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Abstract

Second order differential equation which order degenerate on the boundary of the
angular domain is considered. In the cace of strong degenerate classes of unbounded
solutiones is described.

Key words and phrases: Sekond order degenerate elliptic equation, weighted

problem, barrier method.

AMS subject classification: primary 35J70, secondary 74B05.

1. Introduction
Consider the equation

Lu = ∆u− 2k2mx

y2 − k2x2

∂u

∂x
+

2my

y2 − k2x2

∂u

∂y
+ c(x, y)u = 0, (1.1)

which is a constituent equation of the system of equilibrium equations for
the prismatic shell, considered by I.Vekua in the case of zero approximation
(sec [1]-[3]).

We are going to consider the equation in the following domain:

Ω = {(x, y) : y > −kx, y > kx, y < σ(x)}

where m > 0, k > 0, σ(x) is a defined on the interval (a, b), sufficiently
smooth function (a < 0, b > 0), σ(a) = −ka, σ(b) = kb, σ(x) 6=
6= −kx and σ(x) 6= kx for any x from interval (a, b).

Those segments of boundary ∂Ω, which lie on lines y = −kx and y = kx
will be denoted by Γ1and Γ2 respectively and the rest of the boundary will
be denoted by Γ3.

Equation (1.1) in domain Ω is a second order elliptic differential equa-
tion. On the part (Γ1 ∪ Γ2)\(0, 0) of the boundary it is under order degen-
eration, and at point (0, 0) it is not a differential equation.

Below it will be assumed everywhere that c(x, y) ∈ Hδ(Ω̄)(0 < δ ≤
≤ 1) and c(x, y) ≤ 0 in Ω.
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For equation (1.1) problems of Dirichlet and Keldysh type were consid-
ered by us in paper [4]. It is interesting to describe some classes of non-
bounded solutions of (1,1) in the case m ≤ 1. One of the means to describe
a non- bounded solution is to solve a problem with weight for degenerate
elliptic equation, which was first set by A. Bitsadze (see [5],[6]).

Below we will use the term of a regular solution of equation (1.1) un-
der which we meon such a solution, that has the second order continuous
derivation in domain Ω. Let us seek the solution of this equation in the
following form:

u(x, y) = ω(x, y)v(x, y) (1.2)

If we insert (1.2) expression of u(x, y) in equation (1.1), we will receive the
following equation towards v

Mv = ∆v − 2k2x

y2 − k2x2

(
m− y2 − k2x2

k2x

ωx

ω

)∂v

∂x
+

+
2y

y2 − k2x2

(
m +

y2 − k2x2

y

ωy

ω

)∂v

∂y
+

Lω

ω
v = 0 (1.3)

To achieve our main gool it is necessary, afterselecting the proper func-
tion ω(x, y), to set required boundary problem for equation (1.3) and to
show the axistence and uniqueness of its bounded solution. Below we are
going to consider cases of m > 1 and m = 1 separately.

2. The case of m > 1
If m > 1 then let us consider the following weight

ω(x, y) = (y2 − k2x2)α − dy2αln(l(y2 − k2x2)),

were α < 0 and d, l > 0 are yet unknown numbers.
Let us calculate Lω and reguire that Lω < 0 in Ω.

∂ω

∂x
= −2αk2x(y2 − k2x2)α−1 + 2k2dxy2α(y2 − k2x2)−1,

∂ω

∂y
= 2αy(y2−k2x2)α−1−2dy2α+1(y2−k2x2)−1−2dαy2α−1ln(l(y2−k2x2)),

∂2ω

∂x2
= 4k4α(α− 1)x2(y2 − k2x2)α−2 − 2k2α(y2 − k2x2)α−1+

+4dk4x2y2α(y2 − k2x2)−2 + 2dk2y2α(y2 − k2x2)−1,

∂2ω

∂y2
= 4α(α− 1)y2(y2 − k2x2)α−2 + 2α(y2 − k2x2)α−1+

+4dy2α+2(y2 − k2x2)−2 − 8dαy2α(y2 − k2x2)−1 − 2dy2α(y2 − k2x2)−1−
−2dα(2α− 1)y2α−2ln(l(y2 − k2x2)),

∆ω = 4α(α− 1)(y2 − k2x2)α−2(y2 + k4x2) + 2(1− k2)α(y2 − k2x2)α−1+
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+4dy2α(y2 − k2x2)−2(y2 + k4x2)+

+2dy2α(y2 − k2x2)−1(k2 − 4α− 1)− 2dα(2α− 1)y2α−2ln(l(y2 − k2x2)).

