ISAAC Conference, 23-27 April, 2007, Tbilisi, Georgia Dedicated to the Centenary of I.Vekua

ON THE APPLICATION OF RITZ'S EXTENDED METHOD TO APPROXIMATE SOLUTION OF INVERSE ND COMPUTING TOMOGRAPHY PROBLEMS

Ugulava D.,Zarnadze D.

Niko Muskhelishvili Institute of Computing Mathematics

Let H be a Hilbert space with the inner product (\cdot, \cdot) , and let $K: H \to K$ H be a compact, selfadjoint operator having positive eigenvalues and everywhere dense range. We continue the study of the ill-posed problem Ku = finitiated in [1]. It is assumed that the existence and uniqueness conditions are satisfied, but the stability is not. This means that the inverse operator is not continuous. Similarly A.N.Tikhonov [2], the equation Ku = f is transfered in the Frechet space $D(K^{-\infty}) = \bigcap_{n=1}^{\infty} D(K^{-n+1})$, the Hilbert norms of which are given by the equalities $||f||_n^2 = ||f||^2 + ||K^{-1}f||^2 + \dots + ||K^{-n+1}f||^2$, where $\|\cdot\|^2 = (\cdot, \cdot)$. It is well-known, that the space $D(K^{-\infty})$ is isomorphic to the subspace of the Frechet space H^N . The operator $K^{-\infty}$ is defined by the equality $K^{-\infty}(x) = \{K^{-1}x, \ldots, K^{-n}x, \ldots\}$. Let us denote the operator $(K^{-\infty})^{-1}$ by K_{∞} . This operator maps the Frechet space $D(K^{-\infty})$ isomorphically onto and therefore the equation $K_{\infty}u = f$ has in the space $D(K^{-\infty})$ a unique and stable solution. More exactly, as a set, the Frechet space $D(K^{-\infty})$ is a part of the Hilbert space H and the operator K_{∞} is selfadjoint operator on Frechet space $D(K^{-\infty})$ [3]. For approximate solution of this operator equation Ritz's extended method is applied [3].

These results are also applied to operators, mapping a separable Hilbert space into the same space and admitting a singular decomposition. In particular, the well-known Radon transformation admits the singular decomposition and therefore the application of Ritz's extended method to the computing tomography problem is possible.