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Abstract

Admissible static and dynamical problems are investigated for a cusped plate.

The setting of boundary conditions at the plates ends depends on the geometry of

sharpenings of plates ends, while the setting of initial conditions is independent of

them.
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In 1955 I.Vekua [1-3] raised the problem of investigation of cusped plates,
i.e. such ones whose thickness on the part of plate boundary or on the whole
one vanishes. The problem mathematically leads to the question of setting
and solving of boundary value problems (BVP) for even order equations and
systems of elliptic type with the order degeneration in the statical case and
of initial boundary value problems (IBVP) for even order equations and
systems of hyperbolic type with the order degeneration in the dynamical
case. The first work concerning classical bending of cusped elastic plates
was done by S. Mikhlin [4] and Makhover [5, 6]. Since, a wide literature
devoted to such plates. A brief survey of results and references can be found
in [7].

If we consider cylindrical bending of a plate with the rectangular pro-
jection a ≤ x1 ≤ b, 0 ≤ x2 ≤ `, we actually get results also for cusped
beams.

In this chapter we will consider a plate, whose projection on x3 = 0
occupies the domain Ω

Ω = {(x1, x2, x3) : −∞ < x1 < ∞, 0 < x2 < l, x3 = 0}.
The equation of bending vibration has the following form (see, e.g., [8])

(D(x2)w, 22 (x2, t)), 22 = q(x2, t)− 2ρh(x2)
∂2w(x2, t)

∂t2
, 0 < x2 < l, (1.1)
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where w(x2) is a deflection of the plate, q(x2) is an intensity of a lateral
load, ρ is a density of the shell, D(x2) is a flexural rigidity,

D(x2) :=
2Eh3(x2)

3(1− ν2)
, (1.2)

where E is the Young’s modulus, ν is the Poison’s ratio, and 2h(x2) is the
thickness of the shell. Let E =const, ν =const, and

D(x2) = D0x
α
2 (l − x2)

β, D0, α, β = const, D0 > 0, α, β ≥ 0. (1.3)

Then
2h(x2) = h0x

α/3
2 (l − x2)

β/3, h0 = const > 0.

In the case α2 +β2 > 0 equation (1.1) becomes degenerate one. Such plates
are called cusped plates.

In the case under consideration (see [8])

M2(x2, t) := −D(x2)w,22 (x2, t), (1.4)

Q2(x2, t) := M2,2(x2, t), (1.5)

where M2(x2, t) is a bending moment, Q2(x2, t) is an intersecting force.
We suppose that q(x2) ∈ C([0, l]).
Remark 1.1. Since q(x2) ∈ C([0, l]), it is easy to prove that (see [9]),

w(·, t) ∈ C4(]0, l[), and

Q2(·, t), M2(·, t) ∈ C([0, l]),

w(·, t), w,2 (·, t) ∈ C(]0, l[),

the behaviour of the w,2 (x2) and w(x2) when x2 → 0+ and x2 → l− depends
on α and β, as follows:

w ∈ C1([0, l)) (w ∈ C1((0, l])) if α < 1, β > 1 (α > 1, β < 1);
w ∈ C([0, l)) (w ∈ C((0, l])) if α < 2, β > 2 (α > 2, β < 2);
w ∈ C1([0, l]) if α, β < 1;
w ∈ C([0, l]) if α, β < 2;

w ∈ C1([0, l)) ∩ C([0, l]), (w ∈ C1((0, l]) ∩ C([0, l]))
if α < 1, β < 2 (α < 2, β < 1).

We consider equation (1.1) under the initial conditions (ICs)

w(x2, 0) = ϕ1(x2), w,t (x2, 0) = ϕ2(x2), x2 ∈]0, l[, (1.6)

where ϕi(x2) ∈ C4(]0, l[), i = 1, 2 are given functions.
Let us consider the following boundary value problems (BVP):
Problem 1. Let 0 ≤ α, β < 1. Find

w(·, t) ∈ C4(]0, l[) ∩ C1([0, l]),
w(x2, ·) ∈ C1(t ≥ 0) ∩ C2(t > 0), w(x2, t) ∈ C(0 ≤ x2 ≤ l, t ≥ 0),
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satisfying equation (1.1), the boundary conditions (BCs)

w(0, t) = w,2 (0, t) = w(l, t) = w,2 (l, t) = 0,

and ICs (1.6), where

ϕi(x2) ∈ C4(]0, l[) ∩ C1([0, l])

ϕi(0) = ϕ′i(0) = ϕi(l) = ϕ′i(l) = 0, i = 1, 2.

Problem 2. Let 0 ≤ α, β < 1. Find

w(·, t) ∈ C4(]0, l[) ∩ C1([0, l]),
w(x2, ·) ∈ C1(t ≥ 0) ∩ C2(t > 0), w(x2, t) ∈ C(0 ≤ x2 ≤ l, t ≥ 0),

satisfying equation (1.1), the BCs

w(0, t) = w,2 (0, t) = w,2 (l, t) = Q2(l, t) = 0,

and ICs (1.6), where

ϕi(x2) ∈ C4(]0, l[) ∩ C1([0, l])

ϕi(0) = ϕ′i(0) = ϕ′i(l) = (−D(x2)ϕ
′′
i (x2))

′ |x2=l− = 0, i = 1, 2.

