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Preface

The present Lecture Notes contains extended material mainly based on the lec-
tures presented at the Workshop on Mathematical Methods for Elastic Cusped
Plates and Bars (Tbilisi, September 27–28, 2001).

The work consists of the list of notation, introduction, three chapters and refer-
ences.

The Introduction contains a survey of results related to the subject and a brief
presentation of results of the present work.

In Chapter 1 some auxiliary materials are given which are used in Chapters 2
and 3.

Chapter 2 deals with the problems of cylindrical bending and bending vibration
of a cusped plate. Bending problems of cusped plates fall outside of the limits of
classical bending theory. The aim of this chapter is to study the problem of well-
possedness of boundary value problems and initial boundary value problems in case
of cylindrical bending of shells with two cusped edges and in some cases to solve
these problems in explicit forms.

Chapter 3 is dedicated to the interface problem of the interaction of a plate with
two cusped edges and a flow of an incompressible fluid.

Acknowledgments. The author is very grateful to Prof. G. Jaiani, Prof.
S. Kharibegashvili, and Prof. D. Natroshvili for their useful discussions.
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List of Notations

N := {1, 2, · · ·},
N := {1, 2, · · ·},
Rn n−dimensional Euclidean space (n ∈ N)
Ω := {(x1, x2, x3) : −∞ < x1 < ∞, 0 < x2 < l, x3 = 0} - the projection of a plate
on the plane x3 = 0
I := {[0, l]× {0}}
Ωf := {x1, x2, x3 : x1 = 0, x2 := (x2, x3) ∈ R2\I} - space which occupies the fluid

2h(x) :=
(+)

h (x)−
(−)

h (x) - thickness of a plate at point x
ω - oscillation frequency
D(x2) - flexural rigidity
ρ - density of a plate
w(x2, t) - deflection of a plate
q(x2, t) - lateral load
M2(x2, t) - bending moment
Q2(x2, t) - intersecting force
E - Young’s modulus
σ - Poisson’s ratio
F := (F2, F3) - plane volume forces
δij - Kroneker Delta
ρf - density of a fluid
u := (u1, u2, u3) - displacement vector of a fluid
v := (v1, v2, v3) - velocity vector of a fluid
p - pressure of a fluid

p(x2,
(+)

h (x2), t) (p(x2,
(−)

h (x2), t)) - the value of the pressure on the upper (lower)
surface of the plate
v3∞(t), p∞(t) - values of the velocity vector component and pressure at infinity

σf
jk = −pδjk + µ

(
∂vj

∂xk

+
∂vk

∂xj

)
- stress tensor of a fluid

ν, µ - coefficients of viscosity

∆ :=
∂2

∂x2
2

+
∂2

∂x2
3

w,t :=
∂w

∂t
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w,i :=
∂w

∂xi

, i = 1, 2, 3

Cn(]0, l[) (Cn([0, l])) - n-times continuously differentiable functions in ]0, l[ (on [0, l])
Cn(Ωf ) - n-times continuously differentiable functions in Ωf with respect to x2 and
x3

C(t > 0) - continuous functions with respect to t for t > 0
H([0, l]) - class of Hölder continuous functions
L2([0, l]) - class of square integrable functions on [0, l]



Introduction

In 1955 I.Vekua [95]-[97] raised the problem of investigation of cusped plates, i.e.
such ones whose thickness on the part of the plate boundary or on the whole one
vanishes. The problem mathematically leads to the question of setting and solving of
boundary value problems for even order equations and systems of elliptic type with
the order degeneration in the statical case and of initial boundary value problems
for even order equations and systems of hyperbolic type with the order degenera-
tion in the dynamical case (for corresponding investigations see the survey [35] and
also I. Vekua’s comments in [97, p.86]). There exists a wide literature devoted to
the theory of degenerate and mixed type equations (see, e.g., [5], [30]), which was
developed intensively in the period from early 50-ies till early 70-ies but it could not
cover the above equations and systems because of distinct peculiarities of the latter
caused by the geometry of the mechanical problem.

The first work concerning classical bending of cusped elastic plates was done by
E. Makhover [67], [68] and S. Mikhlin [71].

In 1957 E. Makhover [67], [68], by using the results of S. Mikhlin [71], had
considered such a cusped plate with the stiffness D(x1, x2) satisfying

D1x
κ1
2 ≤ D(x1, x2) ≤ D2x

κ1
2 , D1, D2, κ1 = const > 0, (1)

within the framework of classical bending theory. She particularly studied in which
cases the deflection (κ1 < 2) or its normal derivative (κ1 < 1) on the cusped edge
of the plate can be given. In 1971, A. Khvoles [62] represented the forth order Airy
stress function operator as the product of two second order operators in the case
when the plate thickness 2h is given by

2h = h0x
κ2
2 , h0, κ2 = const > 0, x2 ≥ 0, (2)

and investigated the general representation of corresponding solutions. Since 1972
the work of G. Jaiani in [36]–[51] is also devoted to these problems. By using more
natural spaces than E. Makhover, G. Jaiani in [48] has analyzed in which cases
the cusped edge can be freed (κ1 > 0) or freely supported (κ1 < 2). Moreover,
he established well–posedness and the correct formulation of all admissible princi-
pal boundary value problems (BVPs). In [41], [42], [47] he also investigated the
tension–compression problem of cusped plates, based on I. Vekua’s model of shallow
prismatic shells. G. Jaiani’s results can be summarized as follows.
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INTRODACTION 7

