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Abstract. The present Lecture Notes is devoted to singular partial differential
equations, i.e., to partial differential equations with the order degeneracy.
It is foreseen as a Lecture Course for the Advanced Courses of TICMI and the
Elective Course within the framework of master programs in Mathematics and
in Applied Mathematics. The results stated in the course are applied in inves-
tigations of cusped prismatic shells and bars and of motion of fluids in angular
ducts.
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Chapter 1

Introduction

Historically first works concerning singular partial differential equations [PDE (in
other words PDEs with unbounded, i.e., singular, coefficients)] were devoted to
particular cases of elliptic Euler-Poisson-Darboux (EPD) equation

E(a,b)u := y(uxx + uyy) + aux + buy = 0, (1.1)

where a and b are constans unless otherwise stated.
Equation (1.1) is elliptic in the half-plane

R2
+ := {(x, y) ∈ R2 : y > 0}

and has the order degeneration on x-axis which we denote by R1 (the same symbol
R1 we use for the one-dimensional Euclidean space of real numbers; R2 denotes
at the same time a plane and two-dimensional Euclidean space of pairs of real
numbers; analogously is defined Rp, p ≥ 3).

By means of the operators

∂z :=
1

2
(∂x − i∂y), ∂z̄ :=

1

2
(∂x + i∂y),

where
z = x+ iy and z = x− iy

are complex numbers and their conjugates, respectively, equation (1.1) can be
rewritten as

(z − z)∂2zzu−
b− ia
2

∂zu+
b+ ia

2
∂z̄u = 0 (1.2)

in the complex form. In the scientific literature equation (1.2) (see G. Darboux
[32]) is called either Euler-Poisson-Darboux or Euler-Poisson, or Euler equation.

The particular case a = 0, i.e., equation

y(uxx + uyy) + buy = 0 (1.3)

is called either Euler-Poisson-Darboux equation or equation of the generalized
theory of axialsymmetric potentials, or Weinstein equation.
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(1.3) we may also rewrite as

∂

∂x

(
yb
∂u

∂x

)
+

∂

∂y

(
yb
∂u

∂y

)
= 0

which indicates the existence of a stream-function v defined by the generized
Stokes-Beltrami equations (see A. Weinstein [187])

ybux = vy, ybuy = −vx, b ≥ 0.

It is easily seen, that axialsymmetric with respect to x1-axis solutions of the
Laplace equation

ux1x1 + · · ·+ uxpxp = 0, p ≥ 3,

satisfy equation (1.3), where

x := x1, y :=
√
x22 + · · ·+ x2p, b := p− 2. (1.4)

The case b = 1 (i.e., p = 3) was the object of investigation already in the
Laplace time. Here essential steps was made by Stokes and Beltrami ([3]).
W. Arndt ([2]) pointed out the importance of investigating the case b = 3 (p = 5)
for consideration of the torsion problem for Shafts of revolution. For arbitrary b
the study was started by A. Weinstein ([183]-[187]).

Qualitative and structural properties of solutions of (1.3), their relation to de-
generate first order elliptic systems, and boundary value problems (BVP) are con-
sidered by L. Bers, A. Gelbart ([6]), M.P. Brousse ([16], [17]) A. Huber ([68]-[70]]),
A. Erdélyi ([41]), P. Henrici ([65],[66]), M.A. Hyman ([71]), R.P. Gilbert ([60]-
[62]), A. Vasharin, P.I. Lizorkin ([172]), P.R. Garabedian ([56]), I.P. Krivenkov
([124]-[128]), K.B. Ranger ([158]), S.V. Parter ([155]), B. Brelot-Collin, M. Brelot
([14],[15]) L.E. Vostrova ([180]), M.V. Korshavina ([122]), A.R. Khvoles ([119],
[120]), L.G. Mikhailov, N. Rajabov ([141]), A. Sattarov ([162]), V.I. Evsin ([42],
[43]), A.J. Fryant ([55]), T.V. Chekmariov ([24]]), M.G. Muskhelishvili ([146],
[147]), G.P. Kapoor, A. Nautiyal ([115]), G. Jaiani [99]), J. Šimkovič [163],
N. Chinchaladze, A. Sakevarashvili [31], N. Chinchaladze [28], [29], G. Jaiani
[108], [107], [106], [109], and others.

After transformation of variables

x = ξ, y =
η

m+2
2

m+2
2

, η > 0, (1.5)

where
m =

2b

1− b

(
b =

m

m+ 2

)
, 0 < b < 1,

from (1.1) we obtain

ηmuξξ + uηη +
m+ 2

2
aη

m
2
−1uη = 0. (1.6)

Lecture Notes of TICMI, vol. 24, 2023
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Such [equation (1.6) when a = 0 is an equation with noncharacteristic degeneracy,
sometimes it is also called the equation with weak degeneracy] and more general
second order equations with variable nonsingular coefficients by

uξ, uη, u,

and noncharacteristic degeneration is considered by F. Tricomi ([169], [170]),
E. Holmgren ([67]), I. Vekua ([173]), A. Bitsadze ([8], [9], [10], [11]), S. Gellerstedt
([57]-[59]]), F. Frankl ([51], [52]), S.G.Mikhlin ([142]) (s. also [10]], [164], [165],
and references therein), and others.

After transformation of variables

x = ξ, y = 2
√
η, η > 0, (1.7)

from (1.1) we have

uξξ + ηuηη +
a

2
√
η
uξ +

b+ 1

2
uη = 0. (1.8)

Such [equation (1.8) when a = 0 is an equation with characteristic degeneracy,
sometimes it is also called the equation with strong degeneracy] and more general
second order equations with variable nonsingular coefficients by

uξ, uη, u,

and characteristic degeneration is considered by M.V. Keldysh ([117]), O.A. Olei-
nik ([153]), N.D. Vvedenskaya ([182]), M.I. Vishik ([176], [177]), S.G. Mikhlin
([143], [144]), I.L. Karol ([116]), S.A. Tersenov ([167], [168]), Khe Kan Cher
([118]), and others.

All the above-mentioned equations belong to the class of PDEs with non-
negative characteristic form. The unified theory of which belongs to G.Fichera
([44]-[46]). Different problems for this class of PDEs are investigated by E. Ma-
genes ([135]), O.A. Oleinik, E.V. Radkevich ([154]), H. Yamada ([188]), J.J. Kohn,
L. Nierenberg ([121]), V.P. Glushko ([63]) (see also a survey V.P. Glushko, I.B. Sav-
chenko [64]), M.I. Freidlin ([53]), L.I. Kaminin ([113]), V.A. Malovichko ([136],
[137]) V.F. Moss ([145]), H. Okumura ([152]),L.I. Kaminin, B.N. Khimchenko
([114]), G. Jaiani [96], [100], [102], O.I. Marichev [138], [139], A.C. Cavalheiro
[23] and others.

Divergent form second order degenerate PDEs are considered by M. Franciosi
([49], [50]), B. Franchi, E. Lanconelli ([48]), L.D. Kudrjavtsev ([129]), G. Porru
([156]]), I.V. Rybalov ([161]), and others.

K.O. Friedrichs ([54]) has investigated BVPs for symmetric operators inde-
pendent of their type.

Analytical theory of elliptic equations with order degeneration is given in a
monograph of A.I. Yanushauskas ([189]).

For equation (1.1) I. Vekua (see [174], pp.27,28 and [175]) has constructed
the complex Riemann function (see [174], pp.53-54 and also [123], pp.36-45) and
by its mean obtained a representation of all the regular (i.e., of C2 class) so-
lutions of equation (1.1) in any domain lying inside the upper half-plane R2

+.

George V. Jaiani. Even Order Singular Elliptic Equations
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V.I. Evsin ([42]) constructed a fundamental solution of equation (1.1) and solved
the Holmgren problem, when

a ∈ R1, b ∈]0, 1[.

Fuchs’ method developed for ordinary differential equations (ODE) is applied
by N. Rajabov, K. Boltaev ([157]) in order to investigate more general than equa-
tion (1.1) (s. also K. Boltaev, N. Rajabov ([13]). Equation (1.1) is investigated
in works of G. Jaiani ([72], [74]-[76], [77]-[80], [81], [82], [83], [84], [85]-[94], [95],
[97]) (s. also Chap. 3 of the present work).

For a fourth order degenerate PDE in some cases A.Narchaev ([148]) proved a
uniqueness theorem for the Dirichlet BVP, when on the boundary only unknown
function (in contrast to non-degenerate fourth order PDE, when also its deriva-
tive should be given) is prescribed. In certain function classes S.M.Nikol’skii
and P.I.Lizorkin ([150]) proved the existence and uniqueness theorems for the
Dirichlet BVP for a degenerate on the whole boundary 2m order PDE of the
divergent form, when on the boundary k < m conditions are given. P.Bolley,
J.Camus ([12]) studied the Dirichlet and Neumann problems for a strongly de-
generate higher order PDE. M.Troisi ([171]) investigated a general BVP for an (in
general) non-divergent form higher order PDE with order degeneration on a part
of the boundary. General BVPs for for a strongly degenerate higher order PDE
were studied by J.A. Roitberg, Z.G. Sheftel ([159], [160]). In a paper of M.I. Vi-
shik and V.V. Grushin ([178]) a survey of some other investigations devoted to
higher order degenerate on the boundary PDEs is given. In investigations of
well-posedness [ in the sense that which part of the boundary for which order
derivatives of unknown functions included itself should be freed from boundary
conditions (BC)] of BVPs for degenerate higher order PDEs the crucial part play
theory of weighted spaces. To embedding theorems for weighted spaces and in
some cases to their applications to BVPs are devoted works of V.K. Zakharov
([190]), R.D. Meyer ([140]), O.V. Besov, V.P. Il’in, L.D. Kudrjavtsev, P.I. Lizor-
kin, S.M. Nikol’skii ([7]), P.I. Lizorkin, S.M. Nikol’skii ([133]), L.D. Kudrjavtsev
([130]), S.M. Nikol’skii ([149]), S.M. Nikol’skii, P.I. Lizorkin ([150]), A. Kufner
([131]), A. Kufner, B. Opic ([132]), G.Jaiani [101] and others (s. also a sur-
vey paper of S.M. Nikol’skii, P.I. Lizorkin, N.V. Miroshin ([151]). Higher order
elliptic-parabolic equations are studied by A. Canfora ([18]-[22]), M.L. Benevento,
T. Bruno, L.Castelano ([5]), M.L. Benevento ([4]), V.P. Glushko ([63]), A.S. Fokht
([47]), M. Franciosi ([49]), M.A. Malovichko ([137]). M.M. Smirnov ([166]) studied
a model fourth order mixed type equation. To iterated EPD equation are devoted
works of G. Jaiani [72], [73], [74], [77]-[79], [83], [84], [98], [103]. More general,
than the iterated EPD equation, higher order PDEs with order degeneration are
investigated by G. Jaiani [98], [105] and N. Chinchaladze [25]-[27].

A system of second order mixed type equations was investigated by V.P. Di-
denko ([35],[36],[38]), V.N. Vragov [181], and others. A system of PDEs with order
degeneration was investigated by V.P. Didenko ([37]). J.A. Roitberg, Z.G. Shef-
tel ([160]) considered general BVPs (in general) with singular coefficients by less
order derivatives and the right hand side, when elliptic system in the sense of
Douglis-Nierenberg together with BCs satisfy the Lopatinski condition [s. e.g.,

Lecture Notes of TICMI, vol. 24, 2023
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S. Agmon, A. Douglis, L. Nierenberg ([1]), L.P. Volevich ([179]), and also I.B. Lo-
patinski ([134]). The system of second order degenerate equations, in particular,
with order degeneration considered by J. Dufner ([39], [40]). G. Jaiani ([96],
[104]) proved existence of weak and uniqueness of classical solutions of BVPs
posed in manner of G. Fichera, studying systems of second order PDEs only
with the order degeneration, under less restrictions than in the above-mentioned
works of J. Dufner ([39], [40]). To some systems of second order PDEs with order
degeneration are devoted works of G. Devdariani, G. Jaiani, S. Kharibegashvili,
D. Natroshvili ([34]), G. Devdariani ([33]), G. Jaiani, B.-W. Schulze ([111], [112]),
G. Jaiani, S. Kharibegashvili, D. Natroshvili, W.L. Wendland ([110]), N. Chin-
chaladze, R.P. Gilbert, G. Jaiani, S. Kharibegashvili, D. Natroshvili ([30]).
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Chapter 2

Auxiliary Statements

This chapter contains generalizations of the classical L’hopital rules and Cauchy
integral of principal value in the forms systematically used in Chapters 3. The
properties of a class of special functions in integral form and their relation to
the so-called classical Euler Gamma and Beta functions are studied. Throughout
the work, especially in Part II, such special functions play an essential part in
representing solutions of weighted BVPs as explicit integral expressions.

2.1 Some auxiliary results

Theorem 2.1.1 Let defined in the domain |x− x0| <
∗
x, 0 < y <

∗
y,

x0,
∗
x,

∗
y = const , functions f(x, y) and g(x, y) satisfy the following conditions:

10. lim
y→0+

g(x, y) = +∞ uniformly when |x− x0| <
∗
x;

20. for any fixed η > 0 functions f(x, η) and g(x, η) be bounded when
|x− x0| <

∗
x;

30. there exist finite derivatives f ′
y(x, y) and g′y(x, y) ̸= 0 when

|x− x0| <
∗
x, 0 < y <

∗
y;

40. there exists a finite limit

lim
(x,y)→(x0,0+)

f ′
y(x, y)

g′y(x, y)
= c.

Then

lim
(x,y)→(x0,0+)

f(x, y)

g(x, y)
= c.

Proof. Since g′y(x, y) ̸= 0, according to Darboux theorem (see, e.g., [1]) for
a fixed x it conserves the sign in the interval ]0,

∗
y[ and the function g(x, y) is

monotonic one. From 10 it is clear that for a fixed x the derivative g′y(x, y) < 0
and, hence, by decreasing y the function g(x, y), monotonically increasing, tends
to +∞. Therefore, we can assume that g(x, y) > 0.

24
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∀ε > 0, by virtue of 40, we can find such η (x0) > 0 that for |x− x0| < η (x0)

(we can always suppose that η (x0) <
∗
x) and 0 < y < η (x0) we have∣∣∣∣f ′

y(x, y)

g′y(x, y)
− c
∣∣∣∣ < ε

2

Applying to the segment [y, η] the Cauchy formula

f(x, y)− f(x, η)
g(x, y)− g(x, η)

=
f ′
y (x, ξ(x, y, η))

g′y (x, ξ(x, y, η))
,

where y < ξ(x, y, η) < η (x0), we obtain∣∣∣∣f(x, y)− f(x, η)g(x, y)− g(x, η)
− c
∣∣∣∣ = ∣∣∣∣f ′

y (x, ξ(x, y, η))

g′y (x, ξ(x, y, η))
− c
∣∣∣∣ < ε

2
(2.1)

for |x− x0| < η (x0), 0 < y < η (x0).
Let us consider the identity

f(x, y)

g(x, y)
− c = f(x, η)− cg(x, η)

g(x, y)
+

[
1− g(x, η)

g(x, y)

] [
f(x, y)− f(x, η)
g(x, y)− g(x, η)

− c
]
.

Hence, ∣∣∣∣f(x, y)g(x, y)
− c
∣∣∣∣ ≤ ∣∣∣∣f(x, η)− cg(x, η)g(x, y)

∣∣∣∣+ ∣∣∣∣f(x, y)− f(x, η)g(x, y)− g(x, η)
− c
∣∣∣∣ .

According to 10, 20 the fist summand tends to zero and there exists such
δ (x0) [without loss of generality we can assume that δ (x0) < η (x0)] that for
|x − x0| < δ (x0) and 0 < y < δ (x0) the first summand will be less than ε

2
. By

virtue of (2.1), the second summand will be less than ε

2
for |x − x0| < δ (x0)

0 < y < δ (x0) as well.
Thus, ∣∣∣∣f(x, y)g(x, y)

− c
∣∣∣∣ for |x− x0| < δ (x0) and 0 < y < δ (x0) .

So, the theorem is proved.

Corollary 2.1.2 Theorem 2.1.1 will be valid for c = +∞, provided

lim
y→0+

f(x, y) = +∞ uniformly for |x− x0| <
∗
x.

Proof. In this case, obviously, f ′
y(x, y) ̸= 0 at least in some neighborhood of the

point (x0, 0). Changing places of f and g, we have

lim
(x,y)→(x0,0+)

g′y(x, y)

f ′
y(x, y)

= 0.
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Therefore,
lim

(x,y)→(x0,0+)

g(x, y)

f(x, y)
= 0,

and, finally,
lim

(x,y)→(x0,0+)

f(x, y)

g(x, y)
= +∞,

since at least in some neighborhood of the point (x0, 0) we have f(x, y) > 0 and
f(x, y) > 0.

Theorem 2.1.3 Let the functions f(x, y) and g(x, y) are defined in the domain
stated in Theorem 2.1.1 and satisfy the following conditions:

10. lim
y→0+

g(x, y) = lim
y→0+

g(x, y) = 0 for |x− x0| <
∗
x;

20. there exist finite derivatives f ′
y(x, y), g′y(x, y) and g(x, y), g′y(x, y) ̸= 0 for

|x− x0| <
∗
x, 0 < y <

∗
y;

30 there exists a finite or infinite limit

lim
(x,y)→(x0,0+)

f ′
y(x, y)

g′y(x, y)
= c.

Then
lim

(x,y)→(x0,0+)

f(x, y)

g(x, y)
= c.