Problem 3. Let 0 ≤ α, < 1, 0 ≤ β < 2. Find

w(·, t) ∈ C4(]0, l[) ∩ C1([0, l[) ∩ C([0, l]),
w(x2, ·) ∈ C1(t ≥ 0) ∩ C2(t > 0), w(x2, t) ∈ C(0 ≤ x2 ≤ l, t ≥ 0),

satisfying equation (1.1), the BCs

w(0, t) = w,2 (0, t) = w(l, t) = M2(l, t) = 0,

and ICs (1.6), where

ϕi(x2) ∈ C4(]0, l[) ∩ C1([0, l[) ∩ C([0, l]),

ϕi(0) = ϕ′i(0) = ϕi(l) = (−D(x2)ϕ
′′
i (x2)) |x2=l− = 0, i = 1, 2.

Problem 4. Let 0 ≤ α < 1, β ≥ 0. Find

w(·, t) ∈ C4(]0, l[) ∩ C1([0, l[),
w(x2, ·) ∈ C1(t ≥ 0) ∩ C2(t > 0), w(x2, t) ∈ C(0 ≤ x2 < l, t ≥ 0),

satisfying equation (1.1), the BCs

w(0, t) = w,2 (0, t) = M2(l, t) = Q2(l, t) = 0,

and ICs (1.6), where

ϕi(x2) ∈ C4(]0, l[) ∩ C1([0, l[),
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ϕi(0) = ϕ′i(0) = (−D(x2)ϕ
′′
i (x2)) |x2=l−

= (−D(x2)ϕ
′′
i (x2))

′ |x2=l− = 0, i = 1, 2.

Problem 5. Let 0 ≤ α, β < 1. Find

w(·, t) ∈ C4(]0, l[) ∩ C1([0, l]),
w(x2, ·) ∈ C1(t ≥ 0) ∩ C2(t > 0), w(x2, t) ∈ C(0 ≤ x2 ≤ l, t ≥ 0),

satisfying equation (1.1), the BCs

w,2 (0, t) = Q2(0, t) = w(l, t) = w,2 (l, t) = 0,

and ICs (1.6), where

ϕi(x2) ∈ C4(]0, l[) ∩ C1([0, l]),

ϕ′i(0) = (−D(x2)ϕ
′′
i (x2))

′ |x2=0+ = ϕi(l) = ϕ′i(l) = 0, i = 1, 2.

Problem 6. Let 0 ≤ α < 1, 0 ≤ β < 2. Find

w(·, t) ∈ C4(]0, l[) ∩ C1([0, l[) ∩ C([0, l]),
w(x2, ·) ∈ C1(t ≥ 0) ∩ C2(t > 0), w(x2, t) ∈ C(0 ≤ x2 ≤ l, t ≥ 0),

satisfying equation (1.1), the BCs

w,2 (0, t) = Q2(0, t) = w(l, t) = M2(l, t) = 0,

and ICs (1.6), where

ϕi(x2) ∈ C4(]0, l[) ∩ C1([0, l[) ∩ C([0, l]),

ϕ′i(0) = (−D(x2)ϕ
′′
i (x2))

′ |x2=0+ = ϕi(l)

= (−D(x2)ϕ
′′
i (x2)) |x2=l− = 0, i = 1, 2.

Problem 7. Let 0 ≤ α < 2, 0 ≤ β < 1. Find

w(·, t) ∈ C4(]0, l[) ∩ C1(]0, l]) ∩ C([0, l]),
w(x2, ·) ∈ C1(t ≥ 0) ∩ C2(t > 0), w(x2, t) ∈ C(0 ≤ x2 ≤ l, t ≥ 0),

satisfying equation (1.1), the BCs

w(0, t) = M2(0, t) = w(l, t) = w,2 (l, t) = 0,

and ICs (1.6), where

ϕi(x2) ∈ C4(]0, l[) ∩ C1(]0, l]) ∩ C([0, l]),

ϕi(0) = (−D(x2)ϕ
′′
i (x2)) |x2=0+ = ϕi(l) = ϕ′i(l) = 0, i = 1, 2.
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Problem 8. Let 0 ≤ α < 2, 0 ≤ β < 1. Find

w(·, t) ∈ C4(]0, l[) ∩ C([0, l]) ∩ C1(]0, l])
w(x2, ·) ∈ C1(t ≥ 0) ∩ C2(t > 0),
w(x2, t) ∈ C(0 ≤ x2 ≤ l, t ≥ 0),

(1.7)

satisfying equation (1.1), the BCs

w(0, t) = M2(0, t) = w,2 (l, t) = Q2(l, t) = 0, (1.8)

and ICs (1.6), where

ϕi(x2) ∈ C4(]0, l[) ∩ C([0, l]) ∩ C1(]0, l]), i = 1, 2. (1.9)

ϕi(0) = −D(x2)ϕ
′′
i (x2)|x2=0+ = ϕ′i(l) (1.10)

= (−D(x2)ϕ
′′
i (x2))

′ |x2=l− = 0, i = 1, 2.