Lω = ∆ω + 4k4mαx2(y2 − k2x2)α−2 + 4mαy2(y2 − k2x2)α−2−
−4dk4mx2y2α(y2 − k2x2)−2−

−4dmy2α+2(y2 − k2x2)−2 − 4dαmy2α(y2 − k2x2)−1ln(l(y2 − k2x2)) + cω

= ∆ω + 4mα(y2 − k2x2)α−2(y2 + k4x2)− 4dmy2α(y2 − k2x2)−2(y2 + k4x2)−
−4dαmy2α(y2 − k2x2)−1ln(l(y2 − k2x2)) + cω,

Lω = 4α(y2− k2x2)α−2(y2 + k4x2)(m + α− 1) + 2(1− k2)α(y2− k2x2)α−1+

+4d(1−m)y2α(y2− k2x2)−2(y2 + k4x2) + 2dy2α(y2− k2x2)−1(k2− 4α− 1)−
−2dαy2α(y2 − k2x2)−1ln(l(y2 − k2x2))[(2α− 1)y−2(y2 − k2x2) + 2m] + cω.

(2.1)
Consider restriction of Lω on all lp = {(x, y) : x = py, |p| < 1

k
} Lines.

Lω|lp = 2αy2(α−1)(1− k2p2)α−1[2(1− k2p2)−1(1 + k4p2)(m + α− 1)+

+2dα−1(1−m)(1− k2p2)−α−1(1 + k4p2) + 1− k2]−
−2dy2(α−1)(1− k2p2)−1[αln(ly2(1− k2p2))((2α− 1)(1− k2p2) + 2m)−

−k2 + 4α + 1] + (cω)|lp . (2.2)

If we duly select constants d and l, then Lω|lp < 0 for every |p| <
1

k
under the following conditions:

I.

{
α = 1−m
1 < m < 2

II.

{
α > 1−m
m > 1

Thus, under conditions I and II d and l constants can be selected so
that ω(x, y) > 0 and Lω < 0 in Ω, i.e. Lω

ω
< 0 in Ω.

Insert function ω(x, y) into equation (1.3). We receive the following
equation with respect to v

Mv = ∆v − 2k2xn1(x, y)

y2 − k2x2

∂v

∂x
+

2yn2(x, y)

y2 − k2x2

∂v

∂y
+

Lω

ω
v = 0, (2.3)

where
n1(x, y) = m + 2α(y2 − k2x2)αω−1 − 2dy2αω−1, (2.4)

n2(x, y) = n1(x, y)− 2dαy2(α−1)ln(l(y2 − k2x2))(y2 − k2x2)ω−1.

There could be found such l that for arbitrary α ≥ 1 −m and m > 1
the following estimation holds:

m + 2α− ε < n1(x, y) < m, (x, y) ∈ Ω (2.5)
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where ε > 0 can be made indenfinitaly small by selecting l. It is easy to see
that n2(x, y) is bounded in Ω for every α ≥ 1−m and m > 1.

Lemma 2.1. If 1 < m < 2 and α = 1 − m then there exists the
unique solution of (2.3), bounded and regular in domain Ω, which satisfies
the following boundary condition v|∂Ω\{(0,0)} = ϕ, where ϕ ∈ C(∂Ω).

Proof. It is known that if at a certain point of the boundary a barrier
can be found, then Viner solution of equation (2.3) will satisfy the boundary
condition at this point (sec [7-11]). Function f(x, y) is called a barrier at a
point Q(x0, y0) ∈ ∂Ω, if it satisfies the following conditions:
1. f(x, y) continuous in ΩQ = Bρ

Q ∩ Ω̄ where Bρ
Q = {(x, y) : (x−x0)

2 +(y−
−y0)

2 = ρ2}, ρ > 0,
2. f(x, y) ≥ 0 in ΩQ and f(x, y) = 0 only at Q.
3. Mf < 0 in ΩQ.

Let us show that at every point (x0, y0) of (Γ1∪Γ2)\{(0, 0)} there exists
a barrier. Consider the following equation

f(x, y) = (y2 − k2x2)β + (x− x0)
2, β > 0.

f(x, y) is continuous, f(x, y) ≥ 0 in the neighbourhood of (x0, y0) and
f(x, y) = 0 only at (x0, y0). Now we have to show that Mf < 0 in some
domain of (x0, y0). Indeed,

∂f

∂x
= −2k2βx(y2 − k2x2)β−1 + 2(x− x0),

∂f

∂y
= 2βy(y2 − k2x2)β−1,

∂2f

∂x2
= 4k4β(β − 1)x2(y2 − k2x2)β−2 − 2k2β(y2 − k2x2)β−1 + 2,

∂2f

∂y2
= 4β(β − 1)y2(y2 − k2x2)β−2 + 2β(y2 − k2x2)β−1.

