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1. Introduction

In the 1950’s, I.Vekua [1, 2] constructed his hierarchic models of pris-
matic shells (i.e., plates of variable thickness). At the same time, he recom-
mended to investigate well-posedness of boundary value problems (BVPs)
for cusped plates (cusped plates have a thickness which is zero at least on
some subset of the plate’s boundary). I.Vekua foresaw that the setting of
BVPs for cusped plates, in general, fell outside the limits of the classical for-
mulation. A brief survey of results and corresponding references concerned
cusped plates can be found in [3]. If we consider cylindrical bending of a
cusped plate, with a rectangular projection a ≤ x1 ≤ b, 0 ≤ x2 ≤ ℓ, we
actually get results also for cusped beams. In 1976 (see [4, 5]), studying
static problems for plates, using the Kirchhoff-Love model, whose thickness
has the form

2h(x1, x2) = h0x
κ
2 , a ≤ x1 ≤ b, 0 ≤ x2 ≤ l,

a, b, l, h0,κ = const > 0,
(1.1)
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(in particular, x2 coincides with the beam axis), the well-posedness of BVPs
by cylindrical bending was completely resolved. In particular, it was estab-
lished that the cusped end of the beam can be:

− clamped, i.e.,

w(0) = 0, w′(0) = 0 if and only if (iff) κ <
1

3
; (1.2)

− freely supported, i.e.,

w(0) = 0, M(0) = −(EIw,22 )|x2=0 = 0 iff κ <
2

3
; (1.3)

− free, i.e.,

M(0) = 0, Q(0) = −(EIw,22 ),2 |x2=0 = 0 for all values of κ, (1.4)

where E is Young’s modulus, I is a moment of inertia, w is a deflection, M
is a bending moment, and Q is a shearing force. All admissible BVPs were
solved in the explicit form. Geometry (profiles and projections) of cusped
edges are discussed in [5, 6].

In 1980-1986 S. Uzunov [7, 8] numerically solved the problem of bending
of the cusped circular beam on an elastic foundation with constant compli-
ance. The moment of inertia of the beam had the form

I(x2) = π
r4

4
, r = cxγ

2 , c, γ = const > 0, γ < 1

(r is the cross-section radius). The cusped end was free and the non-cusped
end was clamped.

In 1990-1995 the bending vibration of homogeneous Euler-Bernoulli cone
beams and beams of continuously varying rectangular cross-sections, when
one side of the cross-section is constant, while the other side is proportional
to xκ

2 , κ = const > 0 (compare with (1.1)), where x2 is the axial coordinate
measured from the cusped end, were considered by S. Naguleswaran [9 -
13]. Firstly, the concrete cases of κ = 1, 1/2, and finally, the general case of
κ were investigated. In these investigations the cusped end is always free
(compare with (1.2)-(1.4)); direct analytical solutions were constructed for
the mode shape equation and the frequences were also tabulated.

In 1995-1999 the classical bending and vibration of the cusped beam
with two cusped ends when the variable thickness has the following form

2h(x2) := h0x
κ
2 (ℓ− x2)

δ, h0, l,κ, δ = const > 0,

was studied by N.Chinchaladze [14, 15]. The restrictions on κ coincide with
(1.2)-(1.4) and on δ are the same as on κ in (1.2)-(1.4).

In 1998-2001 (see [16, 17]), generalizing I.Vekua’s dimension reduction
method, the hierarchic models of beams were constructed. Peculiarities of
setting of BVPs were investigated in the case of a continuously varying
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rectangular cross-section when all sides of the cross-section were arbitrary
differentiable on ]0, l[ functions of the axial coordinate and, in particular,
when the cross-sectional area was zero at least on one of the ends x2 = 0
and x2 = l of the beam.

In 1999-2001 two contact problems were considered by N. Shavlakadze,
[18, 19], namely, the contact problem for an unbounded elastic medium
composed of two half-planes x1 > 0 and x1 < 0 having different elastic
constants and strengthened on the semi-axis x2 > 0 by an inclusion of vari-
able thickness (cusped beam) with constant Young’s modulus and Poisson’s
ratio. It was assumed that the plate is subjected to plane deformation, the
flexural rigidity D had the form

D = D0x
κ
2 , D0,κ = const > 0,

and the cusped end x2 = 0 of the beam was free (compare with (1.2)-(1.4)).

The second contact problem considered in [18,19] was the problem of
bending of an isotropic plate of constant thickness reinforced by a finite
elastic rib (beam) with the flexural rigidity D of the form

D = (a2 − x2
2)

n+ 1
2P (x2),

where a =const> 0, n ≥ 1 was an integer and P (x2) was a polynomial which
satisfies certain restrictions. It was assumed that the rib was not loaded.

The aim of the present paper is to consider an elastic cusped beam
with a continuously varying cross-section of an arbitrary form. Let the
barycenters of an cross-sections lie on the axis x2 of the Cartesian system
of coordinates 0x1x2x3. The dynamical bending equation of such a beam
(i.e., Euler-Bernoulli beam) has the following form (see, e.g., [20])

(D(x2)w, 22 ), 22= f(x2, t)− ρσ(x2)
∂2w

∂t2
, 0 ≤ x2 ≤ l, (1.5)

where, as before, w(x2, t) is a deflection of the beam, f(x2, t) is an intensity
of the load,

D(x2) := E(x2)I(x2), (1.6)

E(x2) is Young’s modulus, I(x2) is the moment of inertia with respect to
the barycentric axis normal to the plane x2x3, ρ(x2) is a density, σ(x2) is
the area of a transverse section lying in the plane x1x3, and index 2 after
comma means differentiation with respect to x2. Such a beam will be called
cusped if I(x2) vanishes at least on one of the ends x2 = 0, l of the beam.

Let us remark that if we consider a cylindrical bending of the cusped
plate with the flexural rigidity

D(x2) :=
2E(x2)h

3(x2)

3(1− ν2)
, (1.7)
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where ν is Poisson’s ratio and 2h(x2) is a thickness of the plate then the
bending equation for the plate coincides with (1.5), where σ(x2) should be
replaced by 2h.

The paper is organized as follows.

Section 2 is devoted to the investigation of properties of solutions of
Euler-Bernoulli equation (see Theorem 2.1).

Section 3 deals with the well-posedness and correct formulation of all
admissible BVPs for cusped elastic beams. In contrast to the case of non-
cusped beams, when the beam end can always be either clamped or freely
supported, for cusped beams this is not the case. The admissibility of these
boundary conditions (BCs) depends on the geometry of the beam end sharp-
ening, which is expressed by the convergence-divergence of the integrals I0k ,
I lk, k = 0, 1, 2, ... (see Theorem 3.1). For the indicated cases of the beam
end sharpening some BCs completely disappear and are replaced by the
boundedness of the deflection and its derivative. In particular, mechani-
cally free ends are also free of mathematical BCs (see Remark 3.3). The
BVPs formulated in Theorem 3.1 are solved in the explicit form.

Let us note that a bending vibration of the cusped beam is considered
in [21]. The investigation is based on the Lax-Milgram theorem. It is
established that BCs preserve their peculiarities from the static case, while
the presence of cusped ends does not affect the setting of initial conditions.

2. Properties of the General Solution of the

Euler-Bernoulli Equation

In the static case, the equation (1.5) becomes

(D(x2)w, 22 ), 22= f(x2). (2.1)

But (2.1) coincides with the equation of cylindrical bending of the cusped
plate with the flexural rigidity (1.7) and projection ω := {x1, x2 : −∞ <
< x1 < +∞, 0 < x2 < l} on the plane x3 = 0.