Proof. Assuming

f(x, 0+) := lim
y→0+

f(x, y) = 0, |x− x0| <
∗
x;

g(x, 0+) := lim
y→0+

g(x, y) = 0, |x− x0| <
∗
x,

we get that the functions f(x, y) and g(x, y) are continuous from the right at
point y = 0 with respect to y for fixed x when |x − x0| <

∗
x. This property

together with the properties indicated in Theorem 2.1.3 allows us to apply to the
functions f(x, y) and g(x, y) the Cauchy formula

f(x, y)

g(x, y)
=
f(x, y)− f(x, 0+)

g(x, y)− g(x, 0+)
=
f ′
y (x, ξ(x, y))

g′y (x, ξ(x, y))
, |x− x0| <

∗
x,

where 0 < ξ(x, y) < y <
∗
y.

According to 30, there exists a finite or infinite limit

lim
(x,y)→(x0,0+)

f ′
y (x, ξ(x, y))

g′y (x, ξ(x, y))
= c

and, therefore, a limit
lim

(x,y)→(x0,0+)

f(x, y)

g(x, y)
= c.
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Remark 2.1.4 Theorems 2.1.1 and 2.1.3 are valid for a complex-valued function
f(x, y) as well.
Remark 2.1.5 Theorems 2.1.1 and 2.1.3 are also valid in the case when limits
are considered along a fixed ways.
Definition 2.1.6 Let f(ξ) be integrable on any finite interval of R1 and for a
given in a neighborhood of +∞ function ψ(R) the limit

lim
R→+∞

ψ(R) = +∞.

If the limit

lim
R→+∞

ψ(R)∫
−R

f(ξ)dξ

exists it will be called the generalized principal value of the (in general, divergent)
integral

+∞∫
−∞

f(ξ)dξ

and it will be denoted by

p.v.ψ.

+∞∫
−∞

f(ξ)dξ.

If the integral converges in a usual sense, then its value coincides with the
generalized principal value for any ψ.

If ψ(R) ≡ R, then the principal value and the generalized principal value
coincide.
Theorem 2.1.7 If x ∈

[
0
x,

∗
x
]
, t ∈]−∞,+∞[, and a function f(x, t) is continuous

with its derivative f ′
y on the strip

[
0
x,

∗
x
]
×]−∞,+∞[; moreover, the integral

χ(x) := p.v.ψ.

+∞∫
−∞

f(x, t)dt

exists for a certain x ∈
[
0
x,

∗
x
]
, while the integral

χ1(x) :=

+∞∫
−∞

f ′
x(x, t)dt

is uniformly convergent with respect to x ∈
[
0
x,

∗
x
]
, then the function χ is defined

for all x ∈
[
0
x,

∗
x
]
and

d

dx

p.v.ψ. +∞∫
−∞

f(x, t)dt

 =

+∞∫
−∞

f ′
x(x, t)dt.
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Proof. For R > 0 let

χR(x) :=

ψ(R)∫
−R

f(x, t)dt,

then

dχR(x)

dx
=

ψ(R)∫
−R

f ′
x(x, t)dt =: χR1 (x), (2.2)

since f and f ′
x are continuous on the rectangle

[
0
x,

∗
x
]
× [−R,ψ(R)]. According to

the conditions of the theorem for a certain x ∈
[
0
x,

∗
x
]
we have

χR(x)→ χ(x), R→ +∞. (2.3)

Besides, in view of uniform convergence of the integral χ1(x) and equality (2.2),
we get

lim
R→+∞

dχR(x)

dx
= lim

R→+∞
χR1 (x) =

+∞∫
−∞

f ′
x(x, t)dt = χ1(x) (2.4)

uniformly on
[
0
x,

∗
x
]
.

But if the assertions (2.3), (2.4) are valid, then as it is well known (see e.g., [5],
p.125) the function χR(x) tends uniformly on

[
0
x,

∗
x
]
to the differentiable function

χ(x) as R→ +∞, and
dχ(x)

dx
= χ1(x)

on the segment
[
0
x,

∗
x
]
.

2.2 Properties of a special function Mk(a, b, j,m)

Let us consider (see G. Jaiani [4])

Mk(a, b, j,m) := yb+m−k−1

+∞∫
−∞

(ξ − x)k ∂
mθjeaθρ−b

∂ym
dξ (2.5)

= yb+m
+∞∫

−∞

tk
∂mθjeaθρ−b

∂ym

∣∣∣
ξ=x+yt

dt = yb+m
π∫

0

(− cot θ)k
∂mθjeaθρ−b

∂ym

∣∣∣
t=− cot θ

sin−2θdθ,

where
θ = arg(z − ξ), ρ = |z − ξ|

1
2 , j, k,m ∈ N0, z ∈ R2

+, ξ ∈ R1,
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are polar coordinates with the pole at point (x, y) = (ξ, 0),
a and b are complex constants, R2

+ ia the upper half-plane of the complex plane
of the variable z = x+ iy, R1 is the axis of the real numbers,

θ ∈ [0, π], N0 := N ∪ {0},

N is the set of natural numbers. N1 and N2 denote the sets of the odd and even
natural numbers, respectively, N0

2 := N ∪ {0}.

Theorem 2.2.1 The function Mk(a, b, j,m) is defined [i.e.,the integral (2.5) is
convergent], and is independent of x, y:

when
Reb+m− k − 1 > 0 (2.6)

and either a ̸= 0, m ∈ N0, or a = 0, j ̸= 0, m ∈ N0, or a = j = m = 0, or
a = j = 0, b ̸= 0,−2, . . . ,−2

(
m−

[m
2

]
− 1
)
, m ∈ N2;

or when
Reb+m− k > 0 (2.7)

and a = j = 0, b ̸= 0,−2, . . . ,−2
(
m−

[m
2

]
− 1
)
, m ∈ N1.

If a = j = 0 and either b ∈
{
0,−2, . . . ,−2

(
m−

[m
2

]
− 1
)}

, m ∈ N, or
(2.7) is fulfilled for m, k ∈ N1, or (2.6) is fulfilled for k ∈ N1, m ∈ N0

2, then

Mk(0, b, 0,m) = 0 (2.8)

Proof. Using the method of the mathematical induction, we prove that

∂meaθρ−b

∂ym
=

[m2 ]+1∑
κ=1

Bκ (b,m; a(x− ξ), y) eaθρ−b−2(m−κ+1), (2.9)

where
B1 (b,m; a(x− ξ), y) =

m∏
l=1

{(x− ξ)− [b+ 2(l − 1)] y} (2.10)

Bκ (b,m; a(x− ξ), y)

=
m−1∑

ακ−1=2κ−3

κ−2∏
j=1

αj+1−2∑
αj=2j−1

{κ−1∏
k=1

[b+ 2 (αk − k)] (αk −m)

×
m−κ+1∏
l=1

l ̸=αi−i+1

i=1,2,...,κ−1

{a(x− ξ)− [b+ 2(l − 1)]y}


,

κ = 2, . . . ,
[m
2

]
+ 1,

(2.11)
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κ−2∏
j=1

αj+1−2∑
αj=2j−1

:=

ακ−1−2∑
ακ−2=2κ−5

ακ−2−2∑
ακ−3=2κ−7

· · ·
α3−2∑
α2=3

α2−2∑
α1=1

,

l−1∏
j=1

(·) ≡ 1. (2.12)

The last product in (2.11) we take equal to 1 if none of l are admissible.
Indeed, it is easily seen that (2.9) is true for m = 1, . . . , 6. Now assuming

that it takes place for m = n− 1 and m = n, we prove its validity for m = n+1.
Evidently,

∂n+1eaθρ−b

∂yn+1
=
∂n [a(x− ξ)− by] eaθρ−b−2

∂yn

[a(x− ξ)− by] ∂
neaθρ−b−2

∂yn
− nb∂

n+1eaθρ−b−2

∂yn+1

=

[n2 ]+1∑
κ=1

[a(x− ξ)− by]Bκ (b+ 2, n; a(x− ξ), y) eaθρ−b−2−2(n−κ+1)

−
[n−1

2 ]+1∑
κ=1

nbBκ (b+ 2, n− 1; a(x− ξ), y) eaθρ−b−2−2(n−κ)

=

[n2 ]+1∑
κ=1

[a(x− ξ)− by]Bκ (b+ 2, n; a(x− ξ), y) eaθρ−b−2−2(n−κ+1)

−
[n+1

2 ]+1∑
κ=2

nbBκ−1 (b+ 2, n− 1; a(x− ξ), y) eaθρ−b−2−2(n−κ+1)

=

[n2 ]+1∑
κ=2

{[a(x− ξ)− by]Bκ (b+ 2, n; a(x− ξ), y)

−nbBκ−1 (b+ 2, n− 1; a(x− ξ), y) eaθρ−b−2−2(n−κ+2)

+ [a(x− ξ)− by]B1 (b+ 2, n; a(x− ξ), y) eaθρ−b−2(n+1)

+


0 for n ∈ N2

−nbBn+1
2

(b+ 2, n− 1; a(x− ξ), y) eaθρ−b−n−1 for n ∈ N1.
(2.13)

By virtue of (2.10),

[a(x− ξ)− by]B1 (b+ 2, n; a(x− ξ), y)

= [a(x− ξ)− by]
n∏
l=0

{a(x− ξ)− [b+ 2 + 2(l − 1)] y}

=
n∏
l=0

[a(x− ξ)− (b+ 2l)y] =
n+1∏
l=0

{a(x− ξ)− [b+ 2(l − 1)] y}

= B1 (b, n+ 1; a(x− ξ), y) . (2.14)
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In view of (2.11), (2.12) for n ∈ N1 we have

−nbBn+1
2

(b+ 2, n− 1; a(x− ξ), y)

= −nb
n−2∑

αn+1
2 −1

=n−2

n−4∑
αn+1

2 −2
=n−4

· · ·
3∑

α2=3

1∑
α2=1


n+1
2

−1∏
k=1

[b+ 2

+2 (αk − k)](αk − n+ 1)

n−1
2∏
l=1

l ̸=αi−i+1

i=1,2,...,n+1
2

−1

{a(x− ξ)− [b+ 2(l − 1)]y}


= (−b)n(−b− 2)(n− 2)(−b− 4)(n− 4) · · · (−b− n+ 1)

= (−1)
n+1
2 n!!

n+1
2∏

k=1

[b+ 2(k − 1)] . (2.15)

On the other hand, because of (2.11) for m = n+ 1 ∈ N2 we have

Bn+1
2

+1 (b, n+ 1; a(x− ξ), y)

=
n∑

αn+1
2

=n

n+1
2

−1∏
j=1

αj+1−2∑
αj=2j−1


n+1
2∏

k=1

[b+ 2 (αk − k)] (αk − n− 1)

×
n+1
2∏
l=1

l ̸=αi−i+1

i=1,2,...,n+1
2

{a(x− ξ)− [b+ 2(l − 1)] y}



= (−1)
n+1
2 n!!

n+1
2∏

k=1

[b+ 2(k − 1)] , (2.16)

since
αn+1

2
−1 = n− 2, . . . , α2 = 3, α1 = 1.

From the equality of the right hand sides of (2.15) and (2.16) there follows
the equality of the left hand sides

−nbBn+1
2

(b+ 2, n− 1; a(x− ξ), y) = Bn+1
2

+1 (b, n+ 1; a(x− ξ), y) . (2.17)
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According to (2.11) we have

[a(x− ξ)− by]Bκ (b+ 2, n; a(x− ξ), y)− nbBκ−1 (b+ 2, n− 1; a(x− ξ), y)

= [a(x− ξ)− by]
n−1∑

ακ−1=2κ−3

κ−2∏
j=1

αj+1−2∑
αj=2j−1

{κ−1∏
k=1

[b+ 2 + 2 (αk − k)] (ak − n)

×
n−κ−1∏
l=1

l ̸=αi−i+1

i=1,2,...,κ−1

{a(x− ξ)− [b+ 2 + 2(l − 1)]y}


−nb

n−2∑
αk−2=2κ−5

κ−3∏
j=1

αj+1−2∑
αj=2j−1

{κ−2∏
k=1

[b+ 2 + 2 (αk − k)] (ak − n+ 1)

×
n−κ+1∏
l=1

l ̸=αi−i+1

i=1,2,...,κ−2

{a(x− ξ)− [b+ 2 + 2(l − 1)]y}


, (2.18)

κ = 2, 3, . . . ,
[n
2

]
+ 1

(we assume that
q∏
l=p

l ̸=αi−i+1

i=k,k+1,...,m

(·) ≡
q∏
l=p

(·) for m < k and
∑(

l−2∏
j=l

(·)

)
{·} ≡ {·}).

It is easily seen that
κ−1∏
k=1

[b+ 2 + 2 (αk − k)] (ak − n) =
κ−1∏
k=1

[b+ 2 (α′
k − k)] (α′

k − n− 1) ,

α′
k = αk + 1;

(2.19)

[a(x− ξ)− by]
n−κ+1∏
l=1

l ̸=αi−i+1

i=1,2,...,κ−1

{a(x− ξ)− [b+ 2 + 2(l − 1)] y}

= [a(x− ξ)− by]
n+1−κ+1∏

l=2
l ̸=αi−i+2

i=1,2,...,κ−1

{a(x− ξ)− [b+ 2(l − 1)] y}

=
n+1−κ+1∏

l=1
l ̸=αi−i+1

i=1,2,...,κ−1

{a(x− ξ)− [b+ 2(l − 1)] y} ; (2.20)
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−nb
κ−2∏
k=1

[b+ 2 + 2 (αk − k)] (αk − n+ 1)

= −nb
κ−1∏
k=2

[b+ 2 + 2 (αk−1 − k + 1)] (αk−1 − n+ 1)

= −nb
κ−1∏
k=2

[
b+ 2

(
α”
k − k

)] (
α”
k − n− 1

)
, α”

k+1 = αk + 2; (2.21)

n−κ+1∏
l=1

l ̸=αi−i+1

i=1,2,...,κ−2

{a(x− ξ)− [b+ 2 + 2(l − 1)] y}

=
n+1−κ+1∏

l=2
l ̸=αi−i+2

i=1,2,...,κ−2

{a(x− ξ)− [b+ 2(l − 1)] y}

=
n+1−κ+1∏

l=2

l ̸=α”
i+1−1

i=1,2,...,κ−2

{a(x− ξ)− [b+ 2(l − 1)] y}

=
n+1−k+1∏

l=2

l ̸=α”
i+1−1

i=2,...,κ−1

{a(x− ξ)− [b+ 2(l − 1)] y} . (2.22)

Substituting (2.19)-(2.22) into (2.18), we get

[a(x− ξ)− by]Bκ (b+ 2, n; a(x− ξ), y)− nbBκ−1 (b+ 2, n− 1; a(x− ξ), y)

=
n−1∑

α′
κ−1=2κ−2

κ−2∏
j=1

α′
j+1−2∑
α′
j=2j

{κ−1∏
k=1

[b+ 2 (α′
k − k)] (a′k − n− 1)

×
n+1−κ+1∏

l=1
l ̸=α′

i−i+1

i=1,2,...,κ−1

{a(x− ξ)− [b+ 2(l − 1)]y}


+

n∑
α”
κ−2=2κ−3

κ−3∏
j=1

α”
κ+2−2∑

α”
j+1=2j+1

{−nb κ−1∏
k=2

[
b+ 2

(
α”
k − k

)] (
a”k − n− 1

)
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×
n+1−κ+1∏

l=2

l ̸=α”
i−i+1

i=2,3,...,κ−1

{a(x− ξ)− [b+ 2(l − 1)]y}


, (2.23)

κ = 2, 3, . . . ,
[n
2

]
+ 1.

On the other hand, by virtue of (2.11), if we separate the sum corresponding
to α1 = 1, then for m = n+ 1 we have

Bκ (b, n+ 1; a(x− ξ), y)

=
n∑

ακ−1=2κ−2

κ−2∏
j=1

αj+1−2∑
αj=2j

{κ−1∏
k=1

[b+ 2 (αk − k)] (αk − n− 1)

×
n+1−κ+1∏

l=1
l ̸=α′

i−i+1

i=1,2,...,κ−1

{a(x− ξ)− [b+ 2(l − 1)] y}


+

n∑
ακ−1=2κ−3

κ−2∏
j=2

αj+1−2∑
αj=2j−1

{−nb κ−1∏
k=2

[b+ 2 (αk − k)] (αk − n− 1)

×
n+1−κ+1∏

l=2
l ̸=αi−i+1

i=2,3,...,κ−1

{a(x− ξ)− [b+ 2(l − 1)] y}


, (2.24)

κ = 2, 3, . . . ,

[
n+ 1

2

]
+ 1,

since in the first group of sums none of equalities

αj = 2j − 1, j = 2, 3, . . . , κ− 1,

are possible, otherwise we would obtain that α1 = 1 but such terms we have
separated in the second group. Let us note that the last products in (2.24)
begins from l = 2 because of l ̸= α1 − 1 + 1 = α1 = 1.

If we compare (2.23) (where α′
j and α”

j we can denote by αj) and (2.24) and
take into account that

κ−2∏
j=2

αj+1−2∑
αj=2j−1

≡
κ−3∏
j=1

αj+1−2∑
αj+1=2j+1

, κ ≥ 4,
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from the equality of the right-hand sides there follows the equality of the left-hand
sides

[a(x− ξ)− by]Bκ (b+ 2, n; a(x− ξ), y)

−nbBκ−1 (b+ 2, n− 1; a(x− ξ), y)

= Bκ (b, n+ 1; a(x− ξ), y) , κ = 2, 3, . . . ,
[n
2

]
+ 1.