Mf = 4β(y2 − k2x2)β−2(y2 + k4x2)(β − 1 + n1(x, y))+

+2β(1− k2)(y2 − k2x2)β−1 − 4k2n1(x, y)x(x− x0)(y
2 − k2x2)−1−

−8dβ(1−m)y2(1−m)ln(l(y2 − k2x2))(y2 − k2x2)β−1ω−1 + 2 +
Lω

ω
f.

In the small vicinity of (x0, y0) the plus or minus sign of Mf is de-
termined by its first component, the sign of which depends on the sign of
β − 1 + n1(x, y). From (2.4) it is clear that when (x, y) → (x0, y0), then
n1(x, y) → 2−m, therefore lim

(x,y)→(x0,y0)
= β + 1−m.

With duly selected β, β + 1 −m < 0. e.g. Mf < 0 for small enough
vicinity of (x0, y0). Thus, function f(x, y) is a barier at every point (x0, y0) ∈
∈ (Γ1 ∪ Γ2)\{(0, 0)}.
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Assume (x0, y0) ∈ Γ3. Let us show that at (x0, y0) the barier has the
following form:

f1(x, y) = (x− x0)
2l1 + (y − y0)

2l2 ,

where l1, l2 > 0 are yet undertermined constants. It is easy to see that
f1(x, y) satisfies conditions 1. and 2. for a barier. We have to show that
Mf1 < 0 for a sertain vicinity of (x0, y0).

∂f1

∂x
= 2l1(x− x0)

2l1−1,

∂f1

∂y
= 2l2(y − y0)

2l2−1,

∂2f1

∂x2
= 2l1(2l1 − 1)(x− x0)

2(l1−1),

∂2f1

∂y2
= 2l2(2l2 − 1)(y − y0)

2(l2−1).

Mf1 = ∆f1 − 4k2l1n1(x, y)x(x− x0)
2l1−1

y2 − k2x2
+

+
4l2n1(x, y)y(y − y0)

2l2−1

y2 − k2x2
−

−8dl2(1−m)y1−2m(y − y0)
2l2−1ln(l(y2 − k2x2))ω−1 +

Lω

ω
f1 =

= 2l1(x− x0)
2(l1−1)

[
2l1 − 1− 2k2n1(x, y)x(x− x0)

y2 − k2x2

]
+

+2l2(y − y0)
2(l2−1)

[
2l2 − 1 +

2n1(x, y)y(y − y0)

y2 − k2x2

]
−

−8dl2(1−m)y1−2m(y − y0)
2l2−1ln(l(y2 − k2x2))ω−1 +

Lω

ω
f1.

From received expression one can sec that when l1 <
1

2
and l2 <

1

2
then

Mf1 < 0 in a small enough vieinity of (x0, y0). So, f1(x, y) is a barrier for
every (x0, y0) ∈ Γ3.

Thus, according to the principle of barrier, Viner solution of equation
(2.3) will satisfy the boundary condition set in Lemma.

Let us show the uniqueness of the solution. Consider ψ(x, y) = −ln(x2+
+y2) + q function, where q > 0 is a constant number. ψ(x, y) satisfies the
following conditions:

1. ψ(x, y) > 0, (x, y) ∈ Ω, (2.6)

2. lim
(x,y)→(0,0)

ψ(x, y) = +∞ (2.7)
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Let us show that Mψ < 0 in domain Ω.

∂ψ

∂x
= − 2x

x2 + y2
,

∂ψ

∂y
= − 2y

x2 + y2
, ∆ψ = 0.

Mψ =
4k2n1(x, y)x2

(y2 − k2x2)(x2 + y2)
− 4n1(x, y)y2

(y2 − k2x2)(x2 + y2)
+

+8d(1−m)y2(1−m)(x2 + y2)−1ln(l(y2 − k2x2))ω−1 +
Lω

ω
ψ =

= −4n1(x, y)(x2 + y2)−1 +8d(1−m)y2(1−m)(x2 + y2)−1ln(l(y2−k2x2))ω−1+

+
Lω

ω
ψ = −4n1(x, y)(x2 + y2)−1+

+8d(1−m)y2(1−m)(x2 + y2)−1ln(l(y2 − k2x2))ω−1+

+Θ(x, y)ψω−1 + (Lω −Θ(x, y))ψω−1,

Where Θ(x, y) = −d(1 − m)y2(1−m)(y2 − k2x2)−1ln(l(y2 − k2x2))[(1 −
−2m)y−2(y2 − k2x2) + 2m].