The well-posedness of BVPs for such plates when the thickness can van-
ish only at points (−∞ < x1 < +∞, x2 = 0) was investigated in [22]. After
reformulation of the corresponding results for (2.1), where D is given by
(1.7), the case I(0) = 0, I(l) ̸= 0 will be completely studied. Below in an
analogous way we consider the general case when both I(0) = 0 and I(l) = 0
are admissible. Obviously, the results will be applicable also for cylindrical
bending of a plate (2.1), where D is given by (1.7), with the cusped edges,
i.e., both h(x1, 0) = 0 and h(x1, l) = 0 for arbitrary x1 will be admissible.

Now, let us consider (2.1), where D is given by (1.6), with D(x2) ∈
∈ C([0, l]) ∩ C2(]0, l[) and recall that the bending moment and shearing
force are:

M2 = −Dw,22, (2.2)

Q2 = M2,2. (2.3)
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At the ends of a beam, where I(x2) vanishes all quantities will be defined
as limits from inside of ]0, l[.

From (2.1)-(2.3) follows

Q2,2 = −f(x2), M2,22 = −f(x2),

Dw,22 =

x2∫
x0

(x2 − t)f(t)dt− C1(x2 − x0)− C2,

where fixed x0 ∈]0, l[ and C1, C2 = const.
Hence

Q2 = −
x2∫

x0

f(t)dt+ C1, (2.4)

M2 = −
x2∫

x0

(x2 − t)f(t)dt+ C1(x2 − x0) + C2, (2.5)

w,2 =

x2∫
x0

K1(τ)D
−1(τ)dτ +

x2∫
x0

K2(τ)τD
−1(τ)dτ + C3

=

x2∫
x0

K(τ)D−1(τ)dτ + C3, (2.6)

w =

x2∫
x0

(x2 − τ)K1(τ)D
−1(τ)dτ

+

x2∫
x0

(x2 − τ)K2(τ)τD
−1(τ)dτ + C3(x2 − x0) + C4

=

x2∫
x0

(x2 − τ)K(τ)D−1(τ)dτ + C3(x2 − x0) + C4, (2.7)

where

K(τ) := K1(τ) + τK2(τ) (2.8)

with

K1(τ) := C1x0 − C2 −
τ∫

x0

f(t)tdt, (2.9)

K2(τ) := −C1 +

τ∫
x0

f(t)dt. (2.10)
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Clearly,
K ′(τ) = K2(τ).

From (2.4), (2.5), (2.8), (2.9), (2.10) we conclude that

K2(τ) = −Q2(τ), K1(τ) = τQ2(τ)−M2(τ),
K(τ) = −M2(τ).

(2.11)

For f summable on ]0, l[, i.e., f ∈ L(]0, l[), obviously,

Q2, M2 ∈ C([0, l]); w, w,2 ∈ C(]0, l[);

the behavior of
w,2 and w when x2 → 0+, l−

depends, in view of (2.6), (2.7), on the convergence of the integrals

I0i :=

ε∫
0

τ iD−1(τ)dτ, I li :=

l∫
l−ε

(l − τ)iD−1(τ)dτ,

i = 0, 1, 2, · · · , l > ε = const > 0.

Evidently, for any nonnegative integer i :

if I
0(l)
i < +∞, then I

0(l)
i+1 < +∞, i ≥ 0,

and

if I
0(l)
i = +∞ then I

0(l)
i−1 = +∞, i ≥ 1.

Theorem 2.1. Let f ∈ L(]0, l[), D ∈ C2(]0, l[) ∩ C([0, l]), and w ∈
∈ C4(]0, l[) be a solution of equation (2.1).

Case I. If I00 (I l0) < +∞, then

w, w,2 ∈ C([0, l[) (C(]0, l])). (2.12)

Case II. I00 (I l0) = +∞, I01 (I l1) < +∞.

If either D ∈ C2([0, l[)(C2(]0, l])), or the value of
the first or second order derivative of D at the
point 0(l) tends to infinity and f is bounded
in some neighborhood ]0, ε]([l − ε, l[) of 0(l),

(2.13)

then
w ∈ C([0, l[) (C(]0, l])). (2.14)

If
K(0) = 0 (K(l) = 0), (2.15)

then
w,2= O(1) as x2 → 0 + (l−) (2.16)
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(condition (2.15) is necessary and sufficient).
Case III. If I01 (I

l
1) = +∞, I02 (I

l
2) < +∞, and either D ∈ C3([0, l[)

(C3(]0, l])) or the value of the first, second or third order derivative of D at
the point 0(l) tends to infinity, and f is bounded with its first derivative in
some right (left) neighborhood of the point 0(l) then

w = O(1) as x2 → 0 + (l−), (2.17)

if and only if (iff) (2.15) is fulfilled.
Case IV. If I02 (I

l
2) = +∞, and moreover, for the fixed k ≥ 2

I0k(I
l
k) = +∞, I0k+1(I

l
k+1) < +∞; (2.18)

f (j)(0) = 0 (f (j)(l) = 0), j = 0, 1, ..., k − 2,

fk−1(x2) is continuous at 0(l),
(2.19)

then (2.17) is valid iff

K(0) = 0, K2(0) = 0 (K(l) = 0, K2(l) = 0) (2.20)

hold.
Case V. If I01 (I

l
1) = +∞ and either (2.18), (2.19) are fulfilled for k ≥ 2,

or (2.18) is fulfilled for k = 1, and f(x2) is continuous at 0(l)) then (2.16)
is valid iff (2.20) holds.

In order to prove Theorem 2.1. beforehand we prove some lemmas
Lemma 2.1. If

I00 (I
l
0) = +∞ (2.21)

and moreover, for the fixed integer k ≥ 0

I0k(I
l
k) = +∞, I0k+1(I

l
k+1) < +∞; (2.22)

f (j)(0) = 0 (f (j)(l) = 0), j = 0, 1, ..., k − 2 (for the case k ≥ 2); (2.23)

f (k−1)(x2) is continuous at 0(l) (for the case k ≥ 1), (2.24)

then∣∣∣∣∣∣
x0∫

x2

K(τ)D−1(τ)dτ

∣∣∣∣∣∣ ≤ const < +∞ ∀x2 ∈]0, x0] (∀ x2 ∈ [x0, l[) (2.25)

iff (2.15) and (2.20) are fulfilled for k = 0, and k ≥ 1, respectively.
Proof. Obviously, in the case k = 0∣∣∣∣∣∣

x0∫
x2

K(τ)D−1(τ)dτ

∣∣∣∣∣∣ =
∣∣∣∣∣∣

x0∫
x2

K(τ)

τ
τD−1(τ)dτ

∣∣∣∣∣∣
≤ C

x0∫
0

τD−1(τ)dτ = const < +∞ ∀ x2 ∈]0, x0], (2.26)
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since, by virtue of K(0) = 0 and K ′(τ) = K2(τ),

lim
τ→0+

K(τ)

τ
= K ′(0) = K2(0) < +∞,

i.e., ∣∣∣∣K(τ)

τ

∣∣∣∣ ≤ C ∀τ ∈]0, x0].

Analogously,∣∣∣∣∣∣
x2∫

x0

K(τ)D−1(τ)dτ

∣∣∣∣∣∣ =
∣∣∣∣∣∣

x2∫
x0

K(τ)

l − τ
(l − τ)D−1(τ)dτ

∣∣∣∣∣∣
≤ C

l∫
x0

(l − τ)D−1(τ)dτ = const < +∞ ∀x2 ∈ [x0, l[, (2.27)

since, using the substitution l − τ = ξ,

lim
τ→l−

K(τ)

l − τ
= lim

ξ→0+

K(l − ξ)

ξ
= −K ′(l) = −K2(l) < +∞,

i.e., ∣∣∣∣K(τ)

l − τ

∣∣∣∣ ≤ C ∀τ ∈ [x0, l[.