Let n be the inward normal of the plate boundary. In the case of the tension-
compression problem on the cusped edge, where

0 ≤ ∂h

∂n
< +∞(in the case (2) this means κ2 ≥ 1) ,

which will be called a sharp cusped edge, one can not prescribe the displacement
vector; while on the cusped edge, where

∂h

∂n
= +∞(in the case (2) this means κ2 < 1) ,

called a blunt cusped edge, the displacement vector can be prescribed. In the case
of the classical bending problem with a cusped edge, where

∂h

∂n
= O(dκ−1)as d → 0, κ = const > 0 (3)

and where d is the distance between an interior reference point of the plate projection
and the cusped edge, the edge can not be fixed if κ ≥ 1

3
, but it can be fixed if

0 < κ < 1
3
; it can not be freely supported if κ ≥ 2

3
, and it can be freely supported

if 0 < κ < 2
3
; it can be free or arbitrarily loaded by a shear force and a bending

moment if κ > 0. Note that in the case (2), the condition (3) implies that d2 = x2

and κ = κ2 = κ1

3
.

For the specific cases of cusped cylindrical and conical shell bending, the above
results remain valid as it has been shown by G. Tsiskarishvili and N. Khomasuridse
[89]-[92]. These results also remain valid in the case of classical bending of or-
thotropic cusped plates (see [51]). However, for general cusped shells and also for
general anisotropic cusped plates, the corresponding analysis is done.

The problems involving cusped plates lead to correct mathematical formulations
of BVPs for even order elliptic equations and systems whose orders degenerate at
the boundary (see [47], [52]-[53]).

Applying the functional–analytic method developed by G. Fichera in [28], [29]
(see also [21], [22]), in [47] the particular case of Vekua’s system for general cusped
plates has been investigated.

The classical bending of plates with the stiffness (1) in energetic and in weighted
Sobolev spaces has been studied by G. Jaiani in [48], [50]. In the energetic space
some restrictions on the lateral load has been relaxed by G. Devdariani in [20].
G. Tsiskarishvili [90] characterized completely the classical axial symmetric bending
of specific circular cusped plates without or with a hole.

In the case (2), the basic BVPs have been explicitly solved in [43] and [53] with
the help of singular solutions depending only on the polar angle.

If we consider the cylindrical bending of a plate, in particular of a cusped one,
with rectangular projection a ≤ x1 ≤ b, 0 ≤ x2 ≤ `, then we actually get the
corresponding results also for cusped beams (see [49], [43], [93], [73]-[77], [12], [13],
[54], [55]).



8 INTRODACTION

In 1999-2001 two contact problems were considered by N. Shavlakadze [86], [87],
namely, the contact problem for an unbounded elastic medium composed of two
half-planes x1 > 0 and x1 < 0 having different elastic constants and strengthened
on the semi-axis x2 > 0 by an inclusion of variable thickness (cusped beam) with
constant Young’s modulus and Poisson’s ratio. It was assumed that the plate is
subjected to plane deformation, the flexural rigidity D had the form

D = D0x
κ
2 , D0, κ = const > 0,

and the cusped end x2 = 0 of the beam was free.
At the same time (in the fifties of the twentieth century), I.Vekua [95] introduced

a new mathematical model for elastic prismatic shells (i.e., of plates of variable
thickness) which was based on expansions of the three–dimensional displacement
vector fields and the strain and stress tensors in linear elasticity into orthogonal
Fourier-Legendre series with respect to the variable plate thickness. By taking
only the first N + 1 terms of the expansions, he introduced the so–called N–th
approximation. Each of these approximations for N = 0, 1, ... can be considered as
an independent mathematical model of plates. In particular, the approximation for
N = 1 corresponds to the classical Kirchhoff plate model. In the sixties, I. Vekua
[96] developed the analogous mathematical model for thin shallow shells. All his
results concerning plates and shells are collected in his monograph [97]. Works
of I. Babuška, D. Gordeziani, V. Guliaev, I. Khoma, A. Khvoles, T. Meunargia,
C. Schwab, T. Vashakmadze, V. Zhgenti, and others (see [2], [31], [33], [61], [62],
[69], [84], [85], [94], [100] and the references therein) are devoted to further analysis
of I.Vekua’s models (rigorous estimation of the modeling error, numerical solutions,
etc.) and their generalizations (to non-shallow shells, to the anisotropic case, etc.).

In [56] variational hierarchical two–dimensional models for cusped elastic plates
are constructed. With the help of variational methods, existence and uniqueness the-
orems for the corresponding two–dimensional boundary value problems are proved
in appropriate weighted functional spaces. By means of the solutions of these two–
dimensional boundary value problems, a sequence of approximate solutions in the
corresponding three-dimensional region is constructed. This sequence converges in
the Sobolev space H1 to the solution of the original three-dimensional boundary
value problem. The systems of differential equations corresponding to the two-
dimensional variational hierarchical models are explicitly given for a general orthog-
onal system and for Legendre polynomials, in particular.

Recently N.Chinchaladze, R. Gilbert, G. Jaiani, S. Kharibegashvili and D. Na-
troshvili have studied the well posedness of boundary value problems for elastic
cusped prismatic shells in the Nth approximation of I. Vekua’s hierarchical models
under (all reasonable) boundary conditions at the cusped edge and given displace-
ments at the non-cusped edge and stresses at the upper and lower faces of the shell
[19].