(2.25)

Substituting (2.14), (2.17), and (2.25) into (2.13), we get

∂n+1eaθρ−b

∂yn+1
=

[n+1
2 ]+1∑
κ=1

Bκ (b, n+ 1; a(x− ξ), y) eaθρ−b−2(n−κ+2).

So, equality (2.9) is proved.
It is well-known (s. [1], pp. 235-236), that

dm arctan τ

dτm
= (−1)m−1(m− 1)!

(
1− τ 2

)−m
2 sin

(
m arctan

1

τ

)
, τ ̸= 0. (2.26)

But since,

arccot
1

τ
=

{
arctan τ for τ > 0;
arctan τ + π for τ < 0,

we have
dmarccot 1

τ

dτm
=
dm arctan τ

dτm
, τ ̸= 0.

Introducing y by the relation

τ =
y

x− ξ
, y > 0, x ̸= ξ,

where x, ξ ∈ R1 are parameters, in view of (2.26), we get

∂mθ

∂ym
= (x− ξ)−m ∂mθ

∂τm

∣∣∣∣
τ= y

x−ξ

= (x− ξ)−m ∂m arctan τ

∂τm

∣∣∣∣
τ= y

x−ξ

= (−1)m−1(m− 1)!(x− ξ)−m
[
1 +

y2

(x− ξ)2

]−m
2

sin

(
m arctan

x− ξ
y

)
= (−1)m−1(m− 1)!ρ−m [sign(x− ξ)]−m sin

(
m arctan

x− ξ
y

)
. (2.27)

Using (2.27), by means of the mathematical induction with respect to j we can
prove that
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∂mθj

∂ym
= (−1)m−j [sign(x− ξ)]−m ρ−m

m∑
κj=0

j−2∏
k=1

κk+2∑
κk+1=0

{( m
κj

)

×
j−2∏
k=1

(
κk+2

κk+1

)
(κ2 − 1)! (m− κj − 1)!

×
j−2∏
k=1

(κk+2 − κk+1 − 1)!sin

(
κ2 arctan

x− ξ
y

)
sin

[
(m− κj) arctan

x− ξ
y

]

×
j−2∏
k=1

sin

[
(κk+2 − κk+1) arctan

x− ξ
y

]}
, j ≥ 2. (2.28)

According to the Leibnitz formula,

∂mθjeaθρ−b

∂ym
=

m∑
κ=0

(
m
κ

)
∂κθj

∂yκ
∂m−κeaθρ−b

∂ym−κ . (2.29)

By virtue of (2.9)-(2.11), and (2.28) it is easy to check that for a fixed z
belonging to the closure of an arbitrary bounded domain lying inside R2

+, we
have

∂meaθρ−b

∂ym
= O

(
|x− ξ|−Reb−m) , |ξ| → +∞, a ̸= 0, (2.30)

∂mρ−b

∂ym
=


O
(
|x− ξ|−Reb−2(m−[m2 ])

)
, |ξ| → +∞,

0, b ∈
{
0,−2, . . . ,−2

(
m−

[m
2

]
− 1
)}

, m ∈ N,
(2.31)

∂mθj

∂ym
= O

(
|x− ξ|−m

)
, |ξ| → +∞, j ∈ N. (2.32)

After substitution ξ = x+yt formulas (2.30)-(2.32) we may rewrite in the following
forms

∂meaθρ−b

∂ym

∣∣∣∣
ξ=x+yt

= O
(
t|−Reb−m) , |t| → +∞, a ̸= 0; (2.33)

∂mρ−b

∂ym

∣∣∣∣
ξ=x+yt

= O
(
|t|−Reb−2(m−[m2 ])

)
, |t| → +∞; (2.34)

∂mθj

∂ym

∣∣∣∣
ξ=x+yt

= O
(
|t|−m

)
, |t| → +∞, j ∈ N. (2.35)
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In view of (2.30)-(2.35), in the above mentioned domain from (2.29) we get

∂mθjeaθρ−b

∂ym

=



O
(
|x− ξ|−Reb−m) = O

(
|t|−Reb−m) , |ξ||t| → +∞,

when either a ̸= 0, m ∈ N0, or a = 0, j ̸= 0, m ∈ N0,
or a = j = m = 0,

or a = j = 0, b ̸= 0,−2, . . . ,−2
(
m−

[m
2

]
− 1
)
, m ∈ N2;

O
(
|x− ξ|−Reb−m−1

)
= O

(
|t|−Reb−m−1

)
, |ξ|, |t| → +∞,

when a = j = 0, b ̸= 0,−2, . . . ,−2
(
m−

[m
2

]
− 1
)
, m ∈ N1;

0, when a = j = 0, b ∈
{
0,−2, . . . ,−2

(
m−

[m
2

]
− 1
)}

, m ∈ N.

(2.36)

Indeed, the cases a ̸= 0 and a = j = m = 0 are obvious. In the cases a = j = 0
m ∈ N and a = 0, j ̸= 0, m ∈ N0 we have to take into account

2
(
m−

[m
2

])
=


2
(
m− m

2

)
= m, m ∈ N2;

2

(
m− m− 1

2

)
= m+ 1, m ∈ N1,

and

∣∣∣∣∂mθjρ−b∂ym

∣∣∣∣ =
∣∣∣∣∣
m∑
κ=0

(
m
κ

)
∂κθj

∂yκ
· ∂

m−κρ−b

∂ym−κ

∣∣∣∣∣ ≤
m∑
κ=0

Cκ|x− ξ|−Reb−m−(m−κ−2[m−κ
2 ])

=
m∑
κ=0

Cκ

{
|x− ξ|−Reb−m for m− κ ∈ N2;
|x− ξ|−Reb−m−1 for m− κ ∈ N1,

≤ C|x− ξ|−Reb−m, |ξ| → +∞, C, Cκ = const ,

respectively.
If

a = j = 0, b ∈
{
0,−2, . . . ,−2

(
m−

[m
2

]
− 1
)}

m ∈ N,

then
∂mθjeaθρ−b

∂ym
=
∂mρ−b

∂ym
= 0, (2.37)

because of
m > 0, 2, . . . , 2

(
m−

[m
2

]
− 1
)
,

since
2
(
m−

[m
2

]
− 1
)
=

{
m− 2, m ∈ N2;
m− 1, m ∈ N1.

(2.38)

From (2.38) it is easily seen, that
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b ∈
{
0,−2, . . . ,−2

(
m−

[m
2

]
− 1
)}

, m ∈ N.

may be rewritten as

b = −2n, n =


0, 1, . . . ,

m− 2

2
, m ∈ N2,

0, 1, . . . ,
m− 1

2
, m ∈ N1.

From (2.31) it follows (2.8).
According to (2.9)-(2.11) and (2.27), (2.28), we have
∂meaθρ−b

∂ym

∣∣∣∣
ξ=x+yt

= y−b−m
[m2 ]+1∑
κ=1

B̃κ(b,m; at)ea·arccot(−t)
(
1 + t2

)− b
2
−m+κ−1

, (2.39)

where
B̃1(b,m; at) = (−1)m

m∏
l=1

[at+ b+ 2(l − 1)] ,

B̃κ(b,m; at) = (−1)m−2κ+2

×
m−1∑

ακ−1=2κ−3

κ−2∏
j=1

αj+1−2∑
αj=2j−1

{ κ−1∏
k=1

[b+ 2 (αk − k)]

× (m− αk)
m−κ+1∏
l=1

l ̸=αi−i+1

i=1,2,...,κ−1

[at+ b+ 2(l − 1)]
}
, κ = 2, 3, . . . ,

[m
2

]
+ 1;

and
∂mθj

∂ym

∣∣∣∣
ξ=x+yt

=



(−1)m−j [sign(−t)]−m y−m
(
1 + t2

)−m
2

m∑
κj=0

j−2∏
k=1

κk+2∑
κk+1=0


×

{(
m
κj

) j−2∏
k=1

(
κk+2κk+1

)
(κ2 − 1)! (m− κj − 1)!

×
j−2∏
k=1

(κk+2 − κk+1 − 1)!sin [κ2 arctan(−t)] sin [(m− κj)

× arctan(−t)]
j−2∏
k=1

sin [(κk+2 − κk+1) arctan(−t)]

}
, j ≥ 2;

(−1)m−1(m− 1)!y−m
(
1 + t2

)−m
2

× [sign(−t)]−m sin [m · arctan(−t)] , j = 1,

(2.40)

Lecture Notes of TICMI, vol. 24, 2023



39

respectively.
If (2.7) is fulfilled and m, k ∈ N1, then

Mk(0, b, 0,m) = yb+m−k−1

+∞∫
−∞

(x− ξ)k ∂
mρ−b

∂ym
dξ

= yb+m
+∞∫

−∞

tk
∂mρ−b

∂ym

∣∣∣∣
ξ=x+yt

dt = 0,

since the integrand, in view of (2.39), is an odd function with respect to t and
the integral is convergent because of (2.7). So, (2.8) is proved.

After substitution ξ = x+ yt the expression (2.5) we may rewrite as

Mk(a, b, j,m) = yb+m
+∞∫

−∞

tk
∂mθjeaθρ−b

∂ym

∣∣∣∣
ξ=x+yt

dt.

Hence, by virtue of (2.29), (2.39), (2.40) it is evident that the right-hand side of
the last equality and therefore, the function Mk(a, b, j,m) is independent of x, y.

Thus, Theorem 2.2.1 is proved.

Remark 2.2.2 In view of (2.36), if condition (2.6) is fulfilled, the function
Mk(a, b, j,m) is defined. When

a = j = 0, b ̸= 0,−2, . . . ,−2
(
m−

[m
2

]
− 1
)
, m ∈ N1 (2.41)

it is defined under the weaker restriction (2.7).

Let
Mk(a, b,m) :=Mk(a, b, 0,m), M(a, b,m) :=M0(a, b,m), (2.42)

Λk(a, b) :=Mk(a, 2− b, 0), Λ(a, b) := Λ0(a, b) =

π∫
0

eaθ sin−b θdθ, b < 1; (2.43)

∗
Λ(a, b) :=M0(a, 2− b, 1, 0) =

π∫
0

θeaθ sin−b θdθ, b < 1, (2.44)

(α,m) := α(α + 1) · · · (α +m− 1), m > 1; (α, 0) ≡ 1.

Theorem 2.2.3 Under restrictions of Theorem 2.2.1

Mk(a, b, j,m+ 1) = (k − b−m+ 1)Mk(a, b, j,m). (2.45)

The following equalities are valid:

Mk(a, b, j,m) = (−1)m(b− k − 1,m)Mk(a, b, j, 0) (2.46)
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and
Mk(a, b,m) = (−1)m(b− k − 1,m)Λk(a, 2− b) (2.47)

for Reb > 1 + k, k,m ∈ N0;

Λ(a, 2− b− 2m) =
a2 + (b+ 2m)2

(b+ 2m)(b+ 2m+ 1)
Λ(a,−b− 2m), (2.48)

for Reb > 1− 2m;

M(a, b,m) =

(−1)m
m∏
κ=1

{
a2 + [b+ 2(κ− 1)]2

}
(b+m− 1,m)

Λ(a, 2− b− 2m), (2.49)

when either Reb > 1 −m, m ∈ N or if a = 0, when Reb > m, m ∈ N1 (in the
last case in (2.49) b = 1 −m is allowed if the right-hand side we consider as a
corresponding limit which will be equal to zero);

M(a, b,m) = (−1)m−1(b,m− 1)M(a, b, 1) for Reb > 0, m ∈ N. (2.50)

When a = 0, m ∈ N1 (2.50) is valid also for Reb > −1.

Proof. Equality (2.45) we may obtain as follows

Mk(a, b, j,m+ 1) = yb+m−k

+∞∫
−∞

(ξ − x)k ∂
m+1θjeaθρ−b

∂ym + 1
dξ

= yb+m−k ∂

∂y

+∞∫
−∞

(ξ − x)k ∂
mθjeaθρ−b

∂ym
dξ

=
∂

∂y

yb+m−k

+∞∫
−∞

(ξ − x)k ∂
mθjeaθρ−b

∂ym
dξ


−(b+m− k)yb+m−k−1

+∞∫
−∞

(ξ − x)k ∂
mθjeaθρ−b

∂ym
dξ

=
∂

∂y
[yMk(a, b, j,m)]− (b+m− k)Mk(a, b, j,m)

= (1 + k − b−m)Mk(a, b, j,m).

Using l-times formula (2.45), when Reb + m − l − k − 1 > 0 (when a = 0,
j = 0, m− l ∈ N1, we may take Reb+m− l − k > 0), we get

Mk(a, b, j,m) = (2 + k − b−m, l)Mk(a, b, j,m− l).

Therefore, in particular, for j = k = 0, l = m− 1, we obtain (2.50), because of

(2− b−m,m− 1) = (−1)m−1(b,m− 1),
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while for l = m, we have

Mk(a, b, j,m) = (2+k−b−m,m)Mk(a, b, j, 0) = (−1)m(b−k−1,m)Mk(a, b, j, 0),

i.e., (2.46). Hence, we get (2.47) since

Mk(a, b, 0, 0) =Mk(a, b, 0) = Λk(a, 2− b).

For Reb > 1, a ̸= 0, bearing in mind (2.43), (2.42), (2.5) and using twice
integration by parts, we get

Λ(a,−b) =
π∫

0

eaθsinbθdθ =
b(b− 1)

a2
Λ(a, 2− b)− b2

a2
Λ(a, 2− b). (2.51)

Thus,
Λ(a, 2− b) = a2 + b2

b(b− 1)
Λ(a− b). (2.52)

The last remains valid also in the case a = 0, what immediately follows from the
following equalities

Λ(0, 2− b) = −
π∫

0

sinbθdcotθ = b

π∫
0

sinb−2θcos2θdθ = b

π∫
0

sinb−2θdθ− b
π∫

0

sinbθdθ.

If we replace b by b+ 2m we get (2.48).
When m = 1, because of

Λ1(a, b) = −
a

b
Λ(a, b) for Reb < 0, (2.53)

evidently,

M(a, b, 1) = yb
+∞∫

−∞

∂eaθρ−b

∂y
dξ = −

+∞∫
−∞

(at+ b)ea·arccot(−t)
(
1 + t2

)− b
2
−1
dt

= −aΛ1(a,−b)− bΛ(a,−b) = −
a2 + b2

b
Λ(a,−b), Reb > 0.

In the case a = 0 we may assume Reb > −1. So, formula (2.49) is true for m = 1.
Now, we assume its validity for m = n and consider M(a, b, n + 1). By virtue of
(2.45), when either j = k = 0 and Re > 1 − n, n ∈ N or a = 0 and Reb > −n,
n ∈ N1, we have

M(a, b, n+ 1) = (1− b− n)M(a, b, n)

= (1− b− n)
(−1)n

n∏
κ=1

{
a2 + [b+ 2(κ− 1)]2

}
(b+ n− 1, n)

Λ(a, 2− b− 2n)

=

(−1)n+1
n∏
κ=1

{
a2 + [b+ 2(κ− 1)]2

}
(b+ n, n− 1)

Λ(a, 2− b− 2n).

George V. Jaiani. Even Order Singular Elliptic Equations



42

Whence, taking into account (2.48) for m = n, we get

M(a, b, n+ 1) = (−1)n+1

n∏
κ=1

{
a2 + [b+ 2(κ− 1)]2

}
(b+ n, n+ 1)

Λ(a,−b− 2n).

But, both the sides of this equality are analytic functions with respect to b when
either Reb > −n or a = 0, Reb > −n − 1, n + 1 ∈ N1 (in the last case points
b = −n, n ∈ N2 are removable points of singularity for the right-hand side),
which coincide either for Reb > 1 − n, n ∈ N or in case a = 0 for Reb > −n,
n ∈ N1. Then, according to the uniqueness theorem of analytic function both the
sides coincide in the whole domain of their analyticity. Thus, Theorem 2.2.3 is
proved.

Now, we give some useful formulas.
It is well known that (see e.g., [2], pp. 491 and 386):

Λk(a, b) =

+∞∫
−∞

tkea·arccot(−t)(1 + t2)
b
2
−1dt

= (−1)k
2bπeπ(

a
2
−i k

2 )
k∑

n=0

(−1)n(−k, n)
(
a
2i
+ b

2
, n
)(

1 + a
2i
− b

2
− k, n

)
(1, n)

(1− b− k)B̃
(
1− a

2i
− b

2
, 1 + a

2i
− b

2
− k
) , Reb < 1− k,

(2.54)

whence,
Λk(a, b) = eaπΛk(−a, b);

A(c, b) :=

π∫
0

cos(cθ)sin−bθdθ =
2bπcos cπ

2

(1− b)B̃
(
2+c−b

2
, 2−c−b

2

) ,
Reb < 1, c ∈ R1;

(2.55)

B(c, b) :=

π∫
0

sin(cθ)sin−bθdθ =
2bπsin cπ

2

(1− b)B̃
(
2+c−b

2
, 2−c−b

2

) ,
Reb < 1, c ∈ R1;

(2.56)

where

B̃(x, y) :=

1∫
0

tx−1(1− t)y−1dt, Re x > 0, Re y > 0,

is the Euler Beta function (see [6], pp. 962-964). Evidently, when b and c are real
numbers

B̃

(
2 + c− b

2
,
2− c− b

2

)
> 0 for b < 2± c.