In case k ≥ 1, evidently,∣∣∣∣∣∣
x0∫

x2

K(τ)D−1(τ)dτ

∣∣∣∣∣∣ =
∣∣∣∣∣∣

x0∫
x2

K(τ)

τ k+1
τ k+1D−1(τ)dτ

∣∣∣∣∣∣
≤ C

x0∫
0

τ k+1D−1(τ)dτ = const < +∞ ∀x2 ∈]0, x0], (2.28)

since, in view of, (2.20), (2.23), (2.24),

lim
τ→0+

K(τ)

τ k+1
= lim

τ→0+

K ′(τ)

(k + 1)τ k
= lim

τ→0+

K2(τ)

(k + 1)τ k

= lim
τ→0+

f (k−1)(τ)

(k + 1)!
=

1

(k + 1)!
f (k−1)(0),

i.e.,

∣∣∣∣K(τ)

τ k+1

∣∣∣∣ ≤ C ∀τ ∈]0, x0].

Analogously,∣∣∣∣∣∣
x2∫

x0

K(τ)D−1(τ)dτ

∣∣∣∣∣∣ ≤ const < +∞ ∀x2 ∈ [x0, l[, (2.29)
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since, using the substitution l − τ = ξ,

lim
τ→l−

K(τ)

(l − τ)k+1
= lim

ξ→0+

K(l − ξ)

ξk+1

= lim
ξ→0+

−K ′(l − ξ)

(k + 1)ξk
= − lim

ξ→0+

K2(l − ξ)

(k + 1)ξk

=
(−1)k+1

(k + 1)!
f (k−1)(l),

i.e.,

∣∣∣∣ K(τ)

(l − τ)k+1

∣∣∣∣ ≤ C ∀τ ∈ [x0, l[.

Let us consider the end x2 = 0 and show that the condition (2.15) is
also necessary for (2.25). In fact if we assume that (2.25) takes place and
at the same time, without loss of generality, suppose that K(0) > 0, then
K(τ) > C̃ = const > 0 in some neighborhood [0, ε] of 0, and

+∞ > const ≥
ε∫

x2

K(τ)D−1(τ)dτ > C̃

ε∫
x2

D−1(τ)dτ, (2.30)

whence,
ε∫

x2

D−1(τ)dτ ≤ const < +∞ for x2 ∈]0, ε].

But the last inequality would contradict (2.21). Thus, K(0) = 0.
Analogously, we can show the necessity of the conditions (2.20) for the

case k ≥ 1. The necessity of K(0) = 0 follows from the previous assertion.
Now, let (2.25) be valid and let K(0) = 0 but K2(0) > 0. Then, in view of
(2.8), from K(0) = 0 we have K1(0) = 0. By virtue of K ′

1(x2) = −x2f(x2),
similar to the proof of (2.28) we can show that∣∣∣∣∣∣

x0∫
x2

K1(τ)D
−1(τ)dτ

∣∣∣∣∣∣ ≤ const < +∞ ∀x2 ∈]0, x0], iff K1(0) = 0. (2.31)

From (2.25) and (2.31), because of τK2(τ) = K(τ)−K1(τ), we immediately
get ∣∣∣∣∣∣

x0∫
x2

τK2(τ)D
−1(τ)dτ

∣∣∣∣∣∣ ≤ const < +∞ ∀x2 ∈]0, x0]. (2.32)

But the necessary condition for (2.32) is the condition K2(0) = 0. Indeed,
if K2(0) > 0, then similar to (2.30) we get∣∣∣∣∣∣

ε∫
x2

τD−1(τ)dτ

∣∣∣∣∣∣ ≤ const < +∞ ∀x2 ∈]0, ε],



10 G. Jaiani

which contradicts I01 (I
l
1) = +∞. Thus, K2(0) = 0.

Let us now consider the end x2 = l. The proof of necessity of the condi-
tions (2.15) and (2.20) is similar to the case of the end x2 = 0. In this case,
when k ≥ 1, we use the following identity

x2∫
x0

(l − τ)K2(τ)D
−1(τ)dτ

=

x2∫
x0

[K1(τ) + lK2(τ)]D
−1(τ)dτ

−
x2∫

x0

K(τ)D−1(τ)dτ ∀x2 ∈ [x0, l[.

(2.33)

Which is obvious in view of (2.8). Bearing in mind that

K1(l) + lK2(l) = K(l) = 0

and, hence,

lim
τ→l−

K1(τ) + lK2(τ)

(l − τ)k+1
= lim

τ→l−

−f(τ)τ + lf(τ)

−(k + 1)(l − τ)k

= lim
τ→l−

−f(τ)

(k + 1)(l − τ)k−1
= lim

ξ→0+

−f(l − ξ)

(k + 1)ξk−1
,

in the right hand side of (2.33) we prove the boundedness as x2 → l− of
the first integral like the proof of (2.29). Therefore, taking into account
that we assumed the validity of (2.25), the left hand side is bounded for
x2 ∈ [l − ε, l[, since such is the right hand side of (2.33). But the necessary
condition for it is K2(l) = 0.

Corollary 2.1. Under assumptions of Lemma 2.1 we have

lim
x2→0+

x2

x2∫
x0

K(τ)D−1(τ)dτ = 0, (2.34)

x2∫
x0

K(τ)τD−1(τ)dτ ≤ const < +∞, as x2 → 0+, (2.35)

lim
x2→l−

(x2 − l)

x2∫
x0

K(τ)D−1(τ)dτ = 0,

x2∫
x0

K(τ)(l − τ)D−1(τ)dτ ≤ const < +∞, as x2 → l − . (2.36)
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Lemma 2.2. If I00 = +∞, I01 < +∞ (I l0 = +∞, I l1 < +∞), then∣∣∣∣∣∣x2

x0∫
x2

K(τ)D−1(τ)dτ

∣∣∣∣∣∣ ≤ const < +∞ ∀x2 ∈]0, x0] (2.37)

∣∣∣∣∣∣(x2 − l)

x0∫
x2

K(τ)D−1(τ)dτ

∣∣∣∣∣∣ ≤ const < +∞ ∀x2 ∈ [x0, l[

 . (2.38)

Proof. Evidently,∣∣∣∣∣∣x2

x0∫
x2

K(τ)D−1(τ)dτ

∣∣∣∣∣∣ =
∣∣∣∣∣∣

x0∫
x2

K(τ)
x2

τ
τD−1(τ)dτ

∣∣∣∣∣∣
≤ C

x0∫
0

τD−1(τ)dτ = const < +∞ ∀x2 ∈]0, x0],

because of

|K(τ)| ≤ C, τ ∈ [0, x0]; 0 <
x2

τ
≤ 1,

since 0 < x2 ≤ τ ≤ x0.
Taking into account that

0 <
l − x2

l − τ
≤ 1,

because of

0 < x0 ≤ τ ≤ x2,

i.e.,

l > l − x0 ≥ l − τ ≥ l − x2 > 0,

we analogously prove (2.38).
Lemma 2.3. If I00 = +∞, I01 < +∞ (I l0 = +∞, I l1 < +∞), and

either D ∈ C2([0, l[) (D ∈ C2(]0, l])) or the value of the first or second
derivative of D tends of infinity as x2 → 0 + (l−), and f is bounded in
some neighborhood ]0, ε] ([l − ε, l[) of 0(l), then

lim
x2→0+

x2

x0∫
x2

K(τ)D−1(τ)dτ

=


2K(0)

D′′(0)
if D′(0) = 0, D′′(0) ̸= 0;

0 in the other arising cases
(2.39)
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 lim
x2→l−

(x2 − l)

x2∫
x0

K(τ)D−1(τ)dτ

=

 −2K(l)

D′′(l)
if D′(l) = 0, D′′(l) ̸= 0,

0 in the other arising cases

 . (2.40)

Proof. If K(0) = 0, then according to Lemma 2.1 for k = 0 we have
(2.25), and, hence,

lim
x2→0+

x2

x0∫
x2

K(τ)D−1(τ)dτ = 0.