Problem 9. Let 0 ≤ α, β < 2. Find

w(·, t) ∈ C4(]0, l[) ∩ C([0, l]),
w(x2, ·) ∈ C1(t ≥ 0) ∩ C2(t > 0), w(x2, t) ∈ C(0 ≤ x2 ≤ l, t ≥ 0),

satisfying equation (1.1), the BCs

w(0, t) = M2(0, t) = w(l, t) = M2(l, t) = 0,

and ICs (1.6), where

ϕi(x2) ∈ C4(]0, l[) ∩ C([0, l]),

ϕi(0) = (−D(x2)ϕ
′′
i (x2)) |x2=0+ = ϕi(l)

= (−D(x2)ϕ
′′
i (x2)) |x2=l− = 0, i = 1, 2.

Problem 10. Let α ≥ 0, 0 < β < 1. Find

w(·, t) ∈ C4(]0, l[) ∩ C1(]0, l]),
w(x2, ·) ∈ C1(t ≥ 0) ∩ C2(t > 0), w(x2, t) ∈ C(0 < x2 ≤ l, t ≥ 0),

satisfying equation (1.1), the BCs

M2(0, t) = Q2(0, t) = w(l, t) = w,2 (l, t) = 0,

and ICs (1.6), where

ϕi(x2) ∈ C4(]0, l[) ∩ C1(]0, l]),

(−D(x2)ϕ
′′
i (x2)) = (−D(x2)ϕ

′′
i (x2))

′ |x2=0+

= ϕi(l) = ϕ′i(l) = 0, i = 1, 2.

Let us solve typical one.
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Solution of the Problem 8.
Using the Fourier method, we look for w(x2, t) in the following form

w(x2, t) = X(x2)T (t). (1.11)

Let firstly q(x2, t) ≡ 0. Then from (1.1) we get

(D(x2)X
′′(x2))

′′

g(x2)X(x2)
= −T ′′(t)

T (t)
= λ = const.

Hence,
T ′′(t) + λT (t) = 0, (1.12)

and
(D(x2)X

′′(x2))
′′

= λg(x2)X(x2), (1.13)

where g(x2) := 2ρh(x2).
From (1.8) for X(x2) we obtain the following BCs

X(0) = −D(x2)X
′′(x2)|x2=0 = X ′(l) = (−D(x2)X

′′(x2))
′|x2=l = 0. (1.14)

Now, in view of (1.7), we have to solve the following BVP:
Find

X(x2) ∈ C4(]0, l[) ∩ C([0, l]) ∩ C1(]0, l]), (1.15)

which satisfies equation (1.13) and BCs (1.14). Above BVP can be reduced
to the following integral equation (see [9])

X(x2) = λ

l∫

0

g(ξ)K(x2, ξ)X(ξ)dξ, (1.16)

where

K(x2, ξ) =

{
K3(ξ, x2), 0 ≤ ξ ≤ x2,
K3(x2, ξ), x2 ≤ ξ ≤ l,

(1.17)

K3(x2, ξ) := −x2

x2∫

ξ

ηD−1(η)dη +

x2∫

0

η2D−1(η)dη + x2ξ

l∫

ξ

D−1(η)dη.(1.18)

Obviously, K3(x2, ξ) ∈ C([0, l]×[0, l]) and, therefore K(x2, ξ) ∈ C([0, l]×
×[0, l]).

Proposition 1.2. K(x2, ξ) is a symmetric with respect to x2 and ξ.
Proof. For z1 and z2, such that 0 ≤ z1, z2 ≤ l we have

K(z1, z2) =

{
K3(z2, z1), 0 ≤ z2 ≤ z1 ≤ l,
K3(z1, z2), 0 ≤ z1 ≤ z2 ≤ l,

K(z2, z1) =

{
K3(z1, z2), 0 ≤ z1 ≤ z2 ≤ l,
K3(z2, z1), 0 ≤ z2 ≤ z1 ≤ l,
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i.e.,
K(z1, z2) = K(z2, z1), for any z1, z2 ∈ [0, l].

¤
(1.16) can be rewritten as follows

Y (x2) = λ

l∫

0

R(x2, ξ)Y (ξ)dξ, (1.19)

where

Y (x2) =
√

g(x2)X(x2), R(x2, ξ) =
√

g(x2)K(x2, ξ)
√

g(ξ). (1.20)

(1.19) is an integral equation with a symmetric and continuous kernel.
Remark 1.3. For all other BVPs (see Problems 1-7, 9, 10) we get (1.16)

type integral equations. In all these cases kernel of the integral equation is
symmetric. Let write down typical ones:

Problem 1.