It is easily seen that

A(c, 2− b) = (b+ 1)(b+ 2)

(b+ 2)2 − a2
A(c,−b), b > −1,
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B(c, 2− b) = (b+ 1)(b+ 2)

(b+ 2)2 − a2
B(c,−b), b > −1,

A(c, b) = A(c, b) cos(cπ) + B(c, b) sin(cπ), A(1, b) = 0, b < 1,

B(c, b) = A(c, b) sin(cπ)− B(c, b) cos(cπ), b < 1.

Taking into account the last one, from (2.55) and (2.56) we conclude that

A(2k + 1, b) = 0, A(c, b) ̸= 0, c ̸= 2k + 1, k = 0,±1,±2, . . . ;

B(2k, b) = 0, B(c, b) ̸= 0, c ̸= 2k, k = 0,±1,±2, . . . ;

A2(c, b) + B2(c, b) = 22b(1− b)−2π2B̃−2

(
2 + c− b

2
,
2− c− b

2

)
> 0.

Besides, from (2.55) and (2.56) it immediately follows

A(c, b) = cot
(cπ
2

)
B(c, b).

Theorem 2.2.4 For complex numbers a, b, and k ∈ N0, Re b < 1 − k, the
inequality

Λk(a, b) ̸= 0

is valid if and only if when

b− ia, b+ ia+ 2k∈̄N2, (2.57)
k∑

n=0

(−1)n(−k, n)
(
a
2i
+ b

2
, n
)

(1, n)
(
1 + a

2i
− b

2
− k, n

) ̸= 0,+∞. (2.58)

For a, b ∈ R1, b < 1− k and k ∈ N0 we have

Λk(a, b)


> 0, when either k ∈ N0

2, or a > 0, k ∈ N1;
< 0, when a < 0, k ∈ N1;
= 0, when a = 0, k ∈ N1,

(2.59)

while, for k ∈ N we have

(k + 1)Λk(a,−k − 1) + aΛk+1(a,−k − 1)
> 0, when either k ∈ N2, or a > 0, k ∈ N1;
< 0, when a < 0, k ∈ N1;
= 0, when a = 0, k ∈ N1,

(2.60)

Proof. Substituting

B̃

(
1− a

2i
− b

2
, 1 +

a

2i
− b

2
− k
)

=
Γ
(
1− a

2i
− b

2

)
Γ
(
1 + a

2i
− b

2
− k
)

Γ(2− b− k)

into (2.54) and taking into account that the Euler function

Γ(z) =
1

z

∞∏
n=1

{(
1 +

1

n

)z (
1 +

z

n

)−1
}
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[s. below 2.66)] is not equal to zero in the complex plane but the points z =
0,−1,−2, . . . , where it has poles (see, e.g., [6], p. 16), the first part of the
theorem becomes clear.

From

Λk(a, b) =

+∞∫
−∞

tkea·arccot(−t)
(
1 + t2

) b
2
−1
dt

=

+∞∫
0

[
ea·arccot(−t) + (−1)kea·arccott

]
tk
(
1 + t2

) b
2
−1
dt

(2.61)

it is obvious [see (2.43), (2.5)] that if k ∈ N0
2, then Λk(a, b) > 0; if a = 0, k ∈ N1,

then Λk(0, b) = 0; if a ̸= 0 then (2.59) is valid because of inequalities

arccot(−t) > arccott for t ∈]0,+∞[; (2.62)

ea·arccot(−t) − ea·arccott
{
> 0, a > 0;
< 0, a < 0,

t ∈]0,+∞[. (2.63)

In view of (2.61), we have

(k + 1)Λk(a,−k − 1) + aΛk+1(a,−k − 1)

= (k + 1)

+∞∫
0

[
ea·arccot(−t) + (−1)kea·arccott

]
tk
(
1 + t2

) k+1
2

−1
dt

+a

+∞∫
0

[
ea·arccot(−t) + (−1)k+1ea·arccott

]
tk
(
1 + t2

) k+1
2

−1
dt.

Whence, using inequalities (2.62) and (2.63) and separately considering the cases:
a is arbitrary, k ∈ N2; a > 0, k ∈ N1; a < 0, k ∈ N1; a = 0, k ∈ N1 it is easily
seen that (2.60) is valid.

Corollary 2.2.5 For complex numbers a and b the inequality

M(a, b,m) ̸= 0

is valid if and only if when 2− b− 2m± ia∈̄N2 and either Reb > 1−m, m ∈ N0,
a2 + [b + 2(κ − 1)]2 ̸= 0, κ = 1, ...,m; or if a = 0, when Reb > −m, m ∈ N1,
b ̸= 0,−2, ...,−2

(
m−

[
m
2

]
− 1
)
.

If a, b ∈ R1 then
M(a, b,m) ̸= 0

when either a ̸= 0, b > 1−m, m ∈ N0; or a = 0, b ̸= 0,−2, ...,−2
(
m−

[
m
2

]
− 1
)

and either b > 1−m, m ∈ N2 or b > −m, m ∈ N1.
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Proof. According to formula (2.49) and Theorem 2.2.4 it is not difficult to prove
the corollary 2.9. It should be only mentioned that for a, b ∈ R1 the numbers
2− b−2m± ia can not be even positive ones, since when a ̸= 0 it is pure complex
number, while when a = 0 we have 1 − m ≤ 0 and either 1 − b − m < 0, or
1− b−m < 1, i.e, in both the cases 2− b− 2m < 1.
Theorem 2.2.6 For Reb < 1− k and k ≥ 2 we have

Λk(a, b) = −
Λ0(a, b)

(b, k)



k−2
2∑
j=0

(k)
c 2ja

2j − ak, k ∈ N2;

k−3
2∑
j=0

(k)
c 2j+1a

2j+1 + ak, k ∈ N1\{1},

(2.64)

where
(k)
c j are independent of a.

Proof. Let us prove in advance that

Λk(a, b) =
−1

b+ k − 1
[(k − 1)Λk−2(a, b) + aΛk−1(a, b)] , (2.65)

Reb < 1− k, k ∈ N1\{1}.
Indeed,

Λk(a, b) =

+∞∫
−∞

tk−1ea·arccot(−t)d
(1 + t2)

b
2

b

= −1

b

+∞∫
−∞

(k − 1)tk−2ea·arccot(−t)
(
1 + t2

) b
2 dt

−a
b

+∞∫
−∞

tk−1ea·arccot(−t)
(
1 + t2

) b
2
−1
dt

= −k − 1

b
Λk−2(a, b+ 2)− a

b
Λk−1(a, b)

= −k − 1

b
Λk−2(a, b)−

k − 1

b
Λk(a, b)−

a

b
Λk−1(a, b), (2.66)

since, it is easily seen, that

Λk−2(a, b+ 2) =

+∞∫
−∞

tk−2ea·arccot(−t)
(
1 + t2

) b
2 dt

=

+∞∫
−∞

tk−2ea·arccot(−t)
(
1 + t2

) b
2
−1
dt

+

+∞∫
−∞

tkea·arccot(−t)
(
1 + t2

) b
2
−1
dt = Λk−2(a, b) + Λk(a, b). (2.67)
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(2.65) immediately follows from (2.66).
Because of (2.65) we have

Λ2(a, b) = −
1

b+ 1
[Λ0(a, b) + aΛ1(a, b)]

= − 1

b+ 1

[
Λ0(a, b)−

a2

b
Λ0(a, b)

]
= −Λ0(a, b)

b(b+ 1)

(
b− a2

)
; (2.68)

Λ3(a, b) = −
1

b+ 1
[2Λ1(a, b) + aΛ2(a, b)]

= − Λ0(a, b)

b(b+ 1)(b+ 2)

[
−a(3b+ 2) + a3

]
, (2.69)

i.e., formula (2.64) is true for k = 2, 3. Assuming that it is valid for 2, 3, ..., k let
us prove its validity for k + 1.

By virtue of (2.64) and (2.65), for Re b < −k we have

Λk+1(a, b) = −
1

b+ 1
[kΛk−1(a, b) + aΛk(a, b)]

= −Λ0(a, b)

b+ k


− k

(b, k − 1)



k−3
2∑
j=0

(k−1)
c2j a2j − ak−1, k − 1 ∈ N2;

k−4
2∑
j=0

(k−1)
c2j+1 a

2j+1 + ak−1, k − 1 ∈ N1,

− a

(b, k)



k−3
2∑
j=0

(k)
c2j+1 a

2j+1 + ak, k ∈ N1;

k−2
2∑
j=0

(k)
c2j a

2j − ak, k ∈ N2,



= − Λ0(a, b)

(b, k + 1)



k−1
2∑
j=0

(k+1)
c2j a2j − ak+1, k ∈ N1, i.e., k + 1 ∈ N2;

k−2
2∑
j=0

(k−1)
c2j+1 a2j+1 + ak+1, k ∈ N2, i.e., k + 1 ∈ N1,

i.e., formula (2.65) is valid for k + 1.

Remark 2.2.7 It is well known that (see (2.44) and [2], p. 460),

∗
Λ(0, b) =

π∫
0

θ sin−b θdθ = 2b−1π2Γ(1− b)Γ−2

(
1− b

2

)
, (2.70)
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where

Γ(z) :=

∞∫
0

e−ttz−1dt, Rez > 0, (2.71)

is the Euler Gamma function (see (2.43) and [2], pp. 947-951). From (2.54) we
get

Λ(0, b) =

π∫
0

sin−b θdθ

=
2bπ

1− b
B̃−1

(
1− b

2
, 1− b

2

)
=

2bπΓ(2− b)
(1− b)Γ2

(
1− b

2

)
= 2bπΓ(1− b)Γ−2

(
1− b

2

)
, (2.72)

since (see [2], pp. 951 and 964)

Γ(2− b) = (1− b)Γ(1− b) and B̃(a, b) =
Γ(a)Γ(B)

Γ(a+ b)
= B̃(b, a).

From (2.70) and (2.72) it is easy to conclude that
∗
Λ(0, b) =

π

2
Λ(0, b), b < 1. (2.73)

Because of [see (2.43) and [2], p. 490 and also (2.54) for k = 0]

Λ(a, b) =

π∫
0

eaθsin−bθdθ

=
2bπea

π
2

(1− b)B
(2− ia− b

2
,
2 + ia− b

2

) , Re b < 1, (2.74)

whence,
Λ(−a, b) = e−aπΛ(a, b), Re b < 1. (2.75)

From (2.55), (2.56) we conclude

A(c, b) = cot
cπ

2
B(c, b), B(c, b) = tan

cπ

2
A(c, b), Re b < 1. (2.76)

Further, after some transformations we derive

A(c, b) = A(c, b) cos (cπ) + B(c, b) sin (cπ), A(1, b) = 0, Re b < 1,

B(c, b) = A(c, b) sin (cπ)− B(c, b) cos (cπ), Re b < 1.
(2.77)

From (2.76) it follows that for c ̸= ±1,±3, · · ·

George V. Jaiani. Even Order Singular Elliptic Equations



48

A2(c, b) + B2(c, b) = A2(c, b) + tan2 cπ

2
A2(c, b)

= A2(c, b)(1 + tan2 cπ

2
) = A2(c, b)cos−2 cπ

2
, Re b < 1.

(2.78)

Similarly, for c ̸= 0,±2,±4, · · ·

A2(c, b) + B2(c, b) = B2(c, b) sin −2 cπ

2
, Re b < 1. (2.79)

2.3 Mathematical moments

Let f(x1, x2, x3) be a given function in Ω ⊂ R3 having integrable partial deriva-
tives, let ω be the projection on x3 = 0 of Ω bounded by the surfaces x3 =
(+)

h (x1, x2), x3 =
(−)

h (x1, x2), (x1, x2) ∈ ω, and the cylindrical surface paralel to
x3-axis, let fr be its r-th order moment defined as follows

fr(x1, x2) :=

(+)

h (x1, x2)∫
(−)

h (x1, x2)

f(x1, x2, x3)Pr(ax3 − b)dx3, (x1, x2) ∈ ω,

where
a(x1, x2) :=

1

h(x1, x2)
, b(x1, x2) :=

h̃(x1, x2)

h(x1, x2)
,

2h(x1, x2) =
(+)

h (x1, x2)−
(−)

h (x1, x2) > 0,

2h̃(x1, x2) =
(+)

h (x1, x2) +
(−)

h (x1, x2) > 0,

and
Pr(τ) =

1

2rr!

dr(τ 2 − 1)r

dτ r
, r = 0, 1, · · · ,

are the r-th order Legendre polynomials with the orhogonality property
+1∫

−1

Pm(τ)Pn(τ)dτ =
2

2m+ 1
δmn.

From here, substituting

τ = ax3 − b =
2

(+)

h (x1, x2)−
(−)

h (x1, x2)

x3 −
(+)

h (x1, x2) +
(−)

h (x1, x2)
(+)

h (x1, x2)−
(−)

h (x1, x2)

,

we have (
m+

1

2

)
a

(+)

h (x1, x2)∫
(−)

h (x1, x2)

Pm(ax3 − b)Pn(ax3 − b)dx3 = δmn.
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Using the well-known formulas of integration by parts (with respect to x3) and
differentiation with respect to a parameter of integrals depending on parameters
(xα), taking into account Pr(1) = 1, Pr(−1) = (−1)r, we deduce

(+)

h (x1, x2)∫
(−)

h (x1, x2)

Pr(ax3−b)f,3 dx3 = −a

(+)

h (x1, x2)∫
(−)

h (x1, x2)

P ′
r(ax3−b)fdx3+

(+)

f − (−1)r
(−)

f , (2.80)

(+)

h (x1, x2)∫
(−)

h (x1, x2)

Pr(ax3 − b)f,α dx3 = fr,α −
(+)

f
(+)

h ,α + (−1)r
(−)

f
(−)

h ,α

−

(+)

h (x1, x2)∫
(−)

h (x1, x2)

P ′
r(ax3 − b)(a,α x3 − b,α )fdx3, α = 1, 2, (2.81)

where superscript prime means differentiation with respect to the argument ax3−
b, subscripts preceded by a comma mean partial derivatives with respect to the

corresponding variables,
(±)

f := f [x1, x2,
(±)

h (x1, x2)]. Applying the following rela-
tions from the theory of the Legendre polynomials (see e.g. [3], p. 299 or p.
338-339 of the second edition)

P ′
r(τ) =

r∑
s=0

(2s+ 1)
1− (−1)r+s

2
Ps(τ)

1,

τP ′
r(τ) = rPr(τ) + P ′

r−1(τ) = rPr(τ) +
r−1∑
s=0

(2s+ 1)
1 + (−1)r+s

2
Ps(τ)

2 (2.82)

and, in view of a,α
a

= (ln a)′ = −h,α
h
,

a,α
a
b = h̃a,α , b,α= (h̃a),α , it is easily

seen that

P ′
r(ax3 − b)(a,α x3 − b,α ) =

a,α
a
(ax3 − b)P ′

r(ax3 − b) + (
a,α
a
b− b,α )P ′

r(ax3 − b)

= −h,α h−1(ax3 − b)P ′
r(ax3 − b)− h̃,α h−1P ′

r(ax3 − b)

= −r
aαrPr(ax3 − b)−

r−1∑
s=0

r
aαsPs(ax3 − b) 3, (2.83)

1on the top of the symbol
∑

both r − 1 and r are true since the last term equals zero.
2on the top of the symbol

∑
both r − 2 and r − 1 are true since the last term equals zero.

3since
r−1∑
s=0

(2s+ 1)

[
h,α +(−1)r+sh,α

2h
+

h̃,α−(−1)r+sh̃,α
2h

]
Ps(ax3 − b)
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where
r
aαr := r

h,α
h
,

r
aαs := (2s+ 1)

(+)

h ,α−(−1)r+s
(−)

h ,α
2h

, s ̸= r.

Now, bearing in mind (2.83) and (2.82), from (2.80) and (2.81) we have
(+)

h (x1, x2)∫
(−)

h (x1, x2)

Pr(ax3 − b)f,α dx3

= fr,α +
r∑
s=0

r
aαsfs −

(+)

f
(+)

h ,α + (−1)r
(−)

f
(−)

h ,α, α = 1, 2, (2.84)

(+)

h (x1, x2)∫
(−)

h (x1, x2)

Pr(ax3 − b)f,3 dx3 =
r∑
s=0

r
a3sfs +

(+)

f − (−1)r
(−)

f , (2.85)

respectively. Here
r
a3s := −(2s+ 1)

1− (−1)s+r

2h
.

Let

f(x1, x2, x3) =
∞∑
r=0

a
(
r +

1

2

)
fr(x1, x2)Pr(ax3 − b), (2.86)

then
(±)

f := f(x1, x2,
(±)

h (x1, x2)) =
∞∑
s=0

a
(
s+

1

2

)
fs(±1)s

=
∞∑
s=0

(±1)s(2s+ 1)

2h
fs, i = 1, 3, (2.87)

whence
(+)

f − (−1)r
(−)

f = −
∞∑
s=0

r
a3sfs, i = 1, 3, (2.88)

(+)

f
(+)

h ,α−(−1)r
(−)

f
(−)

h ,α=
∞∑
s=0

r

a∗αsfs, i = 1, 3, α = 1, 2, (2.89)

=

r−1∑
s=0

(2s+ 1)

2h

 (+)

h ,α−
(−)

h ,α +
(+)

h ,α (−1)r+s −
(−)

h ,α (−1)r+s

2

+

(+)

h ,α +
(−)

h ,α−
(+)

h ,α (−1)r+s −
(−)

h ,α (−1)r+s

2

Ps(ax3 − b)

=

r−1∑
s=0

(2s+ 1)

(+)

h ,α−(−1)r+s
(−)

h ,α
2h

Ps(ax3 − b)
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where
r

a∗αs =
r
aαs, s ̸= r,

r

a∗αr = (2r + 1)
h,α
h
.