For the last decades the direct and inverse problems connected with the inter-
action between difference vector fields have received much attention in the mathe-
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matical and engineering scientific literature and have been intensively investigated.
They arise in many physical and mechanical models describing the interaction of
two different media where the whole process is characterized by a vector-function of
dimension k in one medium and by a vector-function of dimension n in the other (for
example, fluid-structure interaction where a streamlined body is an elastic obstacle,
scattering of acoustic and electromagnetic waves by an elastic obstacle, interaction
between an elastic body and seismic waves, etc.).

A lot of authors have considered and studied in detail the direct problems of
interaction between an elastic isotropic body occupying a bounded region Ω with a
three-dimensional elastic vector field to be defined, and some isotropic medium (say
fluid) occupying the unbounded exterior region, the compliment of Ω with respect
to the whole space, where a scalar field is to be defined. The time-harmonic depen-
dent unknown vector and scalar fields are coupled by some kinematic and dynamic
conditions on the boundary ∂Ω, which lead to various type of non-classical interface
problems of steady oscillations for a piecewise homogeneous isotropic medium. An
exhaustive information in this direction concerning theoretical and numerical results
can be found in [4], [6], [7], [24], [25], [59], [60], [32], [34] [26], [27], [78], [84].

Some particular cases where the elastic body under consideration is anisotropic
have been treated in [57], [58], [79].

Various authors dedicated their works to the solid-fluid (see e.g. [79], [83], [98]-
[99], [80]-[82], [9]-[11]), [14]-[18] contact problems. The present work is devoted to
the interaction problems when profile of an elastic part is cusped on some part
boundary.

Bending problems of cusped plates fall outside of the limits of classical bending
theory. The aim of the dissertation is to study the problem of well-possedness of
boundary value problems and initial boundary value problems in case of cylindrical
bending of shells with two cusped edges and in some cases to solve these problems
in explicit forms.

The work consists of the list of notations, introduction, three chapters and bib-
liography.

The Introduction contains a survey of results related to the subject and a brief
presentation of results of the present work.

In Chapter 1 some auxiliary materials are given used in Chapters 2 and 3.
Chapter 2 deals with the problems of cylindrical bending and bending vibration

of a plate.
Let us consider the plate whose projection on x3 = 0 occupies the domain Ω

Ω = {(x1, x2, x3) : −∞ < x1 < ∞, 0 < x2 < l, x3 = 0},
and where the thickness of the plate are given by the equation

2h(x2) = h0x
α/3
2 (l − x2)

β/3, h0, l, α, β = const, h0, l > 0, α, β ≥ 0.

When α2 + β2 > 0 a plate is called a cusped plate. A profile of the plate under
consideration has one of the forms shown in Figures 4-12.
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The equation of cylindrical bending of the plate has the form (see, e.g., [88])

(D(x2)w, 22 (x2)), 22 = q(x2), 0 < x2 < l, (4)

where w(x2) is a deflection of the plate, q(x2) is a load, D(x2) is a flexural rigidity

of the plate, and by w,i we denote w,i :=
∂w

∂xi

.

In general,

D(x2) :=
2Eh3(x2)

3(1− σ2)
,

where E is a Young’s modulus, σ is a Poisson’s ratio. Let E =const, σ =const, and

D(x2) = D0x
α
2 (l − x2)

β, D0 = const > 0.

In the case of cylindrical bending of an isotropic plate, the bending moment
M2(x2) and the intersection force Q2(x2) are given by the formulae (see [88])

M2(x2) := −D(x2)w,22 (x2), Q2(x2) := M2,2(x2). (5)

Section 2.1 is devoted to the investigation of properties of equation (4) and
formulation of all admissible classical bending boundary value problems (BVPs).

If q(x2) ∈ C([0, l]) then

M2(x2), Q2(x2) ∈ C([0, l]),

the behaviour of the w,2 (x2) and w(x2) when x2 → 0+ and x2 → l− depends on α
and β. As a result of the corresponding analysis we obtain that, e.g., at the point
x2 = 0 the following classical bending boundary conditions are admissible

1. w(0) = w′(0) = 0 iff(if and only if) α < 1; (6)

2. w′(0) = Q2(0) = 0 iff α < 1; (7)

3. w(0) = M2(0) = 0 iff α < 3; (8)

4. M2(0) = Q2(0) = 0 for any α. (9)

Similar conditions we have at the point x2 = l, under the same restrictions on
β. All BVPs are solved in the explicit integral forms. Using these integral represen-
tations and the difference equation corresponding to (4) by means of MATLAB we
get numerical results for the deflection, the bending moment and the intersecting
force for different materials (see Figures 13-16).