K3(x2, ξ) =

x2∫

0

(η − x2)(η − ξ)D−1(η)dη

+





ξ∫

0

(ξ − η)D−1dη

x2∫

0

(x2 − η)ηD−1(η)dη

+

ξ∫

0

η(ξ − η)D−1(η)dη

x2∫

0

(x2 − η)D−1(η)dη





l∫
0

ηD−1(η)dη

∆

−
ξ∫

0

(ξ − η)ηD−1(η)dη

x2∫

0

(x2 − η)ηD−1(η)dη

l∫
0

D−1(η)dη

∆
(1.21)

+

ξ∫

0

(ξ − η)D−1(η)dη

x2∫

0

(x2 − η)D−1(η)dη

l∫
0

η2D−1(η)dη

∆
,

where

∆ :=




l∫

0

ξD−1(ξ)dξ




2

−
l∫

0

D−1(ξ)dξ

l∫

0

ξ2D−1(ξ)dξ < 0,

The last assertion follows from the Hölder inequality which is strong since
ξD− 1

2 (ξ) and D− 1
2 (ξ) are positive on ]0, l[, and ξ2D−1(ξ) and D−1(ξ) differ

from each other by a nonconstant factor ξ2.
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Problem 2.

K3(x2, ξ) =

x2∫

0

(x2 − η)(ξ − η)D−1dη (1.22)

− 1
l∫

0

D−1(η)dη

ξ∫

0

(ξ − η)D−1(η)dη

x2∫

0

(x2 − η)D−1(η)dη.

Problem 9.

K3(x2, ξ) =
x2ξ

l2

l∫

ξ

(l − η)D−1(η)dη +
x2(l − ξ)

l2

x2∫

ξ

(l − η)ηD−1(η)dη

+
(l − x2)(l − ξ)

l2

x2∫

0

η2D−1(η)dη. (1.23)

Problem 10.

K3(x2, ξ) = −
l∫

η

(x2 − η)(η − ξ)D−1(η)dη. (1.24)

Recall the following three Hilbert-Schmidt theorems (see, e.g., [10])
Theorem 1.4. If u(x2) has the form

u(x2) = λ

l∫

0

R(x2, ξ)f(ξ)dξ,

with f ∈ C([0, l]) and symmetric Kernel R(x2, ξ) ∈ C([0, l]× [0, l]), then

u(x2) =
∞∑

n=1

(u, Yn)Yn(x2), (1.25)

where

(u, Yn) :=

l∫

0

u(x2)Yn(x2)dx2,

Yn is an eigenfunction of R(x2, ξ), and the series on the right hand side of
(1.25) is convergent absolutely and uniformly on [0, l].

Theorem 1.5. If the number of eigenvalues λn of the symmetric and
continuous kernel is finite then

R(x2, ξ) =
N∑

n=1

Yn(x2)Yn(ξ)

λn

.
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Theorem 1.6. If f(x2) ∈ C([0, l]), then

l∫

0

R(x2, ξ)f(ξ)dξ =
∞∑

n=1

(f, Yn)

λn

Yn,

and the series is convergent absolutely and uniformly, here R(x2, ξ) is a
symmetric and continuous kernel with respect to x2; ξ, and Yn are eigen-
functions of R corresponding to the eigenvalues λn.

Proposition 1.7. Let Yn(x2) ∈ C4(]0, l[). Number of eigenvalues λn of
(1.19) is not finite.

Proof. Let it be finite, and n = 1,m. Then we can express R(x2, ξ) as
follows (see Theorem )

R(x2, ξ) =
m∑

n=1

Yn(x2)Yn(ξ)

λn

,

where Yn(x2) ∈ C4(]0, l[), i.e.,

R(x2, ξ) ∈ C4 (]0, l[×]0, l[) . (1.26)

On the other hand, by virtue of (1.18),

K ′′′
x2

(x2, ξ)|ξ→x2− −K ′′′
x2

(x2, ξ)|ξ→x2+ =
1

D(x2)
,

then kernel
R(x2, ξ) 6∈ C4 (]0, l[×]0, l[) . (1.27)

But, (1.26) and (1.27) contradict each other, thus the number of λn is not
finite. ¤

Proposition 1.8. All λn are positive.
Proof. Obviously, if we denote by Yn orthonormalized eigenfunctions

(it can be assumed without loss of generality) of (1.19), then

Xn(x2) =
Yn(x2)√

g(x2)

are eigenfunctions of (1.16) (i.e., of (1.13)). Hence,

(D(x2)X
′′
n(x2))

′′ = λng(x2)Xn(x2). (1.28)

Let us multiply both sides of (1.28) by Xn(x2) and integrate it from 0 to l.
Taking into account of the first expression of (1.20), we obtain

l∫

0

Xn(x2)(D(x2)X
′′
n(x2))

′′dx2 = λn

l∫

0

g(x2)Xn(x2)Xn(x2)dx2

= λn

l∫

0

Yn(x2)Yn(x2)dx2 = λn.
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Further,

λn =

l∫

0

Xn(x2)(D(x2)X
′′
n(x2))

′′dx2 = Xn(x2)(D(x2)X
′′(x2))

′

∣∣∣∣∣∣

l

0

−
l∫

0

X ′
n(x2)(D(x2)X

′′
n(x2))

′dx2

(by virtue of the BCs (1.14))

= −
l∫

0

X ′
n(x2)(D(x2)X

′′
n(x2))

′dx2 = X ′
n(x2)(D(x2)X

′′(x2))

∣∣∣∣∣∣

l

0

+

l∫

0

D(x2)(X
′′
n)2(x2)dx2 =

l∫

0

D(x2)(X
′′
n)2(x2)dx2 ≥ 0.