Substituting (2.89) and (2.88) into (2.84) and (2.85), respectively, we get

(+)

h (x1, x2)∫
(−)

h (x1, x2)

Pr(ax3 − b)f,α dx3 = fr,α +
r∑
s=0

r
aαsfs −

∞∑
s=0

r

a∗αsfs

= fr,α +
∞∑
s=r

r

bαsfs, (2.90)

where
r

bjs := −
r
ajs, s > r;

r

bjs = 0, s < r;

r

bαr :=
r
aαr −

r

a∗αr = −(r + 1)

(+)

h ,α−
(−)

h ,α
2h

,
r

b3r = 0,

and
(+)

h (x1, x2)∫
(−)

h (x1, x2)

Pr(ax3 − b)f,3 dx3 =
r∑
s=0

r
a3sfs −

∞∑
s=0

r
a3sfs

= −
∞∑

s=r+1

r
a3sfs, (2.91)

respectively.

If
(+)

f and
(−)

f are known (prescribed), then from (2.84) and (2.85), correspond-
ingly, we obtain

(+)

h (x1, x2)∫
(−)

h (x1, x2)

Pr(ax3 − b)f,α dx3 = fr,α +
r∑
s=0

r
aαsfs

+
(+)

f
(+)
n α

√
1 + (

(+)

h ,1)2 + (
(+)

h ,2)2 + (−1)r
(−)

f
(−)
n α

√
1 + (

(−)

h ,1)2 + (
(−)

h ,2)2 (2.92)

and
(+)

h (x1, x2)∫
(−)

h (x1, x2)

Pr(ax3 − b)f,3 dx3 =
r∑
s=0

r
a3sfs

+
(+)

f
(+)
n 3

√
1 + (

(+)

h ,1)2 + (
(+)

h ,2)2 + (−1)r
(−)

f
(−)
n 3

√
1 + (

(−)

h ,1)2 + (
(−)

h ,2)2, (2.93)
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because of

(±)
n α =

∓
(±)

h ,α√
1 + (

(±)

h ,1)2 + (
(±)

h ,2)2

,
(±)
n 3 =

±1√
1 + (

(±)

h ,1)2 + (
(±)

h ,2)2

.
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Chapter 3

Weighted Boundary Value
Problems for Second Order
Degenerate Partial Differential
Equations

This chapter is, mainly, devoted to the elliptic Euler-Poisson-Darboux (EPD)
equation. This equation has an order degeneration on the straight line y = 0. We
thoroughly study weighted, in general, BVPs for the half-plane and in a finite
domain, containing an interval of line y = 0 as a part of the boundary of the
domain, when on the line of degeneration the m-th order derivative of the regular
solution of EPD equation with the corresponding weight is prescribed. These
weights are dependent on m and on both the constant coefficients a and b of
EPD equation. The explicit integral representation of solutions of the Dirichlet
(m = 0,−∞ < b < +∞) and Neumann (m = 1, 0 < b < +∞) problems were
obtained by G. Jaiani [9], [15]. Later, actually, the same representations were
obtained by O. Marichev [27], where G. Jaiani [9] is cited (see also O.I. Ma-
richev, A. A. Kilbas, O. A. Repin [28]]), using the another method. He addi-
tionally investigated the Neumann problem for −∞ < b ≤ 0. The general case
(m ≥ 0,−∞ < b < +∞) was studied by G. Jaiani [12], [13], [15], [16]. EPD equa-
tion can be considered as a model equation for PDEs of general form with order
degeneration from the point of view of well-posedness of weighted BVPs when the
fixed order of the derivative of the solution assigned on the boundary with the cor-
responding weight is larger, in general, than the order of the degenerate equation
under consideration. Moreover, we investigate the behavior of solutions of BVPs
at the points of discontinuity of the boundary data by approaching them along
different ways. It turns out that the behavior depends on the angle between tan-
gents to the above ways at these points and the x-axis. in the case of the half-plane
we express solutions of the above-mentioned weighted BVPs in explicit integral
forms. In the particular case a = 0, b = 0 these formulas contain the well-known
Poisson integral, representing the regular solution of the Dirichlet problem of
the L’aplace equation for the half-plane. We apply the above-mentioned integral
representation of solutions of BVPs for the half-plane to approximate solving cor-
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responding BVPs in a finite domain when on the curvilinear part of the boundary
of the domain the the homogeneous Dirichlet data are prescribed. Moreover, we
state some results, following immediately from the previous results for a degen-
erate equation that is more general than the EPD equation in two-dimensional
domain and for a degenerate equation in a p-dimensional domain for p > 2. In the
final part of this chapter we study the canonocal form of degenerate equations of
second order in two independent variables. Those contain , in particular, elliptic
equations which may have non-characteristic, characteristic (Keldysh equation),
order and/or type degeneration. We prove a theorem for the above-mentioned
equation, which gives us criteria when the Dirichlet and when the Keldysh prob-
lems are well-posed in the classical sense. From this theorem we obtain Keldysh’
theorem in the case of the Keldysh equation.

3.1 Green’s formula. The correspondence, maximum, and
weighted Zaremba-Giraud principles. Fundamental
solutions depending only on the polar angle

From Green’s general formula if u, ν ∈ C2(G)
⋂
C1(G

⋃
∂G)1 for an arbitrary

bounded domain G ⊂ R2 with a piecewise smooth boundary Γ := ∂G, entirely
contained in R2

+, in the case of the operator

L(a,b)u := yb−1E(a,b)u = (ybux)x + (ybuy)y + ayb−1ux,

we obtain

∫∫
G

(vL(a,b)u− uL(−a,b)v)dG = −
∫
∂G

[
yb
(
ν
∂u

∂v
− u∂v

∂v

)
+ ayb−1uv cos(ν, x)

]
dΓ,

(3.1)
where ν is the inward normal to ∂G, the operator L(−a,b) is conjugate to the
operator L(a,b) and let double integral be convergent, in general, as an improper
one.

Let
Kδ := {(x, y) ∈ KR : y ≥ δ},

and
KR := {(x, y) ∈ R2

+ : x2 + y2 < R2}.

For arbitrarily small δ > 0 the (3.1) is valid for Kδ. In particular, for v ≡ 1
and L(a,b)u = 0 (we denote a solution of the last equation by u(a,b)(x, y)) if we
substitute into (3.1) u2 instead of u we get∫∫

Kδ

yb(u2x + u2y)dKδ = −
∫
∂Kδ

ybu
∂u

∂ν
d∂Kδ +

a

2

∫
CR∩{y≥δ}

yb−1u2dy, (3.2)

1C2 and C1 are the classes of twice and once continuously differentiable functions in G and
G
⋃
∂G, respectively.
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where
CR := {(x, y) ∈ R2

+ : x2 + y2 = R2}.

From the identity
y1−bE(a,2−b)(yb−1u) ≡ E(a,b)u (3.3)

we have the following correspondence principle

u(a,b) = y1−bu(a,2−b). (3.4)

According to correspondence principle (3.4) each solution u(a,b) generates a
solution u(a,2−b) and vice-versa. This principle was proved by A. Weinstein [37]
for the case when a = 0. Where the following second principle is proved as well.

u(0,b)y = yu(0,2+b), (3.5)

is proved as well. (3.5) immediately follows from the identity

∂

∂y

E(0,b)u

y
= E(0,2+b)

(
1

y

∂u

∂y

)
, y ̸= 0. (3.6)

According to the principle (3.5) each solution u(0,b) generates a solution u(0,2+b)

and vice-versa. The validity of the correspondence principles

u(b) = y1−bu(2−b) (3.7)

and
u(b)y = yu(2+b) (3.8)

was shown by Weinstein [38] also for solutions u(b) of the equation

Lbu := uyy +
b

y
uy +X(u) = 0,

where X(u) is an arbitrary linear operator independent of the variable y (clearly,
in particular, X(u) maybe uxx + aux while the last equation is not covered by
equation (1.1)). It is easily seen that from (3.7) it follows (3.4) but from (3.8) it
does not follow (3.5) for a ̸= 0. Evidently,

X(yb−1u) = yb−1X(u) and X

(
1

y

∂u

∂y

)
=

1

y

∂

∂y
X(u).

Hence,

y1−bX(yb−1u) = X(u) and ∂

∂y
X(u) = yX

(
1

y

∂u

∂y

)
.

Now summing, the last identities with the identities (3.3) and (3.6), respec-
tively, we obtain two new identities:

y1−b
(
E(a,2−b) +X

)
(yb−1u) =

(
E(a,b) +X

)
(u)
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and
∂

∂y

(
1

y
E(0,b) +X

)
(u) =

(
E(0,2+b) + yX

)(1

y

∂u

∂y

)
.

which prove that the correspondence principles (3.4) and (3.5) remain true for
solutions of equations (

E(a,b) +X
)
u = 0

and (
E(0,2+b) + yX

)
u = 0,

respectively.
In the polar coordinate system with the pole at the point (x, y) = (ξ, 0)

ρ ≡ ρξ :=
√

(x− ξ)2 + y2, θ := arg z = arc ctg
x− ξ
y

(z := x+ iy ≡ (x, y)) ∈ R2
+, a fixed ξ ∈ R1)

EPD equation (1.1) has the form

ρ2
∂2w

∂ρ2
+ ρ

∂w

∂ρ
+
∂2w

∂θ2
+ aρ ctg θ

∂w

∂ρ
− a∂w

∂θ
+ bρ

∂w

∂ρ
+ b ctg θ +

∂w

∂θ
= 0.

From here it is clear that solutions depending only on θ satisfy the equation

∂2w(θ)

∂θ2
+ (b ctg θ − a)dw(θ)

dθ
= 0,

i.e.
∂

∂θ
ln
dw(θ)

dθ
≡ a− bctgθ, ln

dw(θ)

dθ
=

θ∫
θ0

(a− bctgθ)dθ + lnC3,

dw(θ)

dθ
= exp

[ θ∫
θ0

(a− bctgθ)dθ + lnC3

]
= C3 exp

[
a(θ − θ0)− b ln sin θ

]
= C1e

aθ sin−b θ, C1 := C3e
−aθ0 ,

and have the form

C1Ω(θ; θ0, a, b) + C2, C1, C2 = const , (3.9)

where θ0 ∈]0, π[ and

Ω(θ, θ0, a, b) :=

θ∫
θ0

eaτ sin−b τdτ.

We can immediately verify that the expression
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d

dξ
Ω(θ; θ0, a, b) =

eaθ sin1−b θ

ρ
= y1−beaθρb−2 2 (3.10)

is a solution of equation (1.1) in R2
+ for a fixed ξ ∈ R1. If we replace in (3.10)

”b” by ”2− b” then, clearly, we get solution u(a,2−b) = yb−1eaθρ−b. Therefore, the
first correspondence principle (3.4) gives another solution of equation (1.1)

eaθρ−b. (3.11)

If b ∈]−∞, 1[, in the particular case

C1 = 1, C2 = 0, θ0 = 0

(3.9) has the form

Ω(x− ξ, y) := Ω(θ; 0, a, b) =

θ∫
0

eaτ sin−b τdτ. (3.12)

Whence,

Ω(θ; 0, a, b)|y=0 =

 0, when x > ξ,

Λ(a, b) :=
π∫
0

eaτ sin−b τdτ, when x < ξ,

since
lim
y→0+

θ = lim
y→0+

arc ctg
x− ξ
y

=

{
0, when x > ξ,
π, when x < ξ.

It is easily seen that

Ω(θ; θ0, a, b) = O(1), θ → 0+, π−, (3.13)
when

θ0 ∈ [0, π], z ∈ R2
+, ξ ∈ R1, b ∈]−∞, 1[;

Ω(θ; θ0, a, b) =



O(ln θ), θ → 0+,

O(ln(π − θ)), θ → π−,

O(ln |ξ|), |ξ| → +∞,

O(ln |t|), |t| → +∞,

(3.14)

2

sinα ≡ sin θ =
y

ρ

∂θ

∂ξ
=

y

ρ2

∂θ

∂y
=

x− ξ

ρ2
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when

θ0 ∈]0, π[, z ∈ R2
+, ξ ∈ R1, b = 1;

Ω(θ; θ0, a, b) =



O(θ1−b), θ → 0+,

O((π − θ)1−b), θ → π−,

O(|ξ|b−1), |ξ| → +∞,

O(|tb−1|), |t| → +∞,

(3.15)

when
θ0 ∈]0, π[, z ∈ R2

+, ξ ∈ R1, b ∈]1,+∞[.

Indeed, if b ∈]−∞, 1[, then, keeping in mind (2.43), (2.42), (2.5),

Ω(θ0; 0, a, b) ≤ Λ(a, b) = const ;

if b = 1, then

lim
θ→0+

Ω(θ; θ0, a, 1)

ln θ
= lim

θ→0+

eaθ sin−1 θ

θ−1
= 1,

lim
θ→π−

Ω(θ; θ0, a, 1)

− ln(π − θ)
= lim

θ→π−

eaθ sin−1 θ

(π − θ)−1
= lim

θ→π−

eaθ sin−1(π − θ)
(π − θ)−1

= eaπ;

if b ∈]1,+∞[, then

lim
θ→0+

Ω(θ; θ0, a, b)

θ1−b

1− b

= lim
θ→0+

eaθ sin−b θ

θ−b
= 1,

lim
θ→π−

Ω(θ; θ0, a, b)

(π − θ)1−b

b− 1

= lim
θ→π−

eaθ sin−b θ

(π − θ)−b
= lim

θ→π−

eaθ sin−b(π − θ)
(π − θ)−b

= eaπ.

Further, taking into account

θ|ξ=x+yt = arc ctg
x− ξ
y

∣∣∣∣
ξ=x+yt

= arc ctg (−t), z ∈ R2
+, ξ, t ∈ R1, (3.16)

lim
ξ→−∞
θ→−∞

θ = 0, lim
ξ→+∞
θ→+∞

(π − θ) = 0, z ∈ R2
+, (3.17)

we have

lim
ξ→−∞

θ

−yξ−1
= lim

ξ→+∞

y

(x− ξ)2 + y2

yξ−2
= lim

ξ→+∞

1(
x
ξ
− a
)2

+
(
y
ξ

)2 = 1,
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lim
t→−∞

θ

−t−1
= lim

t→−∞

1

1 + t2

t−2
= 1,

lim
ξ→+∞

π − θ
yξ−1

= lim
ξ→+∞

−y
(x− ξ)2 + y2

−yξ−2
= 1,

lim
ξ→+∞

π − θ
t−1

= lim
ξ→+∞

−1
1 + t2

−t−2
= 1,

using these equalities, we obtain

lim
ξ→−∞

ln θ

− ln(−ξ)
= lim

ξ→−∞

1

θ
· y

(x− ξ)2 + y2

−ξ−1
= lim

ξ→−∞

−1
yξ−1

· y

(x− ξ)2 + y2

−ξ−1
= 1,

lim
t→−∞

ln θ

− ln(−t)
= lim

t→−∞

1

θ
· 1

1 + t2

−t−1
= 1,

lim
ξ→+∞

ln(π − θ)
− ln ξ

= lim
ξ→+∞

1

(π − θ)
· −y
(x− ξ)2 + y2

−ξ−1
= 1,

lim
t→+∞

ln(π − θ)
− ln t

= lim
t→+∞

1

(π − θ)
· −1
(1 + t2)

−t−1
= 1.

From the above assertions there follow (3.14),(3.15).
Let

u(z) := u(x, y).

Maximum Principle 3.1.1 If u ∈ C2(R2
+)
⋂
C(R2

+

⋃
R1) is a solution of (1.1)

and

u =

{
O(1), r → +∞, when or a ∈ R1, b ∈]−∞, 0[, or a = 0, b = 0;

o(1), r → +∞, when or a ∈ R1, b ∈]0, 1[, or a ̸= 0, b = 0,

then
sup

z∈R2
+∪R1

|u(z)| = sup
x∈R1

|u(x, 0)|. (3.18)

Proof. Let b ∈ [0, 1[ and ε > 0 is less than the value of |u| at a certain point
(x0, 0). Let us choose so large R that the half-circle K̄R contain the above point
and |u(z)| < ε in R̄2

+\KR. Then

max
R2
+∪R1
|u(z)| = max

K̄R

|u(z)| = max
∂KR

|u(z)| = max
[−R,+R]

|u(x, 0)| = max
R1
|u(x, 0)|. (3.19)
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Let now, b ∈]−∞, 0[,
M := sup

R1

u(x, 0).

Let us fix ϵ > 0 and consider

U(z) =M + εea
0
θr−b,

0

θ := arc ctg
x

y
.

By virtue of (3.11), U(z) satisfies equation (1.1) in R2
+. Evidently,

lim
r→+∞

U(z) = +∞.

Let us choose R so large that on the boundary of the half-circle KR the difference

U(z)− u(z)

be nonnegative. We can it always achieve on the segment [−R,R] since

U(x, 0) =M + εea
∗
θ|x|−b ≥M ≥ u(x, 0),

∗
θ =

{
π, x < 0,
0, x > 0,

while on the half-circle CR, in view of boundedness of u, by means of appropriate
choice of R we will have

U(z) ≥ u(z).

Therefore, according to the strong extremum principle for the elliptic equations
(see e.g. [7], p.74) we conclude that at any point of KR the function U(z)− u(z)
is nonnegative. Hence, since by fixed z and ε → 0 function U(z) → M , at any
point of the half-circle KR we have

u(z) ≤M.