Let now K(0) ̸= 0. By virtue of

K ′(x2) = K2(x2), (2.41)

we obtain

lim
x2→0+

x2

x0∫
x2

K(τ)D−1(τ)dτ = lim
x2→0+

x2
2K(x2)

D(x2)

= lim
x2→0+

2x2K(x2) + x2
2K2(x2)

D′(x2)

=


0 if D′(0) ̸= 0 or D′(0) = ∞;

lim
x2→0+

2K(x2) + 4x2K2(x2) + x2
2f(x2)

D′′(x2)
if D′(0) = 0.

(2.42)

Therefore, when D′(0) = 0, we obtain

lim
x2→0+

x2

x0∫
x2

K(τ)D−1(τ)dτ =


0 if D′′(0) = ∞;

2K(0)

D′′(0)
if D′′(0) ̸= 0,

and

lim
x2→0+

x2

x0∫
x2

K(τ)D−1(τ)dτ = ∞ if D′′(0) = 0, K(0) ̸= 0. (2.43)

But D′′(0) cannot be equal to 0, when K(0) ̸= 0, otherwise (2.37) and (2.43)
will contradict each other. Hence, (2.43) is excluded.
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Similarly, we can prove (2.40). If K(l) = 0, then according to to Lemma
2.1 for k = 0 we have (2.25), and, hence,

lim
x2→l−

(x2 − l)

x2∫
x0

K(τ)D−1(τ)dτ = 0.

Let now K(l) ̸= 0. Then by virtue of (2.41), we obtain

lim
x2→l−

(x2 − l)

x2∫
x0

K(τ)D−1(τ)dτ = lim
x2→l−

−(x2 − l)2K(x2)

D(x2)

= − lim
x2→l−

2(x2 − l)K(x2) + (x2 − l)2K2(x2)

D′(x2)

=


0 if D′(l) ̸= 0 or D′(l) = +∞;

− lim
x2→l−

2K(x2) + 4(x2 − l)K2(x2) + (x2 − l)2f(x2)

D′′(x2)
if D′(l) = 0.

(2.44)
Hence, when D′(l) = 0, we have

lim
x2→l−

(x2 − l)

x2∫
x0

K(τ)D−1(τ)dτ =


0 if D′′(l) = ∞;

−2K(l)

D′′(l)
if D′′(l) ̸= 0;

and

lim
x2→l−

(x2 − l)

x2∫
x0

K(τ)D−1(τ)dτ = ∞ if D′′(l) = 0, K(l) ̸= 0. (2.45)

But D′′(l) can not be equal to 0, when K(l) ̸= 0, otherwise (2.38) and (2.45)
will contradict each other. Hence, (2.45) is excluded. �

Lemma 2.4. If K(0) = 0 (K(l) = 0), I01 = +∞ and I02 < +∞
(I l1 = +∞, I l2 < +∞), then (2.37) ((2.38)) is valid.

Proof. Evidently, by virtue of I02 < +∞, we have∣∣∣x2

∫ x0

x2

K(τ)D−1(τ)dτ
∣∣∣ =

∣∣∣∫ x0

x2

K(τ)

τ

x2

τ
τ 2D−1(τ)dτ

∣∣∣
≤ C

∫ x0

0

τ 2D−1(τ)dτ

= const < +∞ ∀x2 ∈]0, x0],

because of
0 <

x2

τ
≤ 1
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(since 0 < x2 ≤ τ ≤ x0) and∣∣∣K(τ)

τ

∣∣∣ < C ∀τ ∈]0, x0] (2.46)

(since lim
τ→0+

K(τ)
τ

= K2(0) < +∞).

Similarly, by virtue of I l2 < +∞, we have∣∣∣(x2 − l)

∫ x0

x2

K(τ)D−1(τ)dτ
∣∣∣ =

∣∣∣∫ x0

x2

K(τ)

l − τ

x2 − l

l − τ
(l − τ)2D−1(τ)dτ

∣∣∣
≤ C

∫ l

x0

(l − τ)2D−1(τ)dτ

= const < +∞ ∀x2 ∈ [x0, l[,

because of

0 <
l − x2

l − τ
≤ 1

(since x0 ≤ τ ≤ x2 < l, i.e., 0 < l − x2 ≤ l − τ) and∣∣∣K(τ)

l − τ

∣∣∣ < C ∀τ ∈ [x0, l[ (2.47)

(since lim
τ→l−

K(τ)
l−τ

= − lim
τ→l−

K ′(τ) = − lim
τ→l−

K2(τ) = −K2(l) < +∞). �
Lemma 2.5. Let either D ∈ C3([0, ℓ[) (D ∈ C3(]0, ℓ])) or the value of

the first, second or third order derivative of D at the point x2 = 0 (l) tend to
infinity. Let further f be bounded with its first derivative in a neighborhood
]0, ε[ ( ]l − ε, l[ ) of the point x2 = 0 (x2 = l). If I1 = +∞ and I2 < +∞,
then

1.

lim
x2→0+

x2

x0∫
x2

K(τ)D−1(τ)dτ =



0 when D′(0) ̸= 0 or D′(0) = ∞
or D′(0) = 0 and D′′(0) = ∞;
2K(0)

D′′(0)
when D′(0) = 0

and D′′(0) ̸= 0,
∞ when D′(0) = 0 and D′′(0) = 0

(2.48) lim
x2→l−

(x2 − l)

x2∫
x0

K(τ)D−1(τ)dτ =



0 when D′(l) ̸= 0 or D′(l) = ∞)
or D′(l) = 0 and D′′(l) = ∞;
2K(l)

D′′(l)
when D′(l) = 0

and D′′(l) ̸= 0,
∞ when D′(l) = 0 and D′′(l) = 0


(2.49)

if
K(0) ̸= 0; (K(l) ̸= 0)
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2.

lim
x2→0+

x2

x0∫
x2

K(τ)D−1(τ)dτ

=



0 when either D′(0) ̸= 0 or D′(0) = ∞
or D′(0) = 0 and D′′(0) = ∞
or D′(0) = 0 and D′′(0) ̸= 0
or D′(0) = 0, D′′(0) = 0, and D′′′(0) = ∞
or D′(0) = 0, D′′(0) = 0, D′′′(0) = 0, and K2(0) = 0;
6K2(0)

D′′′(0)
when D′(0) = 0, D′′(0) = 0, and D′′′(0) ̸= 0

(2.50)

[the case D′′′(0) = 0 and (Q2w)(0) ̸= 0 (at the same time) is exclude] lim
x2→l−

(x2 − l)

x2∫
x0

K(τ)D−1(τ)dτ

=



0 when either D′(l) ̸= 0 or D′(l) = ∞
or D′(l) = 0 and D′′(l) = ∞
or D′(l) = 0 and D′′(l) ̸= 0
or D′(l) = 0, D′′(l) = 0, and D′′′(l) = ∞
or D′(l) = 0, D′′(l) = 0, D′′′(l) = 0, and K2(l) = 0;
6K2(l)

D′′′(l)
when D′(l) = 0, D′′(l) = 0, and D′′′(l) ̸= 0

(2.51)

[the case D′′′(l) = 0 and K2(l) ̸= 0 (at the same time) is excluded]
if

K(0) = 0 (K(l) = 0).