In Section 2.2 a dynamical problem is investigated for the above cusped plate.
The corresponding equation has the following form

(D(x2)w, 22 (x2, t)), 22 = q(x2, t)− 2ρh(x2)
∂2w(x2, t)

∂t2
, 0 < x2 < l, (10)

where ρ is a density of the plate.
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We solve equation (10) under the following initial conditions (IC)

w(x2, 0) = ϕ1(x2), w,t (x2, 0) = ϕ2(x2), x2 ∈ [0, l], (11)

where ϕ1(x2), ϕ1(x2) ∈ C([0, l]) are given functions.
In this case the bending moment and the intersecting force are given by the

expressions

M2(x2, t) := −D(x2)w,22 (x2, t), (12)

Q2(x2, t) := M2,2(x2, t). (13)

Since of (10) is not degenerate equation with respect to t = 0, taking into account
(6)-(9), the following initial boundary value problems (IBVPs) are admissible

Problem 11 Let 0 ≤ α < 3, 0 ≤ β < 1. Find a function w(x2, t), which satisfies
the following smoothness conditions

w(·, t) ∈ C4(]0, l[) ∩ C([0, l]) ∩ C1(]0, l]), M2(·, t) ∈ C([0, l]), Q2(·, t) ∈ C([0, l]),
w(x2, ·) ∈ C1(t ≥ 0) ∩ C2(t > 0),
w(x2, t) ∈ C(0 ≤ x2 ≤ l, t ≥ 0),

equation (10), the BCs

w(0, t) = M2(0, t) = w,2 (l, t) = Q2(l, t) = 0, t > 0,

and ICs (11), where

ϕi(x2) ∈ C4(]0, l[) ∩ C1(]0, l]) ∩ C([0, l]),

ϕi(0) = −D(x2)ϕ
′′
i (x2)|x2=0+ = ϕ′i(l)

= (−D(x2)ϕ
′′
i (x2))

′ |x2=l− = 0, i = 1, 2.

Problem 12 Let 0 ≤ α, β < 1. Find a function w(x2, t), which satisfies the follow-
ing smoothness conditions

w(·, t) ∈ C4(]0, l[) ∩ C1([0, l]),
w(x2, ·) ∈ C1(t ≥ 0) ∩ C2(t > 0), w(x2, t) ∈ C(0 ≤ x2 ≤ l, t ≥ 0),

equation (10), the boundary conditions (BCs)

w(0, t) = w,2 (0, t) = w(l, t) = w,2 (l, t) = 0, t > 0,

and ICs (11), where
ϕi(x2) ∈ C4(]0, l[) ∩ C1([0, l]),

ϕi(0) = ϕ′i(0) = ϕi(l) = ϕ′i(l) = 0, i = 1, 2.
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Problem 13 Let 0 ≤ α, β < 1. Find a function w(x2, t), which satisfies the follow-
ing smoothness conditions

w(·, t) ∈ C4(]0, l[) ∩ C1([0, l]), Q2(·, t) ∈ C([0, l]),
w(x2, ·) ∈ C1(t ≥ 0) ∩ C2(t > 0), w(x2, t) ∈ C(0 ≤ x2 ≤ l, t ≥ 0),

equation (10), the BCs

w(0, t) = w,2 (0, t) = w,2 (l, t) = Q2(l, t) = 0, t > 0,

and ICs (11), where
ϕi(x2) ∈ C4(]0, l[) ∩ C1([0, l]),

ϕi(0) = ϕ′i(0) = ϕ′i(l) = (−D(x2)ϕ
′′
i (x2))

′ |x2=l− = 0, i = 1, 2.

Problem 14 Let 0 ≤ α, < 1, 0 ≤ β < 3. Find a function w(x2, t), which satisfies
the following smoothness conditions

w(·, t) ∈ C4(]0, l[) ∩ C1([0, l[) ∩ C([0, l]), M2(·, t) ∈ C([0, l]),
w(x2, ·) ∈ C1(t ≥ 0) ∩ C2(t > 0), w(x2, t) ∈ C(0 ≤ x2 ≤ l, t ≥ 0),

equation (10), the BCs

w(0, t) = w,2 (0, t) = w(l, t) = M2(l, t) = 0, t > 0,

and ICs (11), where

ϕi(x2) ∈ C4(]0, l[) ∩ C1([0, l[) ∩ C([0, l]),

ϕi(0) = ϕ′i(0) = ϕi(l) = (−D(x2)ϕ
′′
i (x2)) |x2=l− = 0, i = 1, 2.

Problem 15 Let 0 ≤ α < 1, β ≥ 0. Find a function w(x2, t), which satisfies the
following smoothness conditions

w(·, t) ∈ C4(]0, l[) ∩ C1([0, l[), M2(·, t) ∈ C([0, l]), Q2(·, t) ∈ C([0, l]),
w(x2, ·) ∈ C1(t ≥ 0) ∩ C2(t > 0), w(x2, t) ∈ C(0 ≤ x2 < l, t ≥ 0),

equation (10), the BCs

w(0, t) = w,2 (0, t) = M2(l, t) = Q2(l, t) = 0, t > 0,

and ICs (11), where
ϕi(x2) ∈ C4(]0, l[) ∩ C1([0, l[),

ϕi(0) = ϕ′i(0) = (−D(x2)ϕ
′′
i (x2)) |x2=l−

= (−D(x2)ϕ
′′
i (x2))

′ |x2=l− = 0, i = 1, 2.
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Problem 16 Let 0 ≤ α, β < 1. Find a function w(x2, t), which satisfies the follow-
ing smoothness conditions

w(·, t) ∈ C4(]0, l[) ∩ C1([0, l]), Q2(·, t) ∈ C([0, l]),
w(x2, ·) ∈ C1(t ≥ 0) ∩ C2(t > 0), w(x2, t) ∈ C(0 ≤ x2 ≤ l, t ≥ 0),

equation (10), the BCs

w,2 (0, t) = Q2(0, t) = w(l, t) = w,2 (l, t) = 0, t > 0,

and ICs (11), where
ϕi(x2) ∈ C4(]0, l[) ∩ C1([0, l]),

ϕ′i(0) = (−D(x2)ϕ
′′
i (x2))

′ |x2=0+ = ϕi(l) = ϕ′i(l) = 0, i = 1, 2.