Hence, λn > 0 for any n, since in non trivial case Xn 6≡ 0. ¤
We can write the solution of (1.12) as follows

Tn(t) = bn
1 sin

(√
λnt

)
+ bn

2 cos
(√

λnt
)

, bn
i = const, i = 1, 2.

Now, we can find a solution of the Problem 8 in the form as follows

w(x2, t) =
∞∑

n=1

Yn(x2)√
g(x2)

(
bn
1 sin

(√
λnt

)
+ bn

2 cos
(√

λnt
))

(1.29)

or, taking into account (1.20), in the following form

w(x2, t) =
∞∑

n=1

Xn(x2)
(
bn
1 sin

(√
λnt

)
+ bn

2 cos
(√

λnt
))

. (1.30)

In view of initial conditions (1.6), we formally have

∞∑
n=1

Yn(x2)b
n
2 = ϕ1(x2)

√
g(x2),

∞∑
n=1

√
λnYn(x2)b

n
1 = ϕ2(x2)

√
g(x2). (1.31)

If ψi(x2) :=
(Dϕ′′i )′′√

g(x2)
∈ C[0, l], (i = 1, 2), then after integration of the last

expression,
√

g(x2)ϕi(x2) can be expressed as follows

√
g(x2)ϕi(x2) =

l∫

0

√
g(x2)g(ξ)K(x2, ξ)ψi(ξ)dξ,

i.e.,
√

g(x2)ϕi(x2) =
l∫

0

R(x2, ξ)ψi(ξ)dξ.
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Hence, by virtue of Theorem , since ψi(ξ) ∈ C([0, l]) and symmetric
R(x2, ξ) ∈ C([0, l] × [0, l]), we get absolutly and uniformly convergence of
the series

√
g(x2)ϕi(x2) =

∞∑
n=1

l∫

0

√
g(ξ)ϕi(ξ)Yn(ξ)dξ · Yn(x2),

i.e., of (1.31) on [0, l], and

bn
1 =

1√
λn

l∫

0

g(x2)Xn(x2)ϕ2(x2)dx2, bn
2 =

l∫

0

g(x2)Xn(x2)ϕ1(x2)dx2.

(1.32)
Further, taking into account (1.15), X(x2) ∈ C([0, l]). Then, by virtue

of (1.20), we can rewrite (1.31) as follows

ϕ1(x2) =
∞∑

n=1

Xn(x2)b
n
2 , ϕ2(x2) =

∞∑
n=1

√
λnXn(x2)b

n
1 . (1.33)

Evidently, last series will be absolutely and uniformly convergent on
]0, l[. Since there exists positive minimum of eigenvalues, from the conver-
gence of the second series follows absolute and uniform convergence on ]0, l[

of the series
N∑

n=1

Xn(x2)b
n
1 . Therefore, the series (1.30) is absolutely and

uniformly convergent on ]0, l[.
After formal differentiation of (1.30) with respect to t we get

w,t (x2, t) =
∞∑

n=1

Xn(x2)
√

λn

(
bn
1 cos(

√
λnt)− bn

2 sin(
√

λnt)
)

, (1.34)

w,tt (x2, t) = −
∞∑

n=1

Xn(x2)λn

(
bn
1 sin(

√
λnt) + bn

2 cos(
√

λnt)
)

. (1.35)

Theorem 1.9. (1.33) and (1.30) converge absolutely and uniformly on
[0, l], and (1.34) - (1.35) converge absolutely and uniformly on ]0, l[ if

Ψi(x2) :=
ψi(x2)√

g(x2)
, i = 1, 2, (1.36)

are satisfying conditions (1.10) and

χi(x2)
√

g(x2) := (D(x2)Ψ
′′
i (x2))

′′
, i = 1, 2, (1.37)

are integrable functions on ]0, l[ (for this, e.g., it is sufficient that ϕ
(j)
i (x2) =

= O(x
γij

2 ),x2 → 0+, γij = const > 7 − j − 5α
3
, ϕ

(j)
i (x2) = O((l − x2)

δij),

x2 → l−, δij = const > 7− j − 5β
3
, i = 1, 2; j = 2, 8).
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Proof. Substituting in (1.32) the function g(x2)Xn(x2) found from
(1.28), we get

bn
1 =

1

λn

√
λn

l∫

0

(D(x2)X
′′
n(x2))

′′ϕ2(x2)dx2

(after integrating by parts 4-times, taking into account BCs, (1.10),
(1.14), and (1.20))

=
1

λn

√
λn



(D(x2)X

′′
n(x2))

′ϕ2(x2)|l0 −
l∫

0

(D(x2)X
′′
n(x2))

′ϕ′2(x2)dx2





=
1

λn

√
λn



−D(x2)X

′′
n(x2)ϕ

′
2(x2)|l0 +

l∫

0

D(x2)X
′′
n(x2)ϕ

′′
2(x2)dx2





=
1

λn

√
λn

l∫

0

X ′′
n(x2)D(x2)ϕ

′′
2(x2)dx2 =

1

λn

√
λn

{
X ′

n(x2)D(x2)ϕ
′′(x2)|l0

−
l∫

0

X ′
n(x2)(D(x2)ϕ

′′
2(x2))