Taking into account (2.5) we will receive that the first component of Mψ
is negative in Ω. From (2.1) and (2.2) it is clear that Lω − Θ(x, y) < 0 in
Ω. Consider the sum the second and the third components of Mψ.

8d(1−m)y2(1−m)(x2 + y2)−1ln(l(y2 − k2x2))ω−1 + Θ(x, y)ψω−1 =

= d(1−m)y2(1−m)ln(l(y2−k2x2))ω−1[8(x2+y2)−1−(y2−k2x2)−1(−ln(x2+y2)+

+q)((1− 2m)y−2(y2 − k2x2) + 2m)].

It is clear that for big enough q the received expression is less than 0 in
Ω. So we get that Mψ < 0 in Ω.

Suppose the boundary problem bas two distinct solutions v1 and v2 then
v0 ≡ v1 − v2 will be the solution of uniform boundary problem. Consider
function εψ ± v0. For arbitrary ε > 0 in domoin Ω the folowing inequality
holds true:

L(εψ ± v0) < 0 (2.8)

Let us define the domains Ω′
n ⊂ Ω in this way ;

Ω′
n = {(x, y) : y > −kx, y > kx, y >

1

n
, y < σ(x)} n ∈ N.

Take any point Q from domain Ω. For arbitrary ε > 0 there exists a
domain Q ∈ Ω′

n such that on its boundary the following inequality holds
true:

εψ ± v0 > 0

From (2.8)we receive that L(εψ ± v0) < 0 in domain Ω′
n. According to

the principle of maximum εψ ± v0 > 0 in Ω′
n. So, for arbitrary ε > 0 the

inequality εψ(Q)± v0(Q) > 0 holds true. As a result

|v0(Q)| < εψ(Q) ∀ε > 0.
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i.e. v0(Q) = 0. As Q was an arbitrary point from Ω, so v0 = 0 in Ω, with
this Lemma 2.1. is proved.

From Lemma 2.1. it follows that the following theorem holds true:
Theorem 2.1. If 1 < m < 2 and α = 1−m then there exists the unique

regular solution of equation (1.1) in Ω, which satisfies the following boundary
condition: lim

(x,y)→(x0,y0)
u(x, y)ω−1 = ϕ(x0, y0), ∀(x0, y0) ∈ ∂Ω\{(0, 0)}, ϕ ∈

∈ C(∂Ω).
Lemma 2.2. If m > 1 and α > 1 − m then there exists the uniqul

bounded regular solution of equation (2.3) in domain Ω, which satisfies
the following boundary condition v|∂Ω\{0,0} = ϕ, which ϕ ∈ C(∂Ω) and
ϕ\Γ1∪Γ2=0.

Proof. Let us show that at every point (x0, y0) of Γ1 ∪ Γ2\{0, 0} there
exists a barrier. Consider f(x, y) = (y2−k2x2)β +(x−x0)

2, β > 0 function.
f(x, y) satisfies 1. and 2. conditions of barrier. Let us show validity of 3.
Indeed,

Mf = 4β(y2−k2x2)β−2(y2+k4x2)(β−1+n1(x, y))+2β(1−k2)(y2−k2x2)β−1−

−4k2n1(x, y)x(x− x0)(y
2 − k2x2)−1−

−8dβαy2α(y2 − k2x2)β−1ln(l(y2 − k2x2))ω−1 + 2 +
Lω

ω
f.

In the vicinity of (x0, y0)
Lω

ω
f = O((y2−k2x2)β−2). Therefore for a ny α >

> 1 − m with duly selected β Mf < 0 in the small enough vicinity of
(x0, y0). Thus, at every point (x0, y0) of (Γ1 ∪ Γ2)\{0, 0} there exists a
barrier. According to barrier principle, Viner solution of equation (2.3) will
satisty the uniform boundary condition.