Problem 17 Let 0 ≤ α < 1, 0 ≤ β < 3. Find a function w(x2, t), which satisfies
the following smoothness conditions

w(·, t) ∈ C4(]0, l[) ∩ C1([0, l[) ∩ C([0, l]), M2(·, t) ∈ C([0, l]), Q2(·, t) ∈ C([0, l]),
w(x2, ·) ∈ C1(t ≥ 0) ∩ C2(t > 0), w(x2, t) ∈ C(0 ≤ x2 ≤ l, t ≥ 0),

equation (10), the BCs

w,2 (0, t) = Q2(0, t) = w(l, t) = M2(l, t) = 0, t > 0,

and ICs (11), where

ϕi(x2) ∈ C4(]0, l[) ∩ C1([0, l[) ∩ C([0, l]),

ϕ′i(0) = (−D(x2)ϕ
′′
i (x2))

′ |x2=0+ = ϕi(l)

= (−D(x2)ϕ
′′
i (x2)) |x2=l− = 0, i = 1, 2.

Problem 18 Let 0 ≤ α < 3, 0 ≤ β < 1. Find a function w(x2, t), which satisfies
the following smoothness conditions

w(·, t) ∈ C4(]0, l[) ∩ C1(]0, l]) ∩ C([0, l]), M2(·, t) ∈ C([0, l]), Q2(·, t) ∈ C([0, l]),
w(x2, ·) ∈ C1(t ≥ 0) ∩ C2(t > 0), w(x2, t) ∈ C(0 ≤ x2 ≤ l, t ≥ 0),

equation (10), the BCs

w(0, t) = M2(0, t) = w(l, t) = w,2 (l, t) = 0, t > 0,

and ICs (11), where

ϕi(x2) ∈ C4(]0, l[) ∩ C1(]0, l]) ∩ C([0, l]),

ϕi(0) = (−D(x2)ϕ
′′
i (x2)) |x2=0+ = ϕi(l) = ϕ′i(l) = 0, i = 1, 2.
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Problem 19 Let 0 ≤ α, β < 3. Find a function w(x2, t), which the satisfies follow-
ing smoothness conditions

w(·, t) ∈ C4(]0, l[) ∩ C([0, l]), M2(·, t) ∈ C([0, l]),
w(x2, ·) ∈ C1(t ≥ 0) ∩ C2(t > 0), w(x2, t) ∈ C(0 ≤ x2 ≤ l, t ≥ 0),

equation (10), the BCs

w(0, t) = M2(0, t) = w(l, t) = M2(l, t) = 0, t > 0,

and ICs (11), where
ϕi(x2) ∈ C4(]0, l[) ∩ C([0, l]),

ϕi(0) = (−D(x2)ϕ
′′
i (x2)) |x2=0+ = ϕi(l)

= (−D(x2)ϕ
′′
i (x2)) |x2=l− = 0, i = 1, 2.

Problem 20 Let α ≥ 0, 0 < β < 1. Find a function w(x2, t), which satisfies the
following smoothness conditions

w(·, t) ∈ C4(]0, l[) ∩ C1(]0, l]), M2(·, t) ∈ C([0, l]), Q2(·, t) ∈ C([0, l]),
w(x2, ·) ∈ C1(t ≥ 0) ∩ C2(t > 0), w(x2, t) ∈ C(0 < x2 ≤ l, t ≥ 0),

equation (10), the BCs

M2(0, t) = Q2(0, t) = w(l, t) = w,2 (l, t) = 0, t > 0,

and ICs (11), where
ϕi(x2) ∈ C4(]0, l[) ∩ C1(]0, l]),

(−D(x2)ϕ
′′
i (x2)) = (−D(x2)ϕ

′′
i (x2))

′ |x2=0+

= ϕi(l) = ϕ′i(l) = 0, i = 1, 2.

Let q ≡ 0. Using the Fourier method, we look for w(x2, t) in the following form

w(x2, t) = X(x2)T (t),

where T (t) and X(x2) are satisfying the following equations

T ′′(t) + λT (t) = 0,

and

X(x2) = λ

l∫

0

g(ξ)K(x2, ξ)X(ξ)dξ, g(x2) := 2ρh(x2), (14)

where K(x2, ξ) ∈ C([0, l] × [0, l]) is constructed explicitly and it depends on the
coefficients of equation (10) and the type of boundary conditions in Problems 11-20.

We denote by λn and Xn the corresponding eigenvalues and eigenfunctions of
(14).

The following propositions hold.
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Proposition 2.2 K(x2, ξ) is symmetric with respect to x2 and ξ.

Proposition 2.3 Number of eigenvalues λn of (14) is not finite.

Proposition 2.4 All λn are positive.

The solution of equation (10) under the initial conditions (11) and one of the
boundary conditions (see Problems 11-20) can be written as follows [15]

w(x2, t) =
∞∑

n=1

Xn(x2)
(
bn
1 sin(

√
λnt) + bn

2 cos(
√

λnt)
)

, (15)

where

bn
1 =

1√
λn

l∫

0

g(x2)Xn(x2)ϕ2(x2)dx2, bn
2 =

l∫

0

g(x2)Xn(x2)ϕ1(x2)dx2. (16)

Let us consider one of the IBVP. For the sake of simplicity we consider Problem
11.