′dx2



 =

1

λn

√
λn

{
−Xn(x2)(D(x2)ϕ

′′
2(x2))

′|l0

+

l∫

0

Xn(x2)(D(x2)ϕ
′′
2(x2))

′′dx2



 =

1

λn

√
λn

l∫

0

Xn(x2)(D(x2)ϕ
′′
2(x2))

′′dx2

=
1

λn

√
λn

l∫

0

Yn(x2)ψ2(x2)dx2. (1.38)

Analogously,

bn
2 =

1

λn

l∫

0

Yn(x2)ψ1(x2)dx2. (1.39)

In view of (1.37), Ψi(x2) can be expressed as follows

Ψi(x2) =

l∫

0

K(x2, ξ)
√

g(ξ)χi(ξ)dξ, i = 1, 2,

and by virtue of (1.36), (1.20) we obtain

ψi(x2) =

l∫

0

R(x2, ξ)χi(ξ)dξ, i = 1, 2.
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According to the Theorem , the following series

∞∑
n=1

βn
i Yn(x2),

where

βn
i =

l∫

0

Yn(x2)ψi(x2)dx2, i = 1, 2, (1.40)

is convergent absolutely and uniformly on ]0, l[, i.e.,

∞∑
n=1

|βn
i ||Yn(x2)| < +∞. (1.41)

By view of K(x2, ξ)
√

g(ξ) ∈ C([0, l]× [0, l]), there exists such M that

M := max
0≤x2, ξ≤l

∣∣∣K(x2, ξ)
√

g(ξ)
∣∣∣ < +∞.

Using (1.19), (1.39), (1.40) we have

|Xn(x2)b
n
2 | =

∣∣∣∣∣∣
λn

l∫

0

K(x2, ξ)
√

g(ξ)Yn(ξ)bn
2dξ

∣∣∣∣∣∣

=

∣∣∣∣∣∣

l∫

0

K(x2, ξ)
√

g(ξ)Yn(ξ)βn
2 dξ

∣∣∣∣∣∣

≤
l∫

0

|K(x2, ξ)
√

g(ξ)||Yn(ξ)||βn
2 |dξ := c1

n

On the other hand in virtue of (1.41) we obtain

∞∑
n=1

c1
n =

∞∑
n=1

c1
n

l∫

0

|K(x2, ξ)
√

g(ξ)||Yn(ξ)||βn
2 |dξ

≤ M

∫ l

0

∞∑
n=1

|Yn(ξ)||βn
2 |dξ ≤ MM1l < ∞.

From the last two uniquality we get

|ϕ1| ≤
∞∑

n=1

|Xn(x2)b
n
2 | ≤

∞∑
n=1

c1
n < +∞.

Which means that ϕ1 can be expressed as absolutely and uniformly conver-
gent series. Analoguously, we can prove that ϕ2 converges absolutely and
uniformly on [0, l].
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Let, now consider (1.34) series. It is obviously that

|w(x2, t)| ≤
∞∑

n=1

|Xn(x2)b
n
1 |+

∞∑
n=1

|Xn(x2)b
n
2 |,

and from the convergent of ϕ1 and ϕ2 we obtain that (1.30) converges ab-
solutely and uniformly on [0, l].

Further, from (1.34)

|w,t (x2, t)| =

∣∣∣∣∣
∞∑

n=1

Xn(x2)
√

λn

(
bn
1 cos(

√
λnt)− bn

2 sin(
√

λnt)
)∣∣∣∣∣

≤
∣∣∣∣∣
∞∑

n=1

Xn(x2)
√

λnbn
1 cos(

√
λnt)

∣∣∣∣∣

+

∣∣∣∣∣
∞∑

n=1

Xn(x2)
√

λnbn
2 sin(

√
λnt)

∣∣∣∣∣

≤
∞∑

n=1

∣∣∣Xn(x2)
√

λnb
n
1

∣∣∣ +
∞∑

n=1

∣∣∣Xn(x2)
√

λnb
n
2

∣∣∣ . (1.42)

According to Proposition , all of λn are positive. Therefore, we can find λ0

such that λ0 ≤ min
1≤i≤∞

{λi}, and by virtue of (1.20), (1.38)-(1.41), we obtain

∞∑
n=1

∣∣∣Xn(x2)
√

λnb
n
2

∣∣∣ =
1√

g(x2)

∞∑
n=1

∣∣∣∣Yn

√
λn

1

λn

βn
1

∣∣∣∣

≤ 1√
λ0

1√
g(x2)

∞∑
n=1

|Yn||βn
1 | < ∞,

∞∑
n=1

∣∣∣Xn(x2)
√

λnb
n
1

∣∣∣ =
1√

g(x2)

∞∑
n=1

∣∣∣∣Yn

√
λn

1

λn

√
λn

βn
2

∣∣∣∣

≤ 1

λ0

1√
g(x2)

∞∑
n=1

|Yn||βn
2 | < ∞, x2 ∈]0, l[.