By virtue of the strong extremum principle, nonconstant function u(z) at
points of domain KR cannot take its maximal value M . Therefore, we have
strong inequality

u(z) < M in KR. (3.20)
Since for any point z ∈ R2

+ we can choose a half-circle KR containing z, the
equality (3.20) is valid in R2

+.
If

m := inf
R1
u(x, 0),

then
−m = sup

R1

[−u(x, 0)]

and, according to the above proved, we get

−u(z) < −m when z ∈ R2
+,

i.e.,
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m < u(z) when z ∈ R2
+. (3.21)

From (3.20), (3.21) we conclude

|u(z)| < max{|m|, |M |}, when z ∈ R2
+.

But the last relation and relation (3.18) are equivalent.

The case a = b = 0 is classical one (see, e.g., [24], p.83).
Let S be simply connected domain with the boundary ∂S = ς

⋃
I, where ς

is the Jordan open arc lying in R2
+ with the ends ς1 := (ξ1, 0), ςn := (ξn, 0) and

Ī := [ξ1, ξn] is the segment of the axis R1.
Generalized Weighted Zaremba-Giraud Principle 3.1.2 Let function u ∈
C2(S)

⋂
C(S̄) satisfy the inequality

E(a,b)u ≥ 0(≤ 0), b ∈]0, 1[,

and attains maximal positive (minimal negative) value at an inner point x0 ∈ I,
i.e.,

u|ς̄ < (>) u(x0, 0).

Then

lim
x→x0

(−1)j−1yb+j−1∂
ju(z)

∂yj
< 0 (> 0), z ∈ R2

+, j = 1, ..., l, l ∈ N,

provided,

yb+l−1∂
lu

∂yl
∈ C(SUI).

Proof. Let first, l = 1. Without loss of generality we assume that

u(x0, 0) = 1

is a maximal value. Evidently,

lim
z→x0

yb
∂u

∂y
> 0. (3.22)

is excluded. Let

lim
z→x0

yb
∂u

∂y
= 0. (3.23)

By change of variables

x = ξ, y =
η

m+2
2

m+2
2

, , η > 0, m =
2b

1− b
,

(
b =

m

m+ 2

)
0 < b < 1 (m > 0),

the operator E(a,b) takes the form

E(a,b)u =
2

m+ 2
η1−m/2

∼
E

∼
u,
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where
∼
E

∼
u := ηm

∼
u ξξ +

∼
u ηη +

m+ 2

2
aη

m
2
−1 ∼
u ξ,

∼
u(ξη) := u

(
ξ,
η

m+2
2

m+2
2

)
. (3.24)

According to the conditions of Principle 3.1.2 and (3.18), we obtain

∼
E

∼
u ≥ 0,

∼
u(x0, 0) = 1, lim

(ξ,η)→(x0,0+)

∂
∼
u

∂η
= 0. (3.25)

Let us consider the function (compare with [32], p.34)

ν(ξ, η) =
ε
∼
u(ξ, η)

e
∼
A − εeη

,

where
∼
A is the maximum of ordinates of points of the image

∼
ζ of the arc ζ. Since

the point (x0, 0) does not coincide with the ends of the arc
∼
ζ , by our assumption,

max
∼
ζ̄

∼
u ≤ 1− ε, 0 < ε = const < 1.

Therefore,

ν| ∼
ζ̄
≤ ε(1− ε)
e

∼
A − εe

∼
A

=
ε

e
∼
A
<

ε

e
∼
A − ε

,

ν|I\{x0} =
ε
∼
u(x, 0)

e
∼
A − ε

≤ ε

e
∼
A − ε

, ν(x0, 0) =
ε

e
∼
A − ε

.

(3.26)

By virtue of the first relation of (3.25), taking into account (3.24),

ηmνξξ + νηη +
m+ 2

2
aη

m
2
−1νξ −

2εeη

e
∼
A − εeη

νη −
εeη

e
∼
A − εeη

≥ 0.

whence, bearing in mind the weak maximum principle for elliptic equations (see
[7], p.75) ν attains a positive maximum on the boundary ∂S, i.e. by (3.26), at
point (x0, 0).

On the other hand, in view of (3.25),

lim
(ξ,η)→(x0,0+)

∂ν

∂η
= lim

(ξ,η)→(x0,0+)

 ε

e
∼
A − εeη

∂
∼
u

∂η
+

ε2eη(
e

∼
A − εeη

)2 ∼
u

 =
ε2(

e
∼
A − ε

)2 > 0.

But it contradicts with the fact that ν attains its positive maximum at point
(x0, 0). Thus, along with (3.22) also (3.23) is excluded and remains only

lim
z→x0

yb
∂u

∂y
< 0.3

3by deriving this inequality b = 0 is also admissible.
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The case of a negative minimum can be reduced to the previous case consid-
ering the function −u(x, y). So, the principle is proved in the case l = 1.

Using Theorem 2.1.1, the validity of the principle for the arbitrary l follows
from the following equalities

lim
z→x0

yb
∂u

∂y
=
−1
b

lim
z→x0

∂2u
∂y2

y−b−1
=

(−1)j−1

(b, j − 1)
lim
z→x0

yb+j−1∂
ju

∂yj

=
(−1)l−1

(b, l − 1)
lim
z→x0

yb+l−1∂
lu

∂yl
,

since the last limit exists according to the corresponding condition of the principle
and (b, j − 1) := b(b+ 1) · · · (b+ j − 2) > 0 for j = 2, ..., l.

Maximum Principle 3.1.3 Let b ∈]0, 1[. If u ∈ C2(S)
⋂
C
(
S ∪ ∂S \

∗
I
)
(
∗
I ⊂

Ī ,
∗
I is a finite set of first kind discontinuity points ξj of function u(ζ), ζ ∈ ∂S),

then
sup

z∈S∪∂S\
∗
I

|u(z)| = sup
ζ∈ ∂S\

∗
I

|u(ζ)|. (3.27)

This equality is also valid for S ≡ R2
+ under additional condition

lim
|z|→∞

u(x) = 0, z ∈ R2
+. (3.28)

Proof. Let
M := sup

ζ∈ ∂S\
∗
I

u(ζ).

Fix arbitrary positive ε and consider the function

U(z) =M + ε
n∑
j=1

ea·arctg
x−ξj

y ρ−bj ,

where
ξj ∈

∗
I, ρ2j := |z − ξj|2, j = 1, n.

U(z), by virtue of (3.11), satisfies equation (1.1), is greater thanM and continuous
in S∪∂S\

∗
I ; moreover, when z approaches ξj, U(z) tends to +∞. Circumscribe at

all the points ξj semi-circles in R2 with sufficiently small radius δ. Denote by
∼
S δ

a domain which we obtain as an intersection of all the corresponding semi-discs
with the domain S. The difference U(z) − u(z) is nonnegative on the common
boundary of S and

∼
S δ. It is also nonnegative on the above semi-circles with the

radius δ for sufficiently small δ4, since u(z) is bounded and values of U(z) are
unboundedly increasing on semi-circles by δ → 0. Therefore, bearing in mind
the strong maximum principle (see, Maximum Principle 3.1.1), we conclude that

4If we had for points ξj difference δj then we took = δ := min
j
{δj} the last minimum exists

since we have a finite number of points ξj .
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at any point of
∼
S δ and, hence, of S (since any point of S belongs to

∼
S δ for

sufficiently small δ) the function U(z) − u(z) is nonnegative. But for a fixed z
and ε→ 0, U(z)→M . Then

u(z) ≤M

and according to the weak maximum principle,

u(z) < M.

If
m := inf

ζ∈ ∂S\
∗
I

u(ζ),

then
−m := sup

ζ∈ ∂S\
∗
I

[−u(ζ)]

and accordng to the above-proved,

−u(z) < −m when z ∈ S.

Hence,
u(z) > m when z ∈ S.

Thus,

m < u(z) < M when z ∈ S.
Finally,

|u(z)| < max{|m|, |M |}, when z ∈ S,
which is equivalent to (3.27). So, we have proved Maximum Principle 3.1.3 for
the finite domain S.

Let us now consider the case of the half-plane R2
+. For arbitrary

ε ∈

0, sup
ζ∈R1\

∗
I

|u(ζ)|

 ,
in view of (3.28), we can find such a large R, that all

ξj ∈
−
KR,

where
KR := {(x, y) : R2

+ : x2 + y2 < R2}
and

|u(z)| < ε when z ∈
−
R2

+ \KR. (3.29)
On the other hand, using Maximum Principle 3.1.3 for the finite domain, we have

sup

z∈
−
KR\

∗
I

|u(z)| = sup
ζ∈ ∂KR\

∗
I

|u(ζ)|. (3.30)
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From (3.29) and (3.30) there follows

sup
z∈R2

+∪R1\
∗
I

|u(z)| = sup

z∈
−
KR\

∗
I

|u(z)| = sup
ζ∈ ∂KR\

∗
I

|u(ζ)| = sup
ζ∈R1\

∗
I

|u(ζ)|.

Maximum Principle 3.1.4 Let a = b = 0. If bounded u ∈ C2(S)
⋂
C
(
S∪∂S\

∗
I
)

is a solution of equation (1.1) (which in this case becomes Laplace equation for
y ̸= 0), then the relation (3.27) holds. The case S ≡ R2

+ is admissible as well.

Proof. For a finite S the proof of this principle there follows from the extremum
principle proved in M.A. Lavrentyev and B.V. Shabat [26] (see p.211, Theorem 5):

If in S bounded harmonic function u(z) on the boundary ∂(S) takes the piece-
wise continues values u(ζ) with a finite number of the first kind discontinuity
points ζk, k = 1, n, then inside S the values of u(z) are confined between minimal
and maximal values of u(ζ) (one-sided values of u(ζ) at points of discontinuity
ζk, k = 1, n, are not considered).

In the case of R2
+ it can be proved by means of the function

ν =M + ε ln
[
x2 + (y + 1)2

] 1
2 ,

using the method developed by proof of Maximum Pinciple 3.1.3.

3.2 The weighted Dirichlet problem in the half-plane

Let in this section a and b be complex numbers. By y → 0+ as functions of y
solutions of equation (1.1), which have not isolated singularities on the straight
line y = 0, principally behave as solutions of the ordinary differential equation
(ODE)

yu′′(y) + bu′(y) = 0 (3.31)
It is easily seen that general solution of equation (3.31) has the form

u(y) =

{
C1y

1−b + C2, when b ̸= 1;

C1 ln y + C2, when b = 1,

where C1 and C2 arbitrary complex constans. Therefore, the solutions for y → 0+
behave as follows:

(i) for Reb ∈]−∞, 1[ all the solutions are modulo bounded;
(ii) for b = 1 among them there exist unbounded solutions, while all the

solutions multiplied by (ln y)−1 are bounded;
(iii) for Reb ∈]1,+∞[ among them there exist unbounded solutions, while all

the solutions multiplied by yb−1 are bounded.
Bearing in mind the above assertions, set the following weighted Dirichlet

problem:
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Problem 3.2.1. In R2
+ find u ∈ C2(R2

+), satisfying equation (1.1) and one from
the following boundary conditions:

lim
z→x0

u(z) = f(x0) when Reb ∈]−∞, 1[; (3.32)

lim
z→x0

(− ln y)−1 u(z) = −f(x0) when b = 1, (3.33)

lim
z→x0

yb−1u(z) = f(x0) when Reb ∈]1,+∞[, (3.34)

where z ∈ R2
+, x0 ∈ R1 \

∗
I , f is piecewise continuous, bounded, in general

complex-valued function defined on R1,
∗
I is a set of points of discontinuity of

function f .

Remark 3.2.2 Evidently, the corresponding to Problem 3.2.1 BVPs for ODE
(3.31) are explicitly solvable except for Reb = 1, Imb ̸= 0. Also in the last case
the general solution

C1y
−iImb + C2 = C1(e

ln y)−iImb + C2 = C1e
−iImb ln y + C2

= C1[cos(Imb ln y)− i sin(Imb ln y)] + C2

is bounded, while its limit does not exist by y → 0+, since it is oscillating solution.
Therefore, it does not exist a solution taking prescribed value for y = 0. More
precisely, if we take C1 = 0, we arrive at the trivial, i.e., insignificant solution of
BVP, when the prescribed constant value at y → 0+ itself will be solution.

Theorem 3.2.3 A solution of Problem 3.2.1 has the form

y1−b

Λ(a, b)

∞∫
−∞

f(ξ)eaθρb−2dξ, Reb ∈]−∞, 1[, Λ(a, b) ̸= 0 [see(2.59)]; (3.35)

1

1 + eπ

∞∫
−∞

f(ξ)eaθρ−1dξ, b = 1; (3.36)

1

Λ(a, 2− b)

∞∫
−∞

f(ξ)eaθρ−bdξ, Reb ∈]1,∞[, Λ(a, 2− b) ̸= 0 [see(2.59)], (3.37)

where for b = 1 the function f should satisfy a condition ensuring convergence of
the integral (3.36), e.g., the condition

f(ξ) = O(|ξ|−ε), |ξ| → ∞, ε = const > 0.
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Proof. Function [see (3.10)]

y1−beaθρb−2 (3.38)
is a solution of equation (1.1) for complex constants a and b too.

Let us consider the integral (3.35). Since Reb < 1, it can be shown that the
integral (3.35), its derivatives of any order with respect to x and y are absolutely
and uniformly convergent in any bounded closed domain lying in R2

+.
Hence, the integral (3.35) represents a solution of equation (1.1) since the inte-

grand coincides with the solution (3.38) multiplied by f(ξ)

Λ(a, b)
. After substitution

[see (3.16)] ξ = x+ yt from (3.35) we obtain

u(x, y) =
1

Λ(a, b)

+∞∫
−∞

f(x+ yt)ea·arc ctg (−t)(1 + t2)
b
2
−1dt.

Whence,

|u(x, y)| ≤ M

|Λ(a, b)|

+∞∫
−∞

ea·arc ctg (−t)|(1 + t2)
b
2
−1|dt = MΛ(Re a,Re b)

|Λ(a, b)|
,

where

M := sup
ξ∈R1

|f(ξ)|. (3.39)

Evidently,

u(x, y)− f(x0) =
1

Λ(a, b)

+∞∫
−∞

|f(x+ yt)− f(x0)|ea·arc ctg (−t)(1 + t2)
b
2
−1dt, (3.40)

here x0 is a point of continuity of the function f .
Because of (3.39), we have

|f(x+ yt)− f(x0)| < 2M when z ∈ R+
2 , x0, t ∈ R1.

Assume ε > 0 arbitrary small. Then, by virtue of uniform convergence of the
integral (3.40), with respect to z ∈ R2

+, x0 ∈ R1, there exists sufficiently large
R(ε) > 1 such that

2M

|Λ(a, b)|

−R∫
−∞

eRe a·arc ctg (−t)(1 + t2)
Re b
2

−1dt <
ε

3
,

2M

|Λ(a, b)|

+∞∫
R

eRe a·arc ctg (−t)(1 + t2)
Re b
2

−1dt <
ε

3
.

(3.41)
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Since the function f is continuous at the point x0, we can find such a δ1(ε, x0)
that

|f(x+ yt)− f(x0)| <
ε

3

|Λ(a, b)|
|Λ(Rea,Reb)|

, when |x+ yt− x0| < δ1.

Now if |t| < R, |x− x0| < δ and 0 < y < δ, where

δ =
δ1
2R

<
δ1
2
,

we have

|x+ yt− x0| ≤ |x− x0|+ y|t| < δ + δR <
δ1
2
+

δ1
2R

R = δ1,

i.e.,

|f(x+ yt)− f(x0)| <
ε

3

|Λ(a, b)|
|Λ(Re a,Re b)|

when |t| < R, |x− x0| < δ, 0 < y < δ.

(3.42)
If we present the integral (3.35) as a sum of three integrals with integration limits
−∞,−R; −R,+R; +R,+∞, according to the inequalities (3.41) and (3.42),
we get

|u(x, y)−f(x0)| <
2ε

3
+

ε

3Λ(Re a,Re b)

+∞∫
−∞

eRe a·arc ctg (−t)(1+t2)
Re b
2

−1dt = ε, (3.43)

when |x− x0| < δ(ε, x0), 0 < y < δ(ε, x0), i.e., the expression (3.35) satisfies BC
(3.32).
Remark 3.2.4 If function f is uniformly continuous on R1, then inequality (3.43)
will be fulfilled uniformly. Therefore, by z → x0 the integral (3.35) tends to f(x0)
uniformly.
Remark 3.2.5 For a = 0, b = m

m+2
, m = const > 0 from (3.35) we obtain

the well-known result of I. Vekua [34] for the Gellerstadt equation, i.e. for
homogeneous equation with the operator (3.24) with a = 0 on the left-hand side.
Remark 3.2.6 If f is a piecewise constant function with complex values c1, c2, ...,
cn correspondingly on intervals (−∞, x1), (x1, x2), ..., (xn,+∞), (xi < xi+1, i =
1, ..., n − 1), then in view of (3.10), (3.12), from (3.35) we obtain (compare with
I. Vekua [34])

u(x, y) =
1

Λ(a, b)

c1
x1∫

−∞

d

dξ
Ω(x− ξ, y)dξ + c2

x2∫
x1

d

dξ
Ω(x− ξ, y)dξ

+...+ cn+1

+∞∫
xn

d

dξ
Ω(x− ξ, y)dξ

 =

{
1

Λ(a, b)
{c1Ω(x− x1, y)

+cn+1[Λ(a, b)− Ω(x− xn, y)] +
n∑
k=2

ck[Ω(x− xk, y)− Ω(x− xk−1, y)]

}
.
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Here we have taken into account (3.12) and (3.17), i.e.,

lim
ξ→−∞

Ω(x− ξ, y) =
0∫

0

eaτ sin−bτdτ = 0,

and

lim
ξ→+∞

Ω(x− ξ, y) =
π∫

0

eaτ sin−bτdτ = Λ(a, b).