At every point (x0, y0) of Γ3 there exists a barrier and it has the form:
f1(x, y) = (x− x0)

2l1 + (y − y0)
2l2 , l1 > 0, l2 > 0. With this the existence

of the solution of the boundary problem set in Lemma is proved.
Let us show the uniqueness of the solution. Consider ψ(x, y) = −ln(x2+

+y2) + q, q > 0 function. ψ(x, y) satisfies conditions (2.6) and (2.7). Let
us show that Mψ < 0 in Ω.

Mψ = −4n1(x, y)(x2+y2)−1+8dαy2α(x2+y2)−1ln(l(y2−k2x2))ω−1+
Lω

ω
ψ =

= −4(x2+y2)−1
[
m−2α(dy2α(y2−k2x2)−αln(l(y2−k2x2))−1)−1−2dy2αω−1−

−2α(d−1y−2α(y2 − k2x2)αln−1(l(y2 − k2x2))− 1)−1
]

+
Lω

ω
ψ =

= −4(x2 + y2)−1[m + 2α− 2dy2αω−1] +
Lω

ω
ψ =

= −4(x2 +y2)−1[m+2α−2dy2αω−1]+Θ1(x, y)ψω−1 +(Lω−Θ1(x, y))ψω−1,
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where Θ1(x, y) = 2α(y2 − k2x2)α−2(y2 + k4x2)(m + α− 1). From (2.1) and
(2.2) it is clear that Lω−Θ1(x, y) < 0 in Ω. Let us introduce the following
rotation:

g(x, y) ≡ −4(x2 + y2)−1[m + 2α− 2dy2αω−1] + Θ1(x, y))ψω−1.

g(x, y) = −4(x2+y2)−1[m+2α−2(d−1y−2α(y2−k2x2)α−ln(l(y2−k2x2)))−1]+

+
2α(m + α− 1)(y2 + k4x2)(−ln(x2 + y2) + q)

(y2 − k2x2)2 − dy2α(y2 − k2x2)2−αln(l(y2 − k2x2))
=

= −2(x2 + y2)−1[2(m + 2α)− 4(d−1y−2α(y2− k2x2)α− ln(l(y2− k2x2)))−1−

−α(m + α− 1)(y2 + k4x2)(x2 + y2)(−ln(x2 + y2) + q)

(y2 − k2x2)2 − dy2α(y2 − k2x2)2−αln(l(y2 − k2x2))
].

Consider limitation of g(x, y) on lp lines.

g(x, y)|lp = −2y−2(p2+1)−1
[
2(m+2α)−4(d−1(1−k2p2)α−ln(ly2(1−k2p2)))−1−

−α(m + α− 1)(1 + k4p2)(p2 + 1)(−ln(y2(p2 + 1)) + q)

(1− k2p2)2 − d(1− k2p2)2−αln(y2(1− k2p2))

]
.

From the received expression it is clear that for big enough q, g|lp < 0
for arbitrary |p| < 1

k
, i.e. g(x, y) < 0 in Ω. Thus we receive that Mψ < 0 in

Ω.
By using reasoning, analogous to the reasoning given in the proof of

Lemma 2.1, the uniquenesss of the solution of the set boundary problem is
proved. So, Lemma 2.2 is proved.

From Lemma 2.2 validity of the following theorem follows.
Theorem 2.2. If m > 0 and α > 1 − m then there exists the unique

regular solution of equation (1.2) in Ω, which satisfies the following boundary
condition:

lim
(x,y)→(x0,y0)

u(x, y)ω−1 = ϕ(x0, y0), ∀(x0, y0) ∈ ∂Ω\{(0, 0)}, ϕ|Γ1∪Γ2 = 0.

3. m = 1 case
When m = 1 then let us take the following ω(x, y) weight.

ω(x, y) = (−ln((y2 − k2x2)l))γ + (−ln(ly))γ+1

where x and l are positive constants. Let us require that ω(x, y) > 0 and
Lω < 0 in Ω.

∂ω

∂x
= 2k2γx(−ln((y2 − k2x2)l))γ−1(y2 − k2x2)−1,

∂ω

∂y
= −2γy(−ln((y2 − k2x2)l))γ−1(y2 − k2x2)−1 − (γ + 1)y−1(−ln(ly))γ,
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∂2ω

∂x2
= 4k4γx2(y2 − k2x2)−2(−ln((y2 − k2x2)l))γ−1×

×[1− (γ − 1)ln−1((y2 − k2x2)l)]+

+2k2γ(y2 − k2x2)−1(−ln((y2 − k2x2)l))γ−1

∂2ω

∂y2
= 4γy2(y2 − k2x2)−2(−n((y2 − k2x2)l))γ−1×

×[1− (γ − 1)ln−1((y2 − k2x2)l)]−
−2γ(y2−k2x2)−1(−ln((y2−k2x2)l))γ−1−(γ+1)y−2(−ln(ly))γ−1(ln(ly)−γ).

