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Let H be a Hilbert space with the inner product (·, ·), and let K : H →
H be a compact, selfadjoint operator having positive eigenvalues and every-
where dense range. We continue the study of the ill-posed problem Ku = f
initiated in [1]. It is assumed that the existence and uniqueness conditions
are satisfied, but the stability is not. This means that the inverse operator is
not continuous. Similarly A.N.Tikhonov [2], the equation Ku = f is trans-
fered in the Frechet space D(K−∞) =

⋂∞
n=1 D(K−n+1), the Hilbert norms of

which are given by the equalities ‖f‖2
n = ‖f‖2+‖K−1f‖2+· · ·+‖K−n+1f‖2,

where ‖ · ‖2 = (·, ·). It is well-known, that the space D(K−∞) is isomorphic
to the subspace of the Frechet space HN . The operator K−∞ is defined
by the equality K−∞(x) = {K−1x, . . . , K−nx, . . .}. Let us denote the op-
erator (K−∞)−1 by K∞. This operator maps the Frechet space D(K−∞)
isomorphically onto and therefore the equation K∞u = f has in the space
D(K−∞) a unique and stable solution. More exactly, as a set, the Frechet
space D(K−∞) is a part of the Hilbert space H and the operator K∞ is self-
adjoint operator on Frechet space D(K−∞) [3]. For approximate solution
of this operator equation Ritz’s extended method is applied [3].

These results are also applied to operators, mapping a separable Hilbert
space into the same space and admitting a singular decomposition. In par-
ticular, the well-known Radon transformation admits the singular decom-
position and therefore the application of Ritz’s extended method to the
computing tomography problem is possible.