Hence, the series in (1.42) are convergent. Thus, (1.34) is convergent abso-
lutely and uniformly on ]0, l[. Similarly, we get the absolute and uniform
convergence of (1.35) on ]0, l[. ¤

Let us now differentiate (1.30) formally i-times with respect to x2 and
consider the following expressions

w
(i)
x2 (x2, t) =

∞∑
n=1

X
(i)
n (x2)

(
bn
1 sin(

√
λnt) + bn

2 cos(
√

λnt)
)
,

i = 1, 2, 3, 4,
(1.43i)

(D(x2)w,x2x2 (x2, t))
(i−1)
x2 =

∞∑
n=1

(D(x2)X
′′
n(x2))

(i−1)
(
bn
1 sin(

√
λnt)

+bn
2 cos(

√
λnt)

)
, i = 1, 2

(1.44i)
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Theorem 1.10. The series (1.43i) (i = 1, ..., 4) are convergent abso-
lutely and uniformly on ]0, l[. The series (1.44i) (i = 1, 2) are convergent
absolutely and uniformly on [0, l].

Proof. Obviously, in view of (1.14), after integration of (1.28), we get

X ′
n(x2) = λn

l∫

0

R1(x2, ξ)Xn(ξ)dξ, (1.45)

where

R1(x2, ξ) =





ξ

l∫

x2

D−1(η)dη, 0 ≤ ξ ≤ x2,

−
x2∫

ξ

ηD−1(η)dη + ξ

l∫

ξ

D−1(η)dη, x2 ≤ ξ ≤ l,

and

R1(x2, ξ) ∈ C([0, l]× [0, l]), (1.46)

because of 0 ≤ α < 2, 0 ≤ β < 1.

Substituting (1.45) into (1.431) for i = 1, we obtain

w′
x2

(x2, t) =
∞∑

n=1

λn

l∫

0

R1(x2, ξ)Xn(ξ)dξ
(
bn
1 sin(

√
λnt) + bn

2 cos(
√

λnt)
)

=

=

l∫

0

R1(x2, ξ)

[ ∞∑
n=1

Xn(ξ)λn

(
bn
1 sin(

√
λnt) + bn

2 cos(
√

λnt)
)]

dξ, (1.47)

since (1.35) is absolutely and uniformly convergent on ]0, l[ and in view of
(1.46) and Xn(x2) ∈ C([0, l]) we conclude that the corresponding integral
in (1.47) is absolutely convergent on ]0, l[. Similarly, we can prove the
convergence of the series (1.432), (1.433), (1.434), on ]0, l[ and (1.44i) (i =
= 1, 2) on [0, l]. ¤

Thus, (1.30) is the solution of the Problem 8 in the case q(x2, t) ≡ 0.

Now, let us consider Problem 8 when q(x2, t) 6≡ 0, ϕi = 0, i = 1, 2, and
let q√

g
(·, t) ∈ L2(0, l). Then q(x2, t) can be represented as convergent series

in L2(0, l):

q(x2, t)√
g(x2)

=
∞∑

n=1

(
q(x2, t)√

g(x2)
, Yn

)
Yn =

∞∑
n=1

(q, Xn)Xn
√

g,
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hence,

q(x2, t) =
∞∑

n=1

g(x2)Xn(x2)qn(t), qn(t) :=

l∫

0

q(x2, t)Xn(x2)dx2.

Further, we look for the solution in the form

w(x2, t) =
∞∑

n=1

wn(x2, t),

where wn(x2, t) is a solution of the Problem 8 with q(x2, t) replaced by
g(x2)Xn(x2)qn(t). Using the method of separation of variables, we get

wn(x2, t) = Xn(x2)T1n(t),

where

T ′′
1n(t) + λnT1n(t) = qn(t)

and Xn(x2) satisfies (1.15).
Therefore, w(x2, t) can be expressed as follows

w(x2, t) =
∞∑

n=1

1√
λn

Xn

t∫

0

sin(
√

λn(t− τ))qn(τ)dτ. (1.48)

Now, similarly to the proofs of Theorems 1.8 and 1.9, if the following
conditions are fulfilled

τ(x2, t) :=
1√

g(x2)

(
D(x2)

(
q(x2, t)

g(x2)

)

,x2x2

)

,x2x2

∈ C[0, l],

τ√
g
(0, t) = −D(x2)

(
τ(x2, t)√

g(x2)

)

,x2x2

∣∣∣∣∣∣
x2=0+

=

(
τ(x2, t)√

g(x2)

)

,x2

∣∣∣∣∣∣
x2=l

(1.49)

=


−D(x2)

(
τ(x2, t)√

g(x2)

)