Proof. In both the cases the reasonings (2.42) are valid. Therefore,
(2.48) easily follows from (2.42) if K(0) ̸= 0. If K(0) = 0, when D′(0) = 0,
from (2.42) we get

lim
x2→0+

x2

x0∫
x2

K(τ)D−1(τ)dτ = =


0 if D′′(0) ̸= 0;

lim
x2→0+

6K2(x2) + 6x2f(x2) + x2
2f

′(x2)

D′′′(x2)
if D′′(0) = 0.

Hence, when D′(0) = 0, D′′(0) = 0, we have

lim
x2→0+

x2

x0∫
x2

K(τ)D−1(τ)dτ =

 0 if D′′′(0) = ∞;
6K2(0)

D′′′(0)
if D′′′(0) ̸= 0,

lim
x2→0+

x2

x0∫
x2

K(τ)D−1(τ)dτ = ∞ if D′′′(0) = 0, K2(0) ̸= 0. (2.52)
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But D′′′(0) and K2(0) ̸= 0 cannot take place at the same time, other-
wise (2.52) and (2.37) (see Lemma 2.4 which has been proved under the
assumptions I01 = +∞, I02 < +∞, without any requirment of differentiabil-
ity of D(x2)) will contradict each other. Thus, (2.52) is excluded. When
D′(0) = 0, D′′(0) = 0, D′′′(0) = 0, and K2(0) = 0, then according to the
Lemma 2.1 for k = 1, (2.25) holds iff (2.15) is valid. Therefore,

lim
x2→0+

x2

x0∫
x2

K(τ)D−1(τ)dτ = 0 if D′(0) = 0,

D′′(0) = 0, D′′′(0) = 0, and K2(0) = 0.

So, (2.47) is proved.
Similarly, in both the cases the reasonings (2.44) are valid. Therefore,

(2.49) easily follows if K(l) ̸= 0. If K(l) = 0, when D′(l) = 0, from (2.44)
we get

lim
x2→l−

(x2 − l)

x2∫
x0

K(τ)D−1(τ)dτ

=


0 if D′′(l) ̸= 0;

lim
x2→0+

6K2(x2) + 6(x2 − l)f(x2) + (x2 − l)2f ′(x2)

D′′′(x2)
if D′′(l) = 0.

Hence, when D′(l) = 0, D′′(l) = 0, we have

lim
x2→l−

(x2 − l)

x2∫
x0

K(τ)D−1(τ)dτ =

 0 if D′′′(l) = ∞;
6K2(l)

D′′′(l)
if D′′′(l) ̸= 0,

lim
x2→l−

(x2 − l)

∫ x0

x2

K(τ)D−1(τ)dτ = ∞ if D′′′(l) = 0, K2(l) ̸= 0. (2.53)

But D′′′(l) and K2(l) ̸= 0 cannot take place at the same time, otherwise
(2.53) and (2.38) (see Lemma 2.4 which has been proved under the as-
sumptions I l1 = +∞, I l2 < +∞, without any requirment of differentiabil-
ity of D(x2)) will contradict each other. Thus, (2.53) is excluded. When
D′(l) = 0, D′′(l) = 0, D′′′(l) = 0, and K2(l) = 0, then according to the
Lemma 2.1 for k = 1, (2.25) holds iff (2.15) is valid. Therefore,

lim
x2→0+

x2

x2∫
x0

K(τ)D−1(τ)dτ = 0

if D′(l) = 0, D′′(l) = 0, D′′′(l) = 0, and K2(l) = 0.

So, (2.51) is proved. �
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Lemma 2.6. If I01 = +∞ and I02 < +∞ (I l1 = +∞ and I l2 < +∞),
then

lim
x2→0+

∫ x0

x2

K(τ)τD−1(τ)dτ =

∫ x0

0

K(τ)τD−1(τ)dτ < +∞ (2.54)

(
lim

x2→l−

∫ x2

x0

(l − τ)K(τ)D−1(τ)dτ =

∫ l

x0

(l − τ)K(τ)D−1(τ)dτ < +∞
)

(2.55)
iff

K(0) = 0 (K(l) = 0). (2.56)

Proof. For every τ ∈]0, x0] we have

|K(τ)τD−1(τ)dτ | =
∣∣∣K(τ)

τ

∣∣∣ |τ 2D−1(τ)| ≤ C|τ 2D−1(τ)|, (2.57)

by virtue of (2.46). But the right hand side of (2.57) is integrable on ]0, x0[,
because of I02 < +∞. Therefore, the left hand side of (2.57) will be also
integrable on ]0, x0[, and so, we arrive at (2.54). The necessity of (2.15) we
can show in usual way by a contradiction (see e.g., (2.30)).

Similarly, for every τ ∈ [x0, l[ we have

|K(τ)(l − τ)D−1(τ)dτ | =
∣∣∣K(τ)

l − τ

∣∣∣ |(l − τ)2D−1(τ)| ≤ C|(l − τ)2D−1(τ)|,
(2.58)

by virtue of (2.47). But the right hand side of (2.58) is integrable on ]0, x0[,
because of I l2 < +∞. Therefore, the left hand side of (2.58) will be also
integrable on ]0, x0[, and so, we arrive at (2.55). The necessity of (2.15) we
can show in usual way by a contradiction (see e.g., (2.30)).

Proof of Theorem 2.1.
Case I is evident in view of (2.7), (2.6), and I00 (I

l
0) < +∞.

Case II. I00 = +∞, I01 < +∞ (I l0 = +∞, I l1 < +∞). Then, in view of
Lemma 2.2, the estimate (2.37) ((2.38)) is valid. Taking into account the
fact that the other term

−
x2∫

x0

τK(τ)D−1(τ)dτ

in (2.7) is bounded on ]0, x0] ([x0, l[) because of I01 < +∞ (I l1 < +∞), we
conclude that

w(x2) = O(1) as x2 → 0 + (l−).

Moreover, if (2.13) is fulfilled then (2.14) is valid. Indeed, from Lemma 2.3
it follows that

x2

x2∫
x0

K(τ)D−1(τ)dτ ∈ C([0, l[) (C(]0, l])) .
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Obviously, the other term

−
x2∫

x0

τK(τ)D−1(τ)dτ

of (2.7) is also continuous on [0, l[ (]0, l]) and hence (2.14) is proved.
If (2.15) is fulfilled, then in view of (2.6), (2.25), obviously, w,2 is

bounded on ]0, l[. So, (2.16) is proved. The necessity of condition (2.15) for
(2.16) readily follows from (2.6) and Lemma 2.1 (see (2.25), (2.15)).

Case III. I01 = +∞, I02 < +∞ (I l1 = +∞, I l2 < +∞). Then, according
to Corollary 2.1 for the case k = 1 (see also Lemma 2.1), from (2.7) we get
(2.17). Let us note that in order to consider x2 → l− we represent (2.7) as
follows

w =

x2∫
x0

[(x2 − l) + (l − τ)]K(τ)D−1(τ)dτ + C3(x2 − x0) + C4.