∆ω = 4γ(y2 − k2x2)−2(y2 + k4x2)(−ln((y2 − k2x2)l))γ−1×
×

[
1− (γ − 1)ln−1((y2 − k2x2)l)

]
+

+2γ(k2 − 1)(y2 − k2x2)−1(−ln((y2 − k2x2)l))γ−1−
−(γ + 1)y−2(−ln(ly))γ−1(ln(ly)− γ)

Lω = ∆ω − 4k4γx2(y2 − k2x2)−2(−ln((y2 − k2x2)l))γ−1−
−4γy2(y2−k2x2)−2(−ln((y2−k2x2)l))γ−1−2(γ+1)(y2−k2x2)−1(−ln(ly))γ+

+cω = ∆ω − 4γ(y2 − k2x2)−2(y2 + k4x2)(−ln((y2 − k2x2)l))γ−1−
−2(γ + 1)(y2 − k2x2)−1(−ln(ly))γ + cω

= 4γ(γ − 1)(y2 − k2x2)−2(y2 + k4x2)(−ln((y2 − k2x2)l))γ−2+

+2(y2 − k2x2)−1
[
γ(k2 − 1)(−ln((y2 − k2x2)l))γ−2 − (γ + 1)(−ln(ly))γ

]
−

−(γ + 1)y−2(−ln(ly))γ−1(ln(ly)− γ) + cω.

Consider limitation of Lω on every Lp = {(x, y) : x = py, |p| < 1

k
} line.

Lω|lp = 4γ(γ − 1)y−2(1− k2p2)−2(1 + k4p2)(−ln(ly2(1− k2p2)))γ−2+

+2y−2(1− k2p2)−1[γ(k2 − 1)(−ln(ly2(1− k2p2)))γ−1 − (γ + 1)(−ln(ly))γ]−
−(γ + 1)y−2(−ln(ly))γ−1(ln(ly)− γ) + (cω)|lp =

= y−2(1− k2p2)−1[4γ(γ− 1)(1− k2p2)−1(1 + k4p2)(−ln(ly2(1− k2p2)))γ−2−
−(γ + 1)(−ln(ly))γ−1(ln(ly)− γ)(1− k2p2)−

−2(γ + 1)(−ln(ly))γ + 2γ(k2 − 1)(−ln(ly2(1− k2p2)))γ−1] + (cω)|lp =

= y−2(1− k2p2)−1[4γ(γ− 1)(1− k2p2)−1(1 + k4p2)(−ln(ly2(1− k2p2)))γ−2+

+(γ + 1)(−ln(ly))γ((1− k2p2)− 2)+

+γ(γ+1)(−ln(ly))γ−1(1−k2p2)+2γ(k2−1)(−ln(ly2(1−k2p2)))γ−1]+(cω)|lp .
From this it is clear that for small enough l, when 0 < γ ≤ 1 for every

|p| < 1
k
, the inequality Lω|lp < 0 holds true. Therefore Lω < 0 in Ω, i.e.
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Lω

ω
< 0 in Ω. Insert ω(x, y) in (1.3). We will receive the following equality

with respect to v:

Mv = ∆v − 2k2n1(x, y)x

y2 − k2x2

∂v

∂x
+

2n2(x, y)y

y2 − k2x2

∂v

∂y
+

Lω

ω
v = 0, (3.1)

where:
n1(x, y) = 1− 2γ(−ln(l(y2 − k2x2)))γ−1ω−1,

n2(x, y) = n1(x, y)− (γ + 1)y−2(−ln(ly))γ(y2 − k2x2)ω−1

If we take small enough l then for arbitrary 0 < γ ≤ 1 the following
estimation holds true

0 < n1(x, y) < 1, (x, y) ∈ Ω.

It is clear that n2(x, y) is bounded in Ω.

Lemma 3.1. If m = 1 and γ = 1 then there exists the only bounded reg-
ular solution in domain Ω which satisfies the following boundary condition
v|∂Ω\{(0,0)} = ϕ, ϕ ∈ C(∂Ω).

Proof. Let us show that at any point (x0, y0) of (Γ1 ∪ Γ2)\{(0, 0)}
there exists a barrier. Consider a function of the following tupe: f(x, y) =
= ln−1(β(y2−k2x2))+(x−x0)

2, where β > 0 is yet undetermined constant
number. After duly selecting β, f(x, y) will satisfy 1.2. conditions of barrier.
It remains to prove that the inequality Mf < 0 holds true for f(x, y).