Further, if we suppose that ψi(x2) :=
(Dϕ′′i )′′√

g(x2)
∈ C([0, l]) (i = 1, 2), we can prove

the following theorems [15]

Theorem 2.5 The series (15) converges absolutely and uniformly on [0, l]. More-
over, the series

w,t (x2, t) =
∞∑

n=1

Xn(x2)
√

λn

(
bn
1 cos(

√
λnt)− bn

2 sin(
√

λnt)
)

and

w,tt (x2, t) = −
∞∑

n=1

Xn(x2)λn

(
bn
1 sin(

√
λnt) + bn

2 cos(
√

λnt)
)

converge absolutely and uniformly on any [a, b] ⊂]0, l[ if the functions

Ψi(x2) :=
ψi(x2)√

g(x2)
fori = 1, 2satisfyBCsgiveninProblem11 (17)

and the functions

χi(x2)
√

g(x2) := (D(x2)Ψ
′′
i (x2))

′′
, i = 1, 2, are integrable on ]0, l[ (18)

(For this, e.g., it is sufficient that dj

dxj
2

ϕi(x2) = O(x
γij

2 ), γij = const > 7 − j − 5α
3
,

x2 → 0+, dj

dxj
2

ϕi(x2) = O((l − x2)
δij), δij = const > 7 − j − 5β

3
, x2 → l−, i = 1, 2;

j = 2, 8).
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Theorem 2.6 The series

∂i

∂xi
2

w(x2, t) =
∞∑

n=1

di

dxi
2

Xn(x2)
(
bn
1 sin(

√
λnt) + bn

2 cos(
√

λnt)
)

, i = 1, 2, 3, 4,

are convergent absolutely and uniformly on any [a, b] ⊂]0, l[, while the series

∂i−1

∂xi−1
2

(D(x2)w,x2x2 (x2, t)) =
∞∑

n=1

di−1

dxi−1
2

(D(x2)X
′′
n(x2))

(
bn
1 sin(

√
λnt)+

+bn
2 cos(

√
λnt)

)
, i = 1, 2

are convergent absolutely and uniformly on [0, l].

Thus, (15) is the solution of the Problem 11 for q(x2, t) ≡ 0.
Let us consider the case when q(x2, t) 6≡ 0, ϕi = 0, and let q√

g
(·, t) ∈ L2(0, l).

Then q(x2, t) can be represented as a convergent series in L2(0, l):

q(x2, t) =
∞∑

n=1

g(x2)Xn(x2)qn(t), qn(t) :=

l∫

0

q(x2, t)Xn(x2)dx2.

Further, we look for the solution in the form w(x2, t) =
∞∑

n=1

wn(x2, t), where

wn(x2, t) is a solution of the equation (10) under the homogeneous initial conditions
and under the boundary conditions given in Problem 11 with q(x2, t) replaced by
g(x2)Xn(x2)qn(t). Now, using the method of separation of variables we can write

wn(x2, t) = Xn(x2)T1n(t),

where
T ′′

1n(t) + λnT1n(t) = qn(t).

Therefore, w(x2, t) can be expressed as follows

w(x2, t) =
∞∑

n=1

1√
λn

Xn

t∫

0

sin(
√

λn(t− τ))qn(τ)dτ. (19)

Similarly to Theorems 2.5 and 2.6, if the following conditions are fulfilled

τ(x2, t) :=
1√

g(x2)

(
D(x2)

(
q(x2, t)

g(x2)

)

,x2x2

)

,x2x2

∈ C[0, l],

and
τ(x2, t)√

g(x2)
satisfies the BCs given in Problem 11

(20)
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(For this, e.g., it is sufficient that ∂j

∂xj
2

q(x2, t) = O(x
γj

2 ) x2 → 0+, γj > 7 − j − 2α
3

,

∂j

∂xj
2

q(x2, t) = O((l − x2)
δj) x2 → l−, γj > 7 − j − 2β

3
, j = 0, 8) we get the absolute

and uniform convergence of the series (19) and

∂i

∂xi
2

(D(x2)w,x2x2(x2, t)) =
∞∑

n=1

di

dxi
2

(D(x2)X
′′
n)T1n(t), i = 0, 1,

on [0, l], and absolute and uniform convergence of

∂i

∂xi
2

wx2(x2, t) =
∞∑

n=1

di

dxi
2

Xn(x2)T1n(t), i = 1, ..., 4,

∂i

∂ti
w(x2, t) =

∞∑
n=1

Xn(x2)
di

dti
T1n(t), i = 1, 2,

on any [a, b] ⊂]0, l[.
Now, let q(x2, t) 6≡ 0, ϕi(x2) 6≡ 0. If conditions (20), (17), and (18) are satisfied

then the solution of Problem 11 can be expressed as follows

w(x2, t) =
∞∑

n=1

wn(x2, t),

where
wn(x2, t) = Xn(x2)(T1n(t) + Tn(t)),

w1(x2, t) := XnT1n(t) is given by the formula (19) and w2(x2, t) := XnTn(t) is given
by the formula (15).

Remark 1 Similarly are solved IBVPs corresponding to the Problems 12-20.