Case IV. Proof immediately follows from Corollary 2.1 for the case k ≥ 2.
Case V is evident in view of Lemma 2.1 (see (2.6), (2.25), (2.15), (2.20)).
Remark 2.1. In Theorem 2.1 the existence of k was assumed such that

I0k < +∞. If I0k = +∞ ∀k, and K(τ) := K1(τ) + τK2(τ) is analytic in a
right neighborhood of τ = 0 (l), then, obviously, w and w,2 are unbounded
when x2 → 0+ (l−). We prove this by contradiction. Indeed, e.g., consider
(2.6):

w,2(x2) =

x2∫
x0

K(τ)D−1(τ)dτ + C3.

Let this derivative be bounded when x2 → 0+, and K(0) = 0; the last con-
dition is necessary for the boundednes of this derivative. Since the analytic
function K(τ) ≡/ 0, there exists k such that

K(j)(0) = 0, j = 0, 1, ..., k − 1, K(k)(0) ̸= 0.

Further

w,2(x2) =

x2∫
x0

K(τ)

τ k
τ kD−1(τ)dτ + C3,

where

lim
τ→0+

K(τ)

τ k
=

K(k)(0)

k!
̸= 0.

Then, taking into account the boundedness of w,2 , similar to the proof of
Lemma 2.1 we can show∣∣∣∣∣∣

ε∫
x2

τ kD−1(τ)dτ

∣∣∣∣∣∣ < +∞ for x2 ∈]0, ε],
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which would be in contradiction with Ik = +∞ ∀k. Thus, w,2 is bounded
when x2 → 0 + .

Remark 2.2. In the case of the cusped beam with only one cusped end
x2 = 0 Theorem 2.1 formulated in the slightly different form is proved in
[22].

3. Solution of Boundary Value Problems

From Theorem 2.1 we conclude that:
On the cusped edge x2 = 0 (correspondingly x2 = l) we can admit the

following classical BCs:

w = w0 (correspondingly wl),
w,2 = w′

0 (correspondingly w′
l)

(3.1)

if and only if (iff) I00 (correspondingly, I l0) < +∞;

w,2 = w′
0 (w′

l), Q2 = Q0(Ql) iff I00 (I l0) < +∞; (3.2)

w = w0 (wl), M2 = M0(Ml) iff I01 (I l1) < +∞; (3.3)

M2 = M0(Ml), Q2 = Q0(Ql) iff I00 (I l0) ≤ +∞, (3.4)

and the following non-classical (in the sense of the bending theory) condi-
tions (replacing BCs):

w = w0 (wl), w,2 = O(1) when x2 → 0 + (x2 → l−) (3.5)

if
I00 (I l0) = +∞, I01 (I l1) < +∞;

w = O (1), w,2 = O(1) when x2 → 0 + (x2 → l−) (3.6)

if
I01 (I l1) = +∞,

where w0, wl, w
′
0, w

′
l,M0,Ml, Q0, Ql are given constants, O is a Landau sym-

bol (O(1) means boundedness).
Theorem 3.1. Let the conditions of Theorem 2.1 be fulfilled. Then the

following BVPs are well-posed:

1. (2.1), (3.1)0 (3.1)l, w ∈ C4( ]0, l[ ) ∩ C1([0, l]);

2. (2.1), (3.2)0 (3.1)l, w ∈ C4( ]0, l[ ) ∩ C1([0, l]);

3. (2.1), (3.3)0 (3.1)l, w ∈ C4( ]0, l[ ) ∩ C1( ]0, l]) ∩ C([0, l]);

4. (2.1), (3.4)0 (3.1)l, w ∈ C4( ]0, l[ ) ∩ C1(]0, l]);

5. (2.1), (3.1)0 (3.2)l, w ∈ C4( ]0, l[ ) ∩ C1([0, l]);

6. (2.1), (3.3)0 (3.2)l, w ∈ C4( ]0, l[ ) ∩ C1( ]0, l]) ∩ C([0, l]);

7. (2.1), (3.1)0 (3.3)l, w ∈ C4( ]0, l[ ) ∩ C1([0, l[ ) ∩ C([0, l]);

8. (2.1), (3.2)0 (3.3)l, w ∈ C4( ]0, l[ ) ∩ C1([0, l[) ∩ C([0, l]);

9. (2.1), (3.3)0 (3.3)l, w ∈ C4( ]0, l[ ) ∩ C([0, l]);

10. (2.1), (3.1)0 (3.4)l, w ∈ C4( ]0, l[ ) ∩ C1([0, l[ ).
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Remark 3.1. Indices 0 and l at (3.1)-(3.5) mean the corresponding
formulas for the points 0 and l, respectively.

Remark 3.2. Actually, conditions (3.6) and (3.5) are not BCs. They
are the conditions on w in a neighborhood of the boundary point. That
is why we say that in these cases BCs disappear at the cusped end of the
beam.

Proof of Theorem 3.1. Using Theorem 2.1, Corollary 2.1, and Lemmas
2.3, 2.5, 2.6, we solve all the BVPS 1-10 in the explicit form. The uniqueness
of solutions is guaranted by their construction from the general represen-
tation (2.7) of the solution w of the Euler-Bernoulli equation (2.1). The
continuous dependence of the solution w [in the case of BCs (2.1), (3.4)0,
(3.1)l, ((2.1), (3.1)0, (3.4)l)] with the weight

[I0k(x2)]
−1 :=

 x0∫
x2

tkD−1(t)dt

−1

, x2 ∈]0, x0][I lk(x2)]
−1 :=

 x2∫
x0

(l − t)kD−1(t)dt

−1

, x2 ∈ [x0, l[


on the boundary data easyly follows from the explicit representations of the
solutions of BVPs.

Thus, all the BVPs 1-10 are well-posed in the Hadamard sense. Let us
solve them.

SOLUTION of BVP 1. Since I00 , I
l
0 < +∞, obviously, we can take x0 = l.

Then, in view of (2.6), (2.7), from (3.1) we have

C4 = wl, C3 = w′
l.

For determination of constants C1, C2, from (3.1) we have the following
algebraic system

C1

l∫
0

τ(τ − l)D−1(τ)dτ + C2

l∫
0

τD−1(τ)dτ

=

l∫
0

τD−1(τ)

τ∫
l

f(t)(τ − t)dtdτ − lw′
l + wl − w0,

−C1

l∫
0

(τ − l)D−1(τ)dτ − C2

l∫
0

D−1(τ)dτ

= −
l∫

0

D−1(τ)

τ∫
l

f(t)(τ − t)dtdτ + w′
l − w′

0,
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which is solvable as its determinant satisfies

∆ :=

 l∫
0

τD−1(τ)dτ

2

−
l∫

0

τ 2D−1(τ)dτ ·
l∫

0

D−1(τ)dτ < 0.

The last assertion follows from the Hölder inequality which is strong since
τD− 1

2 (τ) and D− 1
2 (τ) are positive on ]0, l[, and τ 2D−1(τ) and D−1(τ) differ

from each other by a nonconstant factor τ 2.
SOLUTION of BVP 9. From (2.5), taking into account the second

conditions from (3.3)0, (3.3)l, we obtain

0∫
x0

tf(t)dt− C1x0 + C2 = M0,

−
l∫

x0

(l − t)f(t)dt+ C1(l − x0) + C2 = Ml.

Solving this system, we get

C1 =

l∫
x0

f(t)dt+ l−1

 0∫
l

tf(t)dt+Ml −M0

 , (3.7)

C2 = M0 −
0∫

x0

tf(t)dt+ x0

l∫
x0

f(t)dt+

+
x0

l

 0∫
l

tf(t)dt+Ml −M0

 .