Let us now consider the integral (3.36). Evidently, it satisfies equation (1.1) and,
bearing in mind Remark 2.1.4, BC (3.33). Indeed,

lim
z→x0

(
ln

1

y

)−1
1

1 + eaπ

+∞∫
−∞

f(ξ)eaθρ−1dξ =
−y

1 + eaπ
lim
z→x0

+∞∫
−∞

f(ξ)[a(x−ξ)−y]eaθρ−3dξ

=
1

1 + eaπ
lim
z→x0

+∞∫
−∞

f(x+ yt)(at+ 1)ea·arc ctg (−t)(1 + t2)−
3
2dt = f(x0),

since according to (2.54) and (2.53),

+∞∫
−∞

ea·arc ctg (−t)(at+ 1)(1 + t2)−
3
2dt = aΛ1(a,−1) + Λ(a,−1)

= (a2 + 1)Λ(a,−1) = (a2 + 1)

π∫
0

eaθ sin θdθ = 1 + eaπ,

because of
π∫

0

eaθ sin θdθ =
eaπ + 1

a2 + 1
,

which is easily seen5

Finally, let Re b > 1. Introduce a new unknown function

U(z) = yb−1u(z). (3.44)
5Indeed,

I =

π∫
0

eaθ sin θ =
1

a

π∫
0

sin θdeaθ = sin θeπθ
∣∣∣π
0
− 1

a

π∫
0

eaθ cos θdθ

= − 1

a2

π∫
0

cos θdeaθ = − 1

a2

[
cos θeaθ

∣∣∣π
0
+

π∫
0

eaθ sin θdθ
]

= − 1

a2

[
(−eaπ − 1) + I

]
=

eaπ + 1

a2
− 1

a2
I.
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By virtue of the correspondence principle (3.4) and (3.39), we see that the function
U(z) satisfies equation

E(a,b∗) = 0, b∗ = Re(2− b) < 1, (3.45)

and BC

lim
z→x0

U(z) = f(x0), z ∈ R2
+, x0 ∈ R1\

∗
I .

After representation of a solution of the last BVP by means of the formula
(3.35), where ”b” should be replaced by ”2− b” and returning via equality (3.44)
to u(z) we get (3.37).

Remark 3.2.7 Let a, b ∈ R1. Then

Λ(a, b) ̸= 0 (b < 1), Λ(a, 2− b) ̸= 0 (b > 1)

If a, b∈̄R1, i.e., they are complex numbers, the expressions (3.35) and (3.37)
will have sense if and only if b ± ia∈̄N2 (see Theorem 2.2.4). If a ∈ R1, then
1 + eaπ ̸= 0 and the expression (3.36) has a sense. If a∈̄R1, then the expression
(3.36) will have sense if and only if

a ̸= (2k + 1)i,

when k is an arbitrary integer.

3.3 The weighted Neumann type problem in the half-
plane

The limit as y → 0+ of the m-th order derivative of the general solution of
equation (3.31)

dmu(y)

dym
=

(−1)mC1(b− 1,m)y1−b−m for b ̸= 1, 0,−1, , 2−m, when m ≥ 1;
(−1)m−1C1(b− 1,m)y−m for b = 1, when m ≥ 1;
0 for b = 0,−1, , 2−m, when m ≥ 2,

(3.46)

does not give so complete information about the behaviour by y → 0+ of the
m-th order derivative

∂mu(x, y)

∂ym

of the solution of equation (1.1) as we it had in the case of the behaviour by
y → 0+ of the solution u(x, y) of equation (1.1).

As it will be shown below the behaviour of ∂mu(x,y)
∂ym

as y → 0+ depends not
only on values of b but also on the coefficient a and oddness and evenness of
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m. Therefore, in this sense (1.1) becomes a model equation for PDEs with order
degeneration. Nevertheless, some preliminary conclusions we are able to make
according to (3.46), all the m-th order derivatives for y → 0+ behave as follows:

(i) if b ∈]−∞, 1−m[ , all become zero (under assumption of boundedness of
solutions at infinity all the derivatives are identically zero for 0 ≤ y < +∞);

(ii) if b = 1 − m, all are constants (under assumption of boundedness of
solutions at infinity all the derivatives are identically zero for 0 ≤ y < +∞);

(iii) if b ∈]1 − m,+∞[ , b ̸= 0,−1, ..., 2 − m, all are unbounded (under as-
sumption of boundedness of solutions at infinity all the derivatives are identically
zero for 0 ≤ y < +∞), provided b ∈]−∞, 1[.

On the other hand all the m-th order derivatives multiplied by yb+m−1 remain
bounded, while for b = 0,−1, ..., 2−m, m ≥ 2 they are identically zero. Thus, if
b ∈]1 −m,+∞[ ∩ ]1,+∞[ ≡ ]1,+∞[ only one thing is clear that as the weight
of the m-th order derivative of the solution of equation (1.1) will serve ym+b−1.
when y → 0+.

In this section, by means of solutions of the form (3.10) and (3.11) we construct
solutions of equation (1.1) in R+

2 , when on the boundary m-th order derivative of
the solution with the corresponding weight is prescribed. More general problems
for non-degenerate PDEs of the canonical form are studied by I. Vekua (see [35],
p. 113 and pp. 138-149, and also analogues problems in works of I. Vekua [33]
and N. Muskhelishvili [31], p. 260).

Let us consider the n-th order antiderivative of the function f(ξ)

f (−m)(ξ) :=

ξ∫
ξ0

(ξ − τ)m−1

(m− 1)!
f(τ)dτ +

m−1∑
k=0

ckξ
k, ξ0, ξ ∈ R1,

where
ck = const , m ∈ N0, f (0)(ξ) := f(ξ),

f is an integrable on ]ξ0, ξ[ function. We denote by f
∗

(−m) bounded functions

among functions f (−m) and by f
0

(−m) vanishing as |ξ| → +∞ functions.
Let us introduce the following function classes:
Cm(G) is a set of functions with continuous partial derivatives of order ≤ m

in G⊆Rp;
C
∗
m(G) ⊂ Cm(G) is a subset of bounded functions with bounded partial

derivatives;
C0(G) := C(G) is a set of continuous in G functions;
C
∗
−m, m ∈ N, is a set of continuous and bounded functions in R1 with f

∗

(−j),

j = 1, . . . ,m;

C
0

−m ⊂ C
∗
−m, m ∈ N, is a set of functions f with f

0

(−m);

C
∗
≡ C

∗
0 ⊃ C

0

0 is a set of continuous and bounded functions.

Tm
(
γm(y), G,

∗
I
)
, G⊆R2

+, m ∈ N0, is a class of functions

u ∈ C2(G)\C(Ḡ\
∗
I ∩ R2

+),
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satisfying equation (1.1) in G and the following condition: bounded in neighbor-
hoods of points of a set

∗
I ⊂ ∂G\R1 of finite number of isolated points function

γm(y)
∂mu

∂ym
∈ C((Ḡ\

∗
I) ∩ R2

ε)

where

R2
ε := {(x, y) : x ∈ R1, 0 ≤ y ≤ ε = const < 1},

γm(y) :=



1 when (a, b) ∈ i1,m ∪ i6,m,

y−1 when (a, b) ∈ i5,m

(y ln 1
y
)(−1) when (a, b) ∈ i4,m

(ln 1
y
)(−1) when (a, b) ∈ i3,m,

yb+m−1 when (a, b) ∈ i2,m;

i1,m :=
{
(a, b) : b ∈]−∞, 1−m[ ∧ a ̸= 0, m ∈ N0 ∨ a = 0, m ∈ N0

2

}
;

i2,m := {(a, b) : b ∈]−m, 1−m[, a = 0, m ∈ N1 ∨

b ∈ ]1−m,+∞[, m ∈ N0 ∧ a ̸= 0 ∨ a = 0, b ̸= −2n > 1−m, n ∈ N0

(i.e., b ̸= 0,−2, ...,−2(m−
[m
2

]
− 1) for m ∈ N\{1})};

i3,m =
{
(a, b) : b = 1−m ∧ a ̸= 0, m ∈ N0 ∨ a = 0, m ∈ N0

2

}
;

i4,m := {(a, b) : a = 0, b = −m, m ∈ N1};

i5,m := {(a, b) : a = 0, b ∈]−∞,−m[, m ∈ N1};

i6,m := {(a, b) : a = 0, b = −2n ≥ 1−m, n ∈ N0, m ∈ N

(i.e., b = 0,−2, ...,−2(m−
[m
2

]
− 1) for m ∈ N\{1})};

N := {1, 2, ...}, N0 := N ∪ {0}, N1 := {1, 3, ...}, N2 := {2, 4, ...}, N0
2 := N2 ∪ {0},

∧ is conjunction, ∨ is disjunction.
∗
I may be an empty set as well.

We introduce the following classes of functions as well:

Tm (γm(y), G) := Tm (γm(y), G,∅) ;

Tm (γm(y)) := Tm
(
γm(y),R2

+

)
;

Tmn (γm(y)) ⊂ Tm(γm(y)) , m ∈ N0, n ∈ N, be a class of functions u(x, y) with
properties u ∈ C

(
R2

+

⋃
R1
)
and u(x, 0) ∈ C

∗
n (R1);

Tmn
0

(γm(y)) ⊂ Tmn (γm(y)) , n ∈ N, be a class of functions u(x, y) with
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lim
|x|→+∞

u(x, 0) = 0;

Tm0
0

(γm(y)) ⊂ Tm0 (γm(y)) ⊂ Tm (γm(y)) .

Let

f(ξ) ∈



C
∗
−m when (a, b) ∈ i1,m ∨ (i3,m, m > 0);

C
∗
−m−1 when (a, b) ∈ i4,m ∨ i5,m;

C
∗
−1 when (a, b) ∈ i3,0;

C
0

0 and f(ξ) = O(|ξ|−α), |ξ| → +∞, α > 1− b,

for b ∈]−∞, 1[ when (a, b) ∈ i2,m;

C
∗
−j, 0 ≤ j ≤ m, and f

0

k−m(ξ) = O(|ξ|−αk),

|ξ| → +∞, for αk > k, 0 ≤ k ≤ m when (a, b) ∈ i6,m.

Let

αm(a, b) :=


0 when (a, b) ∈ i1,m ∨ i3,m,
1 when (a, b) ∈ i4,m ∨ i5,m,
−m when (a, b) ∈ i2,m ∨ i6,m.

Main Proposition. The BVP for elliptic EPD equation (1.1) with the boundary
condition (BC)

lim
y→0+

γm(y)
∂mu

∂ym
= f(x)

is always solvable in Tmm+αm
(γm(y)). If (a, b) ∈ i1,0 ∨ i3,0 ∨ i2,0 ∨ i6,m, it is uniquely

solvable and if (a, b) ∈ i1,m ∨ i3,m ∨ i4,m ∨ i5,m, m > 0, it is solvable up to an
additive constant under some restrictions at infinity [e.g., boundedness if (a, b) ∈
i5,m∨ i4,m∨ i1,m, b < 0, and u = O(y1−b), x2+y2 → +∞, if (a, b) ∈ i2,m, b > 2].
In Tmm+αm

0

(γm(y)) the solution is unique. The solutions have been constructed in

the explicit form (see G. Jaiani [14], [15], [16], [20] and below).
In order to prove the main proposition we consider particular BVPs composing

the general BVP formulated in Main Proposition.

Problem 3.3.1. Let (a, b) ∈ i1,m. Find u ∈ Tmm (1) satisfying BC

lim
z→x0

∂mu(z)

∂ym
= f (x0) , z ∈ R2

+, x0 ∈ R1, (3.47)
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where f ∈ C
∗
(−m) and the condition at infinity

u ={
O(1), r → +∞, when either a ∈ R1, b ∈]−∞, 0[ , or a = 0, b = 0;

o(1), r → +∞, when either a ∈ R1, b ∈]0, 1[ , or a ̸= 0, b = 0.

(3.48)

Problem 3.3.2. Let a = 0, b ∈] − ∞,−m[, m ∈ N1. Find u ∈ Tmm+1 (y
−1)

satisfying BC

lim
z→x0

y−1∂
mu(z)

∂ym
= f (x0) , z ∈ R2

+, (x0) ∈ R1, (3.49)

where f ∈ C
∗
−m−1 and the condition at infinity.

u = O(1), r → +∞ (3.50)

Problem 3.3.3. Let a = 0, b = −m, m ∈ N1. Find u ∈ Tmm+1

((
yln 1

y

)−1
)

satisfying BC

lim
z→x0

(
yln

1

y

)−1
∂mu(z)

∂ym
= −f (x0) , z ∈ R2

+, (x0) ∈ R1, (3.51)

where f ∈ C
∗
−m−1 and the condition at infinity (3.50).

Problem 3.3.4. Let (a, b) ∈ i2,m. Find u ∈ Tmm
(
yb+m−1

)
satisfying BC

lim
z→x0

yb+m−1∂
mu(z)

∂ym
= f (x0) , z ∈ R2

+, x0 ∈ R1, (3.52)

where f ∈ C
∗
0 [when b ∈]−∞, 1[ , we assume

f(ξ) = O(|ξ|−α), |ξ| → +∞, α > 1− b,

or when b ∈]0, 1[, we assume f ∈ C
∗
−1] and the corresponding condition from the

following ones:

u = O
(
y1−b

)
, r → +∞, (3.53)

when either a ∈ R1, b ∈]2,+∞[, or a = 0, b = 2;

u = o
(
y1−b

)
, r → +∞, (3.54)

when either a ∈ R1, b ∈]1, 2[, or a ̸= 0, b = 2;

u = O
(
r−1
)
, ux, uy = O

(
r−2
)
, r → +∞, (3.55)

and
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lim
y→0+

+∞∫
−∞

u · uydx = 0

if

lim
y→0+

(lny)−1 u = 0, x ∈ R1, (3.56)

when a ∈ R1, b = 1;

u = O
(
R2

+UR1
)
, u = o(1), r → +∞, (3.57)

when a ∈ R1, b ∈]0, 1[;

u =
(1)

I +O
(
r−1
)
, ux =

(1)

I x +O
(
r−2
)
, uy =

(1)

I y +O
(
r−2
)
, r → +∞, (3.58)

where
(1)

I :=M−1
0 (a, b, 0,m)

+∞∫
−∞

f(ξ)eaθρ−bdξ,

and

lim
y→0+

yb
+∞∫

−∞

u · uydx = 0

if
lim
y→0+

yb+m−1∂
mu

∂ym
= 0, x ∈ R1, (3.59)

when a ∈ R1, b ∈]−∞, 0].

Problem 3.3.5. Let (a, b) ∈ i3,m. Find u ∈ Tmm ∈
((

ln 1
y

)−1
)

satisfying BC

lim
z→x0

(
ln
1

y

)−1
∂mu(z)

∂ym
= −f (x0) , z ∈ R2

+, (x0) ∈ R1, (3.60)

where f ∈ C
∗
−m for m > 0, while for m = 0 either f ∈ C

∗
−1 or f is a continuous

function,

f(ξ) = O
(
|ξ|−α

)
, |ξ| → +∞, α > 0, (3.61)

and the conditions (3.48) and (3.55), (3.56) correspondingly for m > 0 and
m = 0.

Problem 3.3.6. Let a = 0, b = 0, m ∈ N. Find u ∈ Tm(1) with the bounded
m-th order derivative with respect to y, satisfying BC (3.47), where

f(ξ) = O
(
|ξ|−α

)
, |ξ| → +∞, α > m,

is a continuous function.
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Problem 3.3.7. Let a = 0, b = −2n ≥ 1 − m, where n ∈ N0, m ∈ N\{1, 2}
(i.e. b ∈]1 − m,+∞[∩

{
−2,−4, . . . ,−2

(
m−

[
m
2

]
− 1
)}
, m ∈ N\{1, 2, 3}) or

a = 0, b = 1−m, m ∈ N1\1. Find u ∈ Tm(1) satisfying BC (3.47), where

f ∈ C
0

−j, j = 0,m; f
0

(k−m)(ξ) = O(|ξ|−αk), ξ → +∞, αk > k, k = 0,m. (3.62)

Theorem 3.3.8 The solutions of Problems 3.3.1-3.3.6 have, correspondingly, the
following forms

u1(x, y) = Λ−1
m (a, b)y1−b

+∞∫
−∞

f
∗

(−m)(ξ)eaθρb−2dξ, Λm(a, b) ̸= 0 [see (2.59)]; (3.63)

u2(x, y) = Λ−1
m+1(0, b)y

1−b

+∞∫
−∞

f
∗

(−m−1)(ξ)ρb−2dξ, Λm+1(0, b) ̸= 0 [see (2.59)];(3.64)

u3(x, y) = (m+ 2)−1Λ−1
m+1(0,−m− 2)ym+1

+∞∫
−∞

f
∗

(−m−1)(ξ)ρ−m−2dξ, (3.65)

Λm+1(0,−m− 2) ̸= 0 [see (2.59)];

u4(x, y) =M−1(a, b,m)

+∞∫
−∞

f(ξ)eaθρ−bdξ, (3.66)

M(a, b,m) ̸= 0 [see the second part of Corollary 2.2.5];

u5(x, y) = d−1
m (a)ym

+∞∫
−∞

f
∗

(−m)(ξ)eaθρ−m−1dξ, dm ̸= 0 [see (2.60)], (3.67)

where

dm(a) =

{
(m+ 1)Λm(a,−m− 1) + aΛm+1(a,−m− 1), m > 0,
1 + eaπ, m = 0,

dm(a) ̸= 0 [see (2.60)];

u6(x, y) =
1

π(m− 1)!