∂f

∂x
= −2k2x(y2 − k2x2)−1ln−2(β(y2 − k2x2)) + 2(x− x0),

∂f

∂y
= 2y(y2 − k2x2)−1ln−2(β(y2 − k2x2)),

∂2f

∂x2
= −4k4x2(y2 − k2x2)−2ln−2(β(y2 − k2x2))(1 + 2ln−1(β(y2 − k2x2))−

−2k2(y2 − k2x2)−1ln−2(β(y2 − k2x2)) + 2.

∂2f

∂y2
= −4y2(y2 − k2x2)−2ln−2(β(y2 − k2x2))(1 + 2ln−1(β(y2 − k2x2)))+

+2(y2 − k2x2)−1ln−2(β(y2 − k2x2)),

∆f = −4(y2−k2x2)−2ln−2(β(y2−k2x2))(1+2ln−1(β(y2−k2x2)))(y2+k4x2)−
−2(y2 − k2x2)−1ln−2(β(y2 − k2x2))(k2 − 1) + 2

Mf = ∆f + 4k4n1(x, y)x2(y2 − k2x2)−2ln−2(β(y2 − k2x2))−
−4k2n1(x, y)(y2 − k2x2)−1x(x− x0)+

+4n2(x, y)y2(y2 − k2x2)−2ln−2(β(y2 − k2x2)) +
Lω

ω
f =
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= ∆f + 4n1(x, y)(y2 − k2x2)−2(y2 + k4x2)ln−2(β(y2 − k2x2))+

+8(y2−k2x2)−1ln(ly)ln−2(β(y2−k2x2))ω−1−4k2n1(x, y)(y2−k2x2)−1x(x−x0)+

+
Lω

ω
f = 4(y2 − k2x2)−2(y2 + k4x2)ln−2(β(y2 − k2x2))×

×[n1(x, y)− 2ln−1(β(y2 − k2x2))− 1]−
−2(y2 − k2x2)−1ln−2(β(y2 − k2x2))(k2 − 1)+

+8(y2 − k2x2)−1ln(ly)ln−2(β(y2 − k2x2))ω−1−

−4k2n1(x, y)(y2 − k2x2)−1x(x− x0) + 2 +
Lω

ω
f−

= −8(y2 − k2x2)−2(y2 + k4x2)ln−3(β(y2 − k2x2))ω−1[ln
β

l
+ ln2(ly)]−

−2(y2 − k2x2)−1ln−2(β(y2 − k2x2))(k2 − 1)+

+8(y2 − k2x2)−1ln(ly)ln−2(β(y2 − k2x2))ω−1−

−4k2n1(x, y)(y2 − k2x2)−1x(x− x0) + 2 +
Lω

ω
f.

The sign of Mf in a small vicinity of any poing of (Γ1 ∪ Γ2)\{(0, 0)} is
determined by the first component of the last expression, which is negative
for small enough β. Thus f(x, y) satisfies three conditions of a barrier.

At every (x0, y0) point of Γ3 there exists a barrier and it has f1(x, y) =
= (x− x0)

2l1 + (y − y0)
2l2 form. A ccording to the principle of barrier, the

boundary problem set in Lemma has a solution.
Let us show the uniqueness of the solution. Consider ψ(x, y) = −ln(x2+

+y2) + q, q > 0 function. ψ(x, y) > 0 in Ω and lim
(x,y)→(0,0)

ψ(x, y) = +∞. Let

us show that Mψ < 0 in Ω.

Mψ = −4n1(x, y)(x2 + y2)−1 − 8(y2 + x2)−1ln(ly)ω−1 +
Lω

ω
ψ =

= −4(x2 + y2)−1[1− 2ω−1 + 2ln(ly)ω−1] +
Lω

ω
ψ.

For small enough l the expression in square brackets is positive in Ω, so
Mψ < 0 in Ω.

By using the reasoning analogous to that in Lemma 2.1 the uniqueness
of the solution can be proved.

From Lemma 3.1. the validity of the following theorem follows:
Theorem 3.1. If m = 1 and γ = 1 then there exists the unique regular

solution of (1.1) in Ω which satisfies the following condition
lim

(x,y)→(x0,y0)
u(x, y)ω−1 = ϕ(x0, y0), ∀(x0, y0) ∈ ∂Ω\{(0, 0)}, ϕ ∈ C(∂Ω).