(3.8)

Hence, in view of (2.5), (2.11), we have

K(x2) = −M2(x2) =

x2∫
x0

(x2 − t)f(t)dt+

0∫
x0

tf(t)dt−M0

−x2

l∫
x0

f(t)dt− x2

l

 0∫
l

tf(t)dt+Ml −M0

 .

(3.9)

Further, from (2.7), by virtue of the first conditions from (3.3)0, (3.3)l and
Lemma 2.3, we obtain

2K(0)

D′′(0)
if D′(0) = 0, D′′(0) ̸= 0;

0 in the other arising cases

−
0∫

x0

τK(τ)D−1(τ)dτ − C3x0 + C4 = w0,
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−


2K(l)

D′′(l)
if D′(l) = 0, D′′(l) ̸= 0;

0 in the other arising cases

+

l∫
x0

(l − τ)K(τ)D−1(τ)dτ + C3(l − x0) + C4 = wl.

Solving this system, we get

C3 = −
l∫

x0

K(τ)D−1(τ)dτ + l−1

 0∫
l

τK(τ)D−1(τ)dτ + wl − w0

+


2K(0)

D′′(0)
if D′(0) = 0, D′′(0) ̸= 0

0 in the other arising cases

+


2K(l)

D′′(l)
if D′(l) = 0, D′′(l) ̸= 0

0 in the other arising cases

 , (3.10)

C4 = w0 −


2K(0)

D′′(0)
if D′(0) = 0, D′′(0) ̸= 0

0 in the other arising cases
+

0∫
x2

τK(τ)D−1(τ)dτ

−x0

l∫
x0

K(τ)D−1(τ)dτ +
x0

l

− 0∫
l

τK(τ)D−1(τ)dτ + wl − w0

+


2K(0)

D′′(0)
if D′(0) = 0, D′′(0) ̸= 0

0 in the other arising cases

+


2K(l)

D′′(l)
if D′(l) = 0, D′′(l) ̸= 0;

0 in the other arising cases

 . (3.11)

Thus, the solution has the form (2.7) with K(τ), C3, C4 given by (3.9)-
(3.11), respectively.

Let us note that if either I l1 < +∞, I01 = +∞ but I02 < +∞ and
M2(0) = M0 = 0 or I01 < +∞, I l1 = +∞ but I l2 < +∞ and M2(l) = Ml = 0
or I01 = +∞, I l1 = +∞ but I02 < +∞ and I l2 < +∞ and M2(0) = M0 = 0,
M2(l) = Ml = 0, then BVP 9 (call your attention to the change of the
restrictions on I0k , I

l
k, k = 0, 1) will be uniquely solvable. The proof is based

on Lemmas 2.5 and 2.6. The first case is investigated in [22]. The other two
cases we consider analogously. In these three cases BVP 9 is not well-posed
since the arbitrarily small change of BCs M2(0) = 0, M2(l) = 0 implies the
unsolvability of the BVP under consideration.
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SOLUTION of BVP 10. Since I00 < +∞, without loss of generelity, we
assume x0 = 0. From (3.1)0, (3.4)l we get

C4 = w0, C3 = w′
0, C2 = Ml − lQl −

l∫
0

tf(t)dt, C1 = Ql +

l∫
0

f(t)dt.

Thus,

w(x2) =
x2∫
0

(x2 − τ)

[
(l − τ)Ql −Ml +

l∫
τ

tf(t)dt

−
l∫
τ

f(t)dt

]
D−1(τ)dτ + w′

0x2 + w0.

(3.12)

Representing (x2 − τ) in (3.12) as (x2 − l) + (l− τ), it is not difficult to see
that

|w(x2)| ≤ (l − x2)
[
C̃1I

l
0(x2) + |Ql|I l1(x2)

]
+C̃1I

l
1(x2) + |Ql|I l2(x2) + |w′

0|x2 + |w0| for x2 ∈ [0, l[,

where

C̃1 := |M0|+
l∫

0

t|f(t)|dt+
l∫

0

|f(t)|dt.

Therefore,

|w(x2)| ≤ 2C̃1I
l
1 + |Ql|

[
(l − x2)I

l
1(x2) + I l2(x2)

]
+|w′

0|x2 + |w0| for x2 ∈ [0, l[, if I l1 < +∞,
(3.13)

and
|
[
I l1(x2)

]−1
w(x2)| ≤ 2C̃1 + |Ql|

[
(l − x2) + C̃2

]
+C̃3(|w′

0|x2 + |w0|) for x2 ∈ [0, l[ if I l1 = +∞,
(3.14)

since
(l − x2)I

l
0(x2) ≤ I l1(x2)

(because of

I l1(x2)− (l − x2)I
l
0(x2) =

x2∫
0

(x2 − t)D−1(t)dt ≥ 0);

I l2(x2) ≤ C̃2I
l
1(x2), C̃2 = const > 0, ∀x2 ∈ [0, l[

(because of

lim
x2→l−

I l2(x2)

I l1(x2)
= lim

x2→l−

(l − x2)
2D−1(x2)

(l − x2)D−1(x2)
= lim

x2→l−
(l − x2) = 0
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if I l1 := I l1(l) = +∞);

[I l1(x2)]
−1 ≤ C̃3 = const > 0 ∀x2 ∈ [0, l[.

The continuous dependence in the class of continuous on [0, l] functions
of the solution w(x2) and of [I l1(x2)]

−1w(x2) for I l1 < +∞ and I l1 = +∞,
respectively, on the boundary data and on the right hand side f immediatly
follows from the estimates (2.13) and (2.14), correspondingly. Let us note
that for I l1 = +∞, the solution w(x2) for a fixed x2 ∈ [0, l[ continuously
dependens on the boundary data and the right hand side f .

The other BVPs 2-8 can be solved in an analogous way. �
Remark 3.3. According to (2.11)

K2(0) = −Q2(0), K(0) = −M2(0), K2(l) = −Q2(l), K(l) = −M2(l)

and conditions (2.15) and (2.20) can be rewritten in the form

M2(0) = 0 (M2(l) = 0)

and
M2(0) = 0, Q2(0) = 0 (M2(l) = 0, Q2(l) = 0),

respectively. Now, by virtue of Theorem 2.1 (see (2.15), (2.20), (2.16),
(2.17)), the following assertions become evident:

1) if I00 (I
l
0) = +∞, I01 (I l1) < +∞, then conditions

w,2= O(1), x2 → 0 + (x2 → l−) (3.15)

can be replaced by BCs

M2(0) = 0 (M2(l) = 0) (3.16)

and vice versa, i.e., (3.15) and (3.16) are equivalent conditions.
2) if I00 (I

l
0) = +∞, then conditions (3.6) can be replaced by BCs

M2(0) = 0, Q2(0) = 0 (M2(l) = 0, Q2(l) = 0)

and vice versa, i.e., the last conditions and (3.6) are equivalent conditions.
Remark 3.4. Let D(0) = 0, D(l) > 0. Homogeneous BVP 1 (see

Theorem 3.1) corresponds to the three-dimensional problem when the lat-
eral surfaces are loaded by surface forces, the edge x2 = l is fixed and the
edge x2 = 0 is glued to the absolutely rigid tangent plane. In the case of
homogeneous BVP 3 the above mentioned plane is rigid parallel to the axis
x3. BVP 4 corresponds to the three-dimensional problem when along the
edge x2 = 0 the concentrated along the above edge force and moment are
applied which are equal to Q0 and Ql respectively.