We can avoid the restrictions (20) if we consider harmonic vibration. In this case

w(x2, t) = eiω tw0(x2), q(x2, t) = eiω tq0(x2),

where ω = const is an oscillation frequency, q0(x2) ∈ C([0, l]) is a given function.
E.g., in the case of Problem 11, for w0(x2) we get the following problem

(D(x2)w
′′
0(x2))

′′
= q0(x2) + 2ω2ρh(x2)w0(x2), (21)

w0(0) = M2(0) = w′(l) = Q2(l) = 0, 0 ≤ α < 2, 0 ≤ β < 1,

w0(x2) ∈ C4(]0, l[) ∩ C([0, l]) ∩ C1(]0, l]).

This problem is equivalent to the integral equation

w0(x2)− ω2

l∫

0

K(x2, ξ) g(ξ) w0(ξ)dξ = F (x2), (22)
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where

F (x2) :=

l∫

0

K(x2, ξ) q0(ξ)dξ,

K(x2, ξ) has the same form as in integral equation (14).
If ω2 6= λn, the unique solution of (22) can be written as follows (see, e.g., [66])

w1(x2) = F (x2)
√

g(x2)

+ ω2

∞∑
n=1


 1

λn − ω2

l∫

0

F (ξ)
√

g(x2) Yn(ξ)dξ


 Yn(x2), (23)

It is shown that the series in the right hand side of (23) is absolutely and uniformly
convergent on [0, l], because of q0 ∈ C([0, l]).

Using the difference equation corresponding to (21), by means of MATLAB we
get numerical and graphical results for harmonic vibration problems.

Chapter 3 is dedicated to the interface problem of the interaction of a plate with
two cusped edges and a flow of a fluid.

We assume that the flow is independent of x1, parallel to the plane 0x2x3, i.e.
v1 ≡ 0, and generates a bending of the plate. Let at infinity, for pressure we have

p(x2, x3, t) → p∞(t), when |x| → ∞, (24)

and let for the velocity components conditions at infinity be either

v2(x2, x3, t) = O(1), v3(x2, x3, t) → v3∞(t), (25)

or
vj(x2, x3, t) = O(1), j = 2, 3, (26)

where v := (v2, v3) is a velocity vector of the fluid, p(x2, x3, t) is a pressure, and
v3∞(t), p∞(t) are given functions.

Let us introduce the following notations

I := {[0, l]× 0},
Ωf :=

{
x1, x2, x3 : x1 = 0, x := (x2, x3) ∈ R2\I}

.

If the middle plane of the plate lies in the plane 0x1x2 and the flow of moving
fluid involves bending of the plate then transmission conditions could have the form:

σf
N3

(
x1, x2,

(+)

h (x1, x2), t

)
− σf

N3

(
x1, x2,

(−)

h (x1, x2), t

)
= q(x1, x2, t), (27)

v3

(
x1 −

(+)

h (x1, x2)w,1 (x1, x2, t), x2 −
(+)

h (x1, x2)w,2 (x1, x2, t),
(+)

h (x1, x2)
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+w(x1, x2, t), t

)
= v3

(
x1 −

(−)

h (x1, x2)w,1 (x1, x2, t), x2

−
(−)

h (x1, x2)w,2 (x1, x2, t),
(−)

h (x1, x2) + w(x1, x2, t), t

)
=

∂w(x1, x2, t)

∂t
,

(28)

(the first of the last pair of equalities is valid since deflection of plate w is independent
of x3).

After corresponding analysis we arrive at the conclusion that, for the normal
component of the velocity vector and the pressure in the case of an ideal fluid, we
have the following transmission conditions (compare with [65], [99], [83])

v3(x2, 0, t) =
∂w(x2, t)

∂t
, x2 ∈]0, l[, t ≥ 0. (29)

− p(x2,
(−)

h (x2), t) cos(−→n (x2,
(−)

h (x2)), x3)

− p(x2,
(+)

h (x2), t) cos(−→n (x2,
(+)

h (x2)), x3) = q(x2, t), x2 ∈]0, l[.
(30)

In the case of a viscous fluid we add to (29) the transmission condition for the
tangential component of the velocity vector

v2(x2, 0, t) = 0, x2 ∈]0, l[, t ≥ 0. (31)

In Section 3.1 the solution of the interaction problem in the case of an ideal fluid
is given [2].

For the potential motion of the flow there exists a complex function Φ = −ψ+iϕ
such that

∂ϕ(x2, x3, t)

∂x2

=
∂ψ(x2, x3, t)

∂x3

= v2(x2, x3, t),

∂ϕ(x2, x3, t)

∂x3

= −∂ψ(x2, x3, t)

∂x2

= v3(x2, x3, t).

(32)

The pressure is given by the formula

p(x2, x3, t) = ρf

[
v2
∞
2

+
p∞
ρf

+
∂ϕ∞
∂t

− ∂ϕ

∂t
− 1

2
(v2

2 + v2
3)

]
. (33)

We calculate w(x2, t) from the equation (10).