Lemma 3.2. If m = 1 and 0 < γ < 1 then there exists the uniqul
bounded solution of equation (3.1) in domain Ω which satisfies the following
boundary condition v|∂Ω\{(0,0)} = ϕ, ϕ ∈ C(∂Ω), ϕ|Γ1∪Γ2 = 0.
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Proof. Let us show that at every (x0, y0) point of (Γ1∪Γ2)\{(0, 0)} the
barrier has the following form f(x, y) = −ln−1(β(y2 − k2x2)) + (x − x0)

2

where β > 0 is a constant number. It is to be shon that α, Mf < 0
inequality holds true in a neighbourhood of (x0, y0). Indeed

Mf = ∆f + 4k4n1(x, y)x2(y2 − k2x2)−2ln−2(β(y2 − k2x2))−
−4k2n1(x, y)(y2 − k2x2)−1x(x− x0)+

+4n2(x, y)y2(y2 − k2x2)−2ln−2(β(y2 − k2x2)) +
Lω

ω
f =

= ∆f + 4n1(x, y)(y2 − k2x2)−2(y2 + k4x2)ln−2(β(y2 − k2x2))−
−4(γ + 1)(y2 − k2x2)−1(−ln(ly))γln−2(β(y2 − k2x2))ω−1−

−4k2n1(x, y)(y2 − k2x2)−1x(x− x0) +
Lω

ω
f =

= 4(y2−k2x2)−2(y2+k4x2)ln−2(β(y2−k2x2))[n1(x, y)−2ln−1(β(y2−k2x2))−1]−
−2(y2 − k2x2)−1ln−2(β(y2 − k2x2))(k2 − 1)−

−4(γ + 1)(y2 − k2x2)−1(−ln(ly))γln−2(β(y2 − k2x2))ω−1−

−4k2n1(x, y)(y2 − k2x2)−1x(x− x0) + 2 +
Lω

ω
f =

= −8(y2 − k2x2)−2(y2 + k4x2)ln−3(β(y2 − k2x2))ω−1×

×[(−ln(y2 − k2x2)γ−1ln(
βγ

l
(y2 − k2x2)γ−1) + (−ln(ly))γ+1]−

−2(y2 − k2x2)−1ln−2(β(y2 − k2x2))(k2 − 1)−
−4(γ + 1)(y2 − k2x2)−1(−ln(ly))γln−2(β(y2 − k2x2))ω−1−

−4k2n1(x, y)(y2 − k2x2)−1x(x− x0) + 2 +
Lω

ω
f.

In a small vicinity of (x0, y0) the sign of Mf is determined by the com-

ponent
Lω

ω
f , i.e. Mf < 0 in a sertain neighbourhood of (x0, y0) point the

Viner solution of equation (3.1) will satisfy an uniform boundary condition.
also, at every (x0, y0) point of Γ3 there exists a barrier and it has the form:
f1(x, y) = (x− x0)

2l1 + (y − y0)
2l2 , l1 > 0, l2 > 0.

Thus, existenu of the solution of the boundary problem set in Lemma is
proved.

Let us show the uniqueness of the solution. For this it is enough to show
the existence of such ψ(x, y) function that Mψ < 0 in Ω and which satisfies
(2.6), (2.7) conditions. Consider ψ(x, y) = −ln(x2 + y2) + q function where
q > 0.

It is clear that,after duly selecting q, ψ(x, y) will satisfy conditions (2.6)
and (2,7). Mψ has the following form:

Mψ = −4n1(x, y)(x2 + y2)−1 + 4(γ + 1)(x2 + y2)−1(−ln(ly))γω−1 +
Lω

ω
ψ =
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= −4(x2+y2)−1[1−2γ(−ln((y2−k2x2)l))γ−1ω−1−(γ+1)(−ln(ly))γω−1]+
Lω

ω
ψ.

From this we can sec that for small enough l Mψ < 0 in Ω. Thus Lemma
is proved.

From Lemma 3.1. it follows the validity of the following theorem:
Theorem 3.2. If m = 1 and 0 < γ < 1 then there exists the unique

regular solution of equatiom (1.1) in domain Ω which satisfies the following
boundary condition lim

(x,y)→(x0,y0)
u(x, y)ω−1 = ϕ(x0, y0), (x0, y0) ∈ ∂Ω\{(0, 0)},

ϕ ∈ C(∂Ω) ϕ|Γ1∪Γ2 = 0.
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