For forces and moments concentrated along the line (in particular, at a
point of a cusped edge) see [5].
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Remark 3.5. By setting BVPs we have to take into account peculiari-
ties of classical bending (see (2.4), (2.5)) that by the arbitrary load f, the
shearing force Q2 can be given only on one edge; from Q2(0) (or Q2(l)),
M2(0), M2(l) only two can participate in BCs on the both edges (these
peculiarities are not caused by cusps they arise even in case of bending of
a beam of a constant section). If we choose f correspondingly (see (2.4),
(2.5)), we can avoid these peculiarities but restriction on choice of f would
be artificial (in the mathematical sense but natural in the physical sense).
Nevertheless, problems posed in this way can also make practical sense.
Obviously, solutions to all these problems can be constructed in explicit
forms. Some of them are unique, some defined either up to rigid translation
along the axis x3 or rigid rotation at the axis x1 or general rigid motion
(combination of above mentioned). We omit the exact formulation of these
artificial BVPs. But for the sake of illustration, at the end of this section
we set and solve the typical one.

Remark 3.6. From Theorem 3.1. and Remark 3.3 we arrive to the
following conclusions. In the case of BVPs 3 and 6 the derivative of solution
w,2 is bounded if either I00 < +∞ or I00 = +∞ and M0 = 0. In the case
of BVP 4: the solution w is bounded if either I01 < +∞ or I01 = +∞ and
∃k ≥ 2 such that I0k < +∞ and M0 = 0 (for k ≥ 2), Q0 = 0 (for k ≥ 3); the
derivative of solution w,2 is bounded if either I00 < +∞ or I00 = +∞ and
∃k ≥ 1 such that I0k < +∞ and M0 = 0 (for k ≥ 1), Q0 = 0 (for k ≥ 2). In
the case of BVPs 7 and 8 the derivative of solution w,2 is bounded if either
I l0 < +∞ or I l0 = +∞ and Ml = 0. In the BVP 9 the derivative of solution
w,2 is bounded if either I00 < +∞, I l0 < +∞ or I00 = +∞ but M0 = 0 and
I l0 = +∞ but Ml = 0. In the case of BVP 10: the solution w is bounded if
either I l1 < +∞ or I l1 = +∞ and ∃k ≥ 2 such that I lk < +∞ and Ml = 0
(for k ≥ 2), Ql = 0 (for k ≥ 3); the derivative of solution w,2 is bounded if
either I l0 < +∞ or I l0 = +∞ and ∃k ≥ 1 such that I lk < +∞ and Ml = 0
(for k ≥ 1), Ql = 0 (for k ≥ 2).

Remark 3.7. If I01 = +∞, BVP 4 with M0 = 0, Q0 = 0 is equivalent
to BVP

(2.1), (3.6)0, (3.1)l, w ∈ C4(]0, l[) ∩ C1(]0, l]).

If I l1 = +∞, BVP 10 with Ml = 0, Ql = 0 is equivalent to BVP

(2.1), (3.1)0, (3.6)l, w ∈ C4(]0, l[) ∩ C1([0, l[).

If I00 = +∞, I01 < +∞, BVP 4 with M0 = 0, is equivalent to BVP

(2.1), w,2= O(1) as x2 → 0+, Q2(0) = Q0, (3.1)l,
w ∈ C4(]0, l[) ∩ C1(]0, l]).

If I l0 = +∞, I l1 < +∞, BVP 10 with Ml = 0 is equivalent to BVP

(2.1), (3.1)0, w,2= O(1) as x2 → l−, Q2(l) = Ql,
w ∈ C4(]0, l[) ∩ C1([0, l[).
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If I00 = +∞, I01 < +∞, BVP 3 with M0 = 0, is equivalent to BVP

(2.1), (3.5)0, (3.1)l, w ∈ C4(]0, l[) ∩ C1(]0, l]) ∩ C([0, l]).

If I l0 = +∞, I l1 < +∞, BVP 7 with Ml = 0 is equivalent to BVP

(2.1), (3.1)0, (3.5)l, w ∈ C4(]0, l[) ∩ C1([0, l[) ∩ C([0, l]).

If I00 = +∞, I l0 = +∞, I01 < +∞, I l1 < +∞, BVP 9 with M0 = 0 and
Ml = 0 is equivalent to BVP

(2.1), (3.5)0, (3.5)l, w ∈ C4(]0, l[) ∩ C([0, l]).

Let us now consider an example mentioned in Remark 3.5. Let moments
and shearing forces be applied at the both ends of the beam, i.e.,

M2(0) = M0, (3.17)

Q2(0) = Q0, (3.18)

M2(l) = Ml, (3.19)

Q2(l) = Ql. (3.20)

In order to determine constants C1, C2 from (2.5), (3.17), (3.19) we get the
following system

0∫
x0

tf(t)dt− C1x0 + C2 = M0,

−
l∫

x0

(l − t)f(t)dt+ C1(l − x0) + C2 = Ml,

whence,

C1 =
1

l

Ml −M0 + l

l∫
x0

f(t)dt−
l∫

0

tf(t)dt

 , (3.21)

C2 =
1

l

lM0 + x0(Ml −M0)− l

0∫
x0

tf(t)dt+

+ lx0

l∫
x0

f(t)dt− x0

l∫
0

tf(t)dt

 . (3.22)

In view of (2.5), (2.4), (3.21), (3.22) we have

M2(x2) = −
x2∫

x0

(x2 − t)f(t)dt+ (x2 − x0)
1

l

Ml −M0 + l

l∫
x0

f(t)dt
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−
l∫

0

tf(t)dt

+
1

l

lM0 + x0(Ml −M0)− l

0∫
x0

tf(t)dt

+ lx0

l∫
x0

f(t)dt− x0

l∫
0

tf(t)dt


= x2

l∫
x2

f(t)dt+

x2∫
0

tf(t)dt

+
x2

l

Ml −M0 −
l∫

0

tf(t)dt

+M0,

Q2(x2) =

l∫
x2

f(t)dt+
1

l

Ml −M0 −
l∫

0

tf(t)dt

 . (3.23)

Now, we must find conditions on f(t) which guarantee satisfaction of BCs
(3.18), (3.20). To this end we substitute (3.23) in (3.18), (3.20):

l

l∫
0

f(t)dt−
l∫

0

tf(t)dt+Ml −M0 = lQ0, (3.24)

−
l∫

0

tf(t)dt+Ml −M0 = lQl. (3.25)

The difference of (3.24) and (3.25)gives

l∫
0

f(t)dt = Q0 −Ql. (3.26)

(3.26) with either (3.24) or (3.25), yields the conditions we were looking for.
These conditions are natural in the physical sense since they express the
fact that the resultant vector and resultant moment of the applied forces
should be equal to zero.

Let us observe that C3, C4 in (2.6), (2.7) remain arbitrary. This means
that we found the solution up to the rigid translation along the axis x3 and
rigid rotation at the axis x1, which are expressed by arbitrary C4 and C3

respectively.
In particular, let the both ends be free:

M2(0) = Q2(0) = M2(l) = Q2(l) = 0.
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Then the conditions (3.26),(3.24)and their equivalent conditions (3.26),(3.25)
become

l∫
0

f(t)dt = 0,

l∫
0

tf(t)dt = 0.

This means that the lateral load and its moment are self-balanced. It is
easy to see that the above assertions are also true if at the ends of the beam
either σ(x2) > 0 and Young’s modulus E(x2) = 0 or both vanish. In partic-
ular, this means that the peculiarities of the cusped beams will be preserved
if we consider a beam of uniform cross-section with an appropriately chosen
variable Young’s modulus which vanishes at the ends.
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