Problem 21 Find a function w(·, t) ∈ C4(]0, l[) (and additional smoothness condi-
tions indicated in Problems 11-20), also the functions v2(x2, x3, t) ∈ C2(Ωf )∪C1(t >
0), v3(x2, x3, t) ∈ C2(Ωf ) ∪ C1(t > 0) and p(x2, x3, t) ∈ C(Ωf ) ∪ C(t > 0) which
satisfy the system of equations (10), (32), (33), transmission conditions (29), (30),
conditions at infinity (24), (25) and one of the BCs given in Problems 11-20.
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For Φ,2 (x2, x3, t) = v3 + iv2, in view of (25) and (29), we get the following
expression [72]

Φ,2 = − 1

πi
√

(x2 + ix3)(x2 + ix3 − l)

l∫

0

√
(ξ2 + ix3)(ξ2 + ix3 − l)

(ξ2 − x2)− ix3

w,t (ξ2, t)dξ2

+v3∞
x2 + ix3 − l/2√

(x2 + ix3)(x2 + ix3 − l)
. (34)

Let
w(x2, t) = eiωtw0(x2), q(x2, t) = eiωtq0(x2),

p(x2, x3, t) = eiωtp0(x2, x3),

u2(x2, x3, t) = eiωtu0
2(x2, x3), u3(x2, x3, t) = eiωtu0

3(x2, x3),

ϕ(x2, x3, t) = ieiωtϕ0(x2, x3), ψ(x2, x3, t) = ieiωtψ0(x2, x3),

v2(x2, x3, t) = ieiωtv0
2(x2, x3), v3(x2, x3, t) = ieiωtv0

3(x2, x3),

p∞(t) = eiωtp0
∞, v3∞(t) = ieiωtv0

3∞, p0
∞, v0

3∞ = const,

where ω = const > 0 is an oscillation frequency, v2 = u2,t (v3 = u3,t).
After separating real and imaginary parts of (34), we obtain the expressions for

v2 and v3. By means of the latter, in view of (32), we can calculate ϕ and then
substitute it into (33). Then substituting the obtained expression for p(x2, x3, t)
into (30), we get the expression for q(x2). Therefore, all the mechanical quantities
in the fluid part and the lateral load are calculated by means of deflection. In the
case of harmonic vibration for deflection we get the second order Fredholm type
linear integral equation [2]

w0(x2)− ω2

l∫

0

K1(x2, ξ)w0(ξ)dξ = f1(x2), (35)

where K1(x2, ξ2) ∈ C([0, l] × [0, l]) and f1(x2) ∈ C([0, l]) are defined explicitly.
They depend on the coefficients of the equation (21), on the type of the boundary
conditions in Problems 11-20, and the conditions at infinity (24)-(25).

The following proposition is valid

Proposition 3.2 Problem of the harmonic vibration corresponding to the Problem
17 has a unique solution when

ω2 <
1

Ml
,

where

M := max
x2,ξ∈[0,l]

{|K1(x2, ξ)|} .
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Remark 2 If the plate thickness is sufficiently small, we can assume that:
1. the fluid occupies R2\I;
2. the plate occupies I (its geometry depending on the thickness is taken into account
in the coefficient of the bending equation);

3.
(±)

h can be neglected. Since the normals of I are (0, 0, 1) and (0, 0,−1), (30) can
be rewritten as follows

−p(x2, 0+, t) + p(x2, 0−, t) = q(x2, t), x2 ∈]0, l[.

In Section 3.2 an interaction problem for the case of an incompressible viscous
fluid is solved [3]. We consider the case when the motion of the fluid is sufficiently
slow, i.e., vj and vj,k (j, k = 2, 3) are so small that linearized Navier-Stokes equations
can be applied

∂v2

∂t
= − 1

ρf

∂p

∂x2

+ ν∆v2,

∂v3

∂t
= − 1

ρf

∂p

∂x3

+ ν∆v3,

(36)

where ν = µ/ρf is a coefficient of viscosity, ∆ =
∂2

∂x2
2

+
∂2

∂x2
3

.

We add to the (36) the following equation

div v(x2, x3, t) = 0, (x2, x3) ∈ Ωf , t ≥ 0.

Let us consider the problem of harmonic vibration.

Problem 22 Find a function w0(x2) on I, which satisfies the equation (21), one
of the boundary conditions given in the Problems 11-20, and also find functions
u0

i (x2, x3), p0(x2, x3), q0(x2) on Ωf , which satisfy the following system of equations

∆p0(x2, x3) = 0,

−ω2u0
j = − 1

ρf

∂p0

∂xj

+ νiω∆u0
j , j = 2, 3,

smoothness conditions

u0
i ∈ C2(Ωf ) ∩ C(R2) ∩ C(t > 0), i = 2, 3;

p0 ∈ C2(Ωf );

q0,2 (·, t) ∈ Cγ([0, l]), 0 < γ ≤ 1,

following conditions at infinity

p0||x|→∞ = O(1), u0
j

∣∣
|x|→∞ = O(1), j = 2, 3,
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and transmissions conditions as follows

−p0(x2, 0+) + p0(x2, 0−) = q0(x2), x2 ∈]0, l[,

u0
3(x2, 0) = w0(x2), u0

2 = 0, x2 ∈]0, l[,

where q(x2, t) = eiωtq0(x2).

In this case all the mechanical quantities in question are calculated by means
of the lateral load q0, for which we obtain a second order supersingular integral
equation

l∫

0

q0(ξ2)

(ξ2 − x2)2
dξ2 + 2πω2ρf

l∫

0

K2(x2, ξ2)q0(ξ2)dξ2 = f2(x2),

where the supersingular integral is defined in H’adamard’s finite part sense, K2(x2, ξ2)
∈ C([0, l] × [0, l]) and f2(x2) ∈ C([0, l]) are quite definite functions. If q0,2 (x2) ∈
Cγ([0, l]) 0 < γ ≤ 1, this equation is solved by a method developed by Boikov, I.V.,
Dobrynin, N.F., Domnin, L. in [9] (see also Chapter 1, section 1.3).
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