,x2x2




,x2

∣∣∣∣∣∣
x2=l−

= 0,

(for this, e.g., it is sufficient that q(j)(·, t) = O(x
γj

2 ) x2 → 0+, γj > 7−j− 2α
3

,

q(j)(·, t) = O((l − x2)
δj) x2 → l−, γj > 7 − j − 2β

3
, j = 0, 8) we have the

absolute and uniform convergence of the series (1.48) and

(D(x2)w,x2x2(x2, t))
(i)
x2

=
∞∑

n=1

(D(x2)X
′′
n)(i)(x2)T1n(t), i = 0, 1,
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on [0, l], and the absolute and uniform convergence of the series

w(i)
x2

(x2, t) =
∞∑

n=1

X(i)
n (x2)T1n(t), i = 1, ..., 4,

w
(i)
t (x2, t) =

∞∑
n=1

Xn(x2)T
(i)
1n (t), i = 1, 2,

on ]0, l[.
Remark 1.11. Solution of the Problem 8 in case q(x2, t), ϕi 6≡ 0 can

be expressed as follows

w(x2, t) =
∞∑

n=1

wn(x2, t),

where
wn(x2, t) = Xn(x2)(T1n(t) + Tn(t)).

Remark 1.12. Similarly, we can solve the initial boundary value prob-
lems which correspond to the Problems 1-7, 9, 10.

We can avoid the restrictions (1.49) on q(x2, t) if we consider harmonic
vibration. In this case

w(x2, t) = eiω tw0(x2), q(x2, t) = eiω tq0(x2),

where ω = const is an oscillation frequency, q0(x2) ∈ C([0, l]) is a given
function. Now, for w0(x2) from (1.1) we get the following equation

(D(x2)w
′′
0(x2))

′′
= q0(x2) + 2ω2ρh(x2)w0(x2),

which we solve under one of the following boundary conditions (BCs)

1. w0(0) = w′
0(0) = w0(l) = w′

0(l) = 0, 0 ≤ α, β < 1,

w0(x2) ∈ C4(]0, l[) ∩ C1([0, l]).

2. w0(0) = w′
0(0) = w′

0(l) = Q2(l) = 0, 0 ≤ α, β < 1,

w0(x2) ∈ C4(]0, l[) ∩ C1([0, l]).

3. w0(0) = w′
0(0) = w0(l) = M2(l) = 0, 0 ≤ α < 1, 0 ≤ β < 2,

w0(x2) ∈ C4(]0, l[) ∩ C1([0, l[) ∩ C([0, l]).

4. w0(0) = w′
0(0) = M2(l) = Q2(l) = 0, 0 ≤ α < 1, β ≥ 0,

w0(x2) ∈ C4(]0, l[) ∩ C1([0, l[).

5. w′
0(0) = Q2(0) = w0(l) = w′

0(l) = 0, 0 ≤ α β < 1,
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w0(x2) ∈ C4(]0, l[) ∩ C1([0, l]).

6. w′
0(0) = Q2(0) = w0(l) = M2(l) = 0, 0 ≤ α < 1, 0 ≤ β < 2,

w0(x2) ∈ C4(]0, l[) ∩ C1([0, l[) ∩ C([0, l]).

7. w0(0) = M2(0) = w0(l) = w′
0(l) = 0, 0 ≤ α < 2, 0 ≤ β < 1,

w0(x2) ∈ C4(]0, l[) ∩ C1(]0, l]) ∩ C([0, l]).

8. w0(0) = M2(0) = w′
0(l) = Q2(l) = 0, 0 ≤ α < 2, 0 ≤ β < 1,

w0(x2) ∈ C4(]0, l[) ∩ C([0, l]) ∩ C1(]0, l]).

9. w0(0) = M2(0) = w0(l) = M2(l) = 0, 0 ≤ α, β < 2,

w0(x2) ∈ C4(]0, l[) ∩ C([0, l]).

10. M2(0) = Q2(0) = w0(l) = w′
2(l) = 0, α ≥ 0, 0 ≤ β < 1,

w0(x2) ∈ C4(]0, l[) ∩ C1(]0, l]).

Here, by M2(x2), Q2(x2) are denoted the following expressions

M2(x2) := −D(x2)w0,22 (x2), Q2(x2) := M2,2(x2),

The above BVPs are equivalent to the integral equation

w0(x2)− ω2

l∫

0

K(x2, ξ) g(ξ) w0(ξ)dξ = F (x2), (1.50)

where

F (x2) :=

l∫

0

K(x2, ξ) q0(ξ)dξ,

and K(x2, ξ) is given by the expression (1.17), K3(x2, ξ) is different for the
different BCs, e.g., for the BCs 1., 2., 8., 9., and 10. it has the form (1.22),
(1.23), (1.18), (1.23), (1.24), respectively.

Introducing a new unknown function

w1(x2) = w0(x2)
√

g(x2)

we can reduce (1.50) to the following integral equation

w1(x2)− ω2

l∫

0

R(x2, ξ) w1(ξ)dξ = F (x2)
√

g(x2) (1.51)
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with R(x2, ξ) given by (1.20). If ω2 6= λn, the unique solution of (1.51) can
be written as follows (see, e.g., [10], Theorem XVIII, p.140)

w1(x2) = F (x2)
√

g(x2)

+ω2

∞∑
n=1


 1

λn − ω2

l∫

0

F (ξ)
√

g(x2) Yn(ξ)dξ


 Yn(x2),(1.52)

where the series in the right hand side of (1.52) is absolutely and uniformly
convergent on [0, l].
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