+∞∫
−∞

f(ξ)

lnρ

[m+1
2 ]−1∑
l=0

(
m− 1

2l +
1 + (−1)m

2

)

×(−1)[
m+1

2 ]−l−1y2l+
1+(−1)m

2 (x− ξ)2
(
[m2 ]−l−

1+(−1)m

2

)
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+arctg
y

x− ξ

[m2 ]−1∑
l=0

(
m− 1

2l +
1 + (−1)m

2

)

×(−1)[
m
2 ]−l+1y2l+

1−(−1)m

2 (x− ξ)2([
m
2 ]−l)−1

}
dξ +

m−1∑
l=0

Ql(x)y
l, (3.68)

where

−1∑
l=0

(· · · ) := 0;

Qm−1(x) =
m−1

C1 x+
m−1

C2 ,

Qm−2(x) =
m−2

C1 x+
m−2

C2 ,

Ql(x) = −(l + 1)(l + 2)

x∫
x0

(x− t)Ql+2(t)dt+
l

C1 +
l

C2, l = 0, . . . ,m− 3,

l

Cα = const , α = 1, 2, l = 0, . . . ,m− 1; (3.69)

u7(x, y) =

n∑
k=0

n
akΓ(k + 1)(−y)k

π
n∏
j=1

[m− (2j − 1)]

+∞∫
−∞

f
0

(−m)(ξ)

{
(−1)m

2 Re

(−1)m+1
2 Im

}

× [y + i(ξ − x)]k+1 ρ−2(k+1)dξ,

(3.70)

here Re and Im correspond to m ∈ N2 and m ∈ N1 correspondingly,

n
ak =

n−1
a k−1 − (2n− 1− k)n−1

a k,

k = 0, n;
l
a−1 = 0,

l
aj = 0 (l < j),

j
aj = 1, l = 0, n− 1, j = 0, n.

Solutions of the problems 3.3.1, 3.3.5 for m = 0, and Problem 2.3.4 are unique.
Solutions of the problems 3.3.1, 3.3.5 for m > 0, and 3.3.2, 3.3.3 are deter-

mined up to an additive constant.
A solution of Problem 3.3.6 is determined up to the additive

m−1∑
l=0

Q1(x)y
l,

which contains 2m arbitrary constants

l

Cα, l = 0,m− 1, α = 1, 2.

George V. Jaiani. Even Order Singular Elliptic Equations



78

If f ∈ C
0

−m in the cases of the problems 3.3.1, 3.3.5 form > 0 and if f ∈ C
0

−m−1

in the cases of the problems 3.3.2, 3.3.3, then solutions of the above-mentioned
problems are unique in the classes

Tmm
0

(1), Tmm
0

((
ln
1

y

)−1
)
, Tmm+1

0

(1) (y−1) , Tmm+1
0

(1)

((
yln

1

y

)−1
)
,

respectively. In this cases in the expressions (3.63)-(3.65) and (3.67) the stars
should be replaced by the zeroes.

Bounded and vanishing at infinity solutions of Problem 3.3.6 do not exist, in
general. In the cases of their existence bounded solutions are determined up to an
additive constant, while vanishing at infinity solutions are determined uniquely.

The solution of Problem 3.3.7 is unique under the condition

u = O(r−1), ux, uy = O(r−2), r → +∞,

and

lim
y→0+

yb
+∞∫

−∞

uydx = 0

if
lim
y→0+

∂mu

∂ym
= 0, x ∈ R1.

It is easily seen by means of Green’s formula.

Remark 3.3.9 The cases m = 0, a, b ∈ R1, and m = 1, a ∈ R1, b ∈]0,+∞[ are
contained in the works of G. Jaiani [9], [10], [11]. Later the cases m = 0, 1 were
considered by O. Marichev [27], [28] in an another way, where the question of
uniqueness of solutions are not considered for all the values of coefficients. The
case of arbitrary m ∈ N0 was studied by G. Jaiani [14], [15], [16].

Remark 3.3.10 If f is a bounded piece-wise continuous function, omitting the
stars in formulas (3.63)-(3.65), (3.67) and in the cases of the problems 3.3.3 and
3.3.5 assuming

f (−m−1)(ξ) = O
(
|ξ|m−α+1

)
, |ξ| → +∞, α > 0, f (−1) ∈ C

∗
0

and
f (−m)(ξ) = O

(
|ξ|m−α) , |ξ| → +∞, α > 0, f (−1) ∈ C

∗
0,

respectively, then the expressions (3.63)-(3.67), (3.70) satisfy equation (1.1) in R+
2

and, correspondingly, BCs (3.47), (3.49), (3.51), (3.52), (3.60), (3.47), (3.47)
at points of continuity of f even if a and b are complex numbers and Re b meet
conditions demanded from the real constant ”b” (except of the problems 3.3.3,
3.3.5 where the constant b we always assume real). Of course we exclude those
complex values of a and b when the denominators of (3.63), (3.64), (3.66), (3.67)
become zero (see Section 2.2, the first parts of Theorem 2.2.4 and Corollary 2.2.5).

Remark 3.3.11 Because of (3.3), (3.4) we may reduce the following problem
3.3.12 to the problems 2.3.1-2.3.6.
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Problem 3.3.12. Find u(x, y) ∈ C2(R2
+) satisfying equation (1.1) in R2

+ and
one of the following BCs:

lim
y→x0

∂myb−1u

∂ym
= f (x0) if (a, 2− b) ∈ i1,m;

lim
y→x0

y−1∂
myb−1u

∂ym
= f (x0) if a = 0, b ∈]2 +m,+∞[, m ∈ N1;

lim
y→x0

(
yln

1

y

)−1
∂mym+1u

∂ym
= −f (x0) if a = 0, b = 2 +m, m ∈ N1;

lim
y→x0

y1+m−b∂
myb−1u

∂ym
= f (x0) if (a, 2− b) ∈ i2,m;

lim
y→x0

(
ln
1

y

)−1
∂mymu

∂ym
= −f (x0) if (a, 2− b) ∈ i3,m;

lim
y→x0

∂my−1u

∂ym
= f (x0) if a = 0, b = 2 +m, m ∈ N,

where f is a piecewise continuous function bounded on R1, x0 ∈ R1.

Additional conditions on f along with the conditions for uniqueness of solu-
tions may be easily reformulated.

According to the correspondence principle (3.3), (3.4), from the solutions
(3.63)-(3.67) of the problems 3.3.1-3.3.7, respectively, we immediatly get repre-
sentation of the solution of Problem 3.3.12 under the corresponding BC stated
in Problem 3.3.12. To this end in the expressions (3.63)-(3.67) ”b” should be
replaced by ”2− b” and the expressions obtained should be multiplied by y1−b.

Let us modify the problems 3.3.3 and 3.3.5 (see G. Jaiani [15], pp. 48-53):
Problem 3.3.3* Let a = 0, b = −m, m ∈ N1. Find

u ∈ Tm
((

yln
1

y

)−1
)

satisfying BC (3.51), where f is a continuous function

f(ξ) = O
(
|ξ|−α

)
, |ξ| → +∞, α > m+ 1, (3.71)

and

u =
(2)

I +O
(
r−1
)
, ux =

(2)

I x +O
(
r−2
)
, uy =

(2)

I y +O
(
r−2
)
, r → +∞,

where
(2)

I :=M−1(0,−m,m+ 2)

+∞∫
−∞

f(ξ)ρmdξ,

and

lim
y→0+

y−m
+∞∫

−∞

u · uydx = 0 if lim
y→0+

(yln
1

y
)−1∂

mu

∂ym
= 0, x ∈ R1.
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Problem 3.3.5* Let (a, b) ∈ i3,m. Find

u ∈ Tm
((

ln
1

y

)−1
)

satisfying BC (3.60), where f is a continuous function,

f(ξ) = O
(
|ξ|−α

)
, |ξ| → +∞, α > m, (3.72)

and

u =
(3)

I +O
(
r−1
)
, ux =

(3)

I x +O
(
r−2
)
, uy =

(3)

I y +O
(
r−2
)
, r → +∞,

here
(3)

I :=M−1(a, 1−m, 1 +m)

+∞∫
−∞

f(ξ)eaθρm−1dξ,

and

lim
y→0+

y1−m
+∞∫

−∞

u · uydx = 0, if lim
y→0+

(lny)−1∂
mu

∂ym
= 0, x ∈ R1.

Theorem 3.3.13 Unique solutions of the problems 3.3.3* and 3.3.5* have the
forms

∗
u3 =M−1(0,−m,m+ 2)

+∞∫
−∞

f(ξ)ρmdξ, (3.73)

M(0,−m,m+ 2) ̸= 0, [see second part of Corollary 2.2.5]

and

∗
u5 =M−1(a, 1−m, 1 +m)

+∞∫
−∞

f(ξ)eaθρm−1dξ, (3.74)

M(a, 1−m, 1 +m) ̸= 0, [see second part of Corollary 2.2.5],

respectively.

Remark 3.3.14 Pairs of solutions (3.65) and (3.73), (3.67) and (3.74) of equa-
tion (1.1) satisfy the same BCs (3.51) and (3.60). But if m > 0, at infinity and
by y → 0+ they (but not their m-th order derivatives with respect to y) behave
differently. The analogues remark should also be made with respect to solutions
(3.68) and (3.69) by a = 0, b = 0.

Remark 3.3.15 If in the solution (3.73) (or (3.74)) the function f is piece-wise
smooth, then (3.73) ((3.74)) satisfies equation (1.1) in R2

+ and BC (3.51) ((3.60))
at points of continuity of f even if a is a complex number.
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Remark 3.3.16 The solutions (3.66), (3.68), (3.73), (3.74) are unbounded, in
general, at infinity. E.g., if f(ξ) ≥ 0 is a finite function and b < 0, then because
of (3.176) (see below),

u4 =M−1(a, b,m)

+γ∫
−γ

f(ξ)eaθρ−bdξ

≥ r−bM−1(a, b,m)(1− ∗
ε)−

b
2

+γ∫
−γ

f(ξ)eaθdξ →
r→+∞

+∞.

If m = 1, then (3.68) is bounded, provided
+∞∫

−∞

f(ξ)dξ = 0.

Remark 3.3.17 Denote by
(k)
u a solution of Problem 3.3.4, when the k-th order

derivative is prescribed in BC.
(k)
u (x, y) = (−1)j(b+ k − 1, j)

(k+j)
u (x, y), k, j ∈ N0,

if Reb > 1− k, since

lim
z→x0

yb+k−1∂
ku

∂yk
=

(−1)j

(b+ k − 1, j)
lim
z→x0

yb+k+j−1∂
k+ju

∂yk+j
, z ∈ R2

+, x0 ∈ R1.

Let b = 1 and ∗
u be a solution in the case of BC (3.33), then

(−1)m

(m− 2)!

∗
u(x, y) =

m
u(x, y), m ∈ N,

since
lim
z→x0

(
1

y

)−1

u =
(−1)m

(m− 2)!
lim
z→x0

ym
∂mu

∂ym
, z ∈ R2

+, x0 ∈ R1.

Solution of Problem 3.3.1 Let u be a solution of Problem 3.3.1, then since
b < 1 −m ≤ 1 and u ∈ C(R2

+ ∪ R1), u will also be a solution of Problem 3.2.1
which takes values u(x, 0) at the boundary. According to Theorem 3.2.3 it can
be represented as

u(x, y) =
y1−b

Λ(a, b)

+∞∫
−∞

u(ξ, 0)eaθρb−2dξ (3.75)

Because of u(x, 0) ∈ C
∗
m(R1) after substitution ξ = x + yt in (3.75) we may

differentiate the obtained integral m-times with respect to y under the integral
sign and

lim
z→x0

∂mu(x, y)

∂ym
=

Λm(a, b)

Λ(a, b)

∂mu(x0, 0)

∂xm
, x0 ∈ R1.
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Whence, by virtue of (3.47), we have

Λm(a, b)

Λ(a, b)

∂mu(x0, 0)

∂xm
= f (x0) , x0 ∈ R1,

i.e.,
∂mu(x, 0)

∂xm
=

Λ(a, b)

Λm(a, b)
f(x), x ∈ R1.

Finally,
u(x, 0) =

Λ(a, b)

Λm(a, b)
f
∗

(−m)(x).

Substituting the last into (3.75) we arrive at (3.63).
Now, it is directly easily seen that (3.63) belongs to the class Tmm (1) and

satisfies BC (3.47).
Solution of Problem 3.3.2 According to the conditions of Problem 3.3.2,

b < −m = 1− (m+ 1).

Under this condition Problem 3.3.1 is solvable for m+ 1 instead of m, i.e., there
exists u ∈ Tm+1

m+1 (1) satisfying BC

lim
z→x0

∂m+1u

∂ym+1
= f (x0) , z ∈ R2

+, x0 ∈ R1.

Therefore,

lim
z→x0

y−1∂
mu

∂ym
= lim

z→x0

∂m+1u

∂ym+1
, z ∈ R2

+, x0 ∈ R1, (3.76)

provided
lim
z→x0

∂mu

∂ym
= 0, z ∈ R2

+, x0 ∈ R1, (3.77)

But u as the solution of Problem 3.3.1 admits the representation (3.64) which it
follows from (3.63), replacing there m by m+ 1. Because of oddness of m (3.64)
meets the condition (3.77). Indeed6,

lim
z→x0

∂mu2
∂ym

= lim
z→x0

Λ−1
m+1(0, b)

+∞∫
−∞

f
∗

(−1)(x+ yt)tm(1 + t2)
b
2
−1dt

6Since, after substituting ξ = x+ yt,

lim
z→x0

∂m

∂ym

[
Λ−1
m+1(0, b)y

1−b

+∞∫
−∞

f
∗

(−m−1)(ξ)ρb−2dξ
]

= lim
z→x0

∂m

∂ym
Λ−1
m+1(0, b)

+∞∫
−∞

f
∗

(−m−1)(x+ yt)(1 + t2)
b
2−1dt
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= Λ−1
m+1(0, b)f

∗

(−1)(x)

+∞∫
−∞

tm(1 + t2)
b
2
−1dt = 0.

So, by virtue of (3.76), u2 ∈ Tmm+1(1) satisfies BC (3.49).
Solution of Problem 3.3.4 Let first b > 1 and u be a solution of Problem 3.3.4.
Then, in view of Theorem 2.1.1, taking into account (3.52), we have

lim
z→x0

yb−1u = lim
z→x0

(−1)m

(b− 1,m)
yb+m−1∂

mu

∂ym
=

(−1)m

(b− 1,m)
f (x0) . (3.78)

Hence, u as a solution of Problem 3.2.1 in the case of BC (3.34), where f(x0)
should be replaced by (−1)m

(b−1,m)
f (x0), which by virtue of (2.47) for k = 0 and (3.37),

where f(ξ) should be replaced by (−1)m

(b−1,m)
f (ξ), admits the representation

u =
(−1)m

(b− 1,m)Λ(a, 2− b)

+∞∫
−∞

f(ξ)eaθρ−bdξ =M−1(a, b,m)

+∞∫
−∞

f(ξ)eaθρ−bdξ,

i.e., the representation (3.66). Now, if we take into account the integral represen-
tation of M(a, b,m) and (2.36), (2.39), we directly verify, that under the condi-
tions of Problem 3.3.4 with respect to f, a, and b, (3.66) belongs to Tm(ym+b−1)
and satisfies BC (3.52).
Solution of Problem 3.3.5* Since according to the conditions of Problem 3.3.5*
b = 1−m, evidently,

b > −m = 1− (m+ 1)

and Problem 3.3.4, where b = 1−m is solvable for m+1, instead of m i.e., exists
u ∈ Tm+1(y) such that

lim
z→x0

y
∂m+1u

∂ym+1
= f (x0) , z ∈ R2

+, x0 ∈ R1.

By virtue of (3.66), where ”m” and ”b” should be replaced by ”m+1” and ”1−m”,
respectively, it as a solution of Problem 3.3.4, allows the representation

u(x, y) =M−1(a, 1−m, 1 +m)

+∞∫
−∞

f(ξ)eaθρ−bdξ,

where f should fulfill the condition (3.72).
On the other hand

lim
z→x0

(
ln

1

y

)−1
∂mu

∂ym
= lim

z→x0

[
− ln y

]−1∂mu

∂ym
= −y lim

z→x0

∂m+1u

∂ym+1
= −f (x0) .

Thus, (3.74) belongs to Tm((ln 1
y
)−1) and meets BC (3.60).

Solution of Problem 3.3.5 Let u be a solution of Problem 3.3.5. Then, since
b = 1 −m < 1 when m ∈ N and u ∈ C(R2

+ ∪ R1), the function u will also be a

George V. Jaiani. Even Order Singular Elliptic Equations



84

solution of Problem 3.2.1 with the boundary values u(x, 0). Therefore, according
to Theorem 3.2.3, it admits the representation (3.35), where b = 1 − m. Since
u(x, 0) ∈ C

∗
m(R1) (i.e.,

∂mu(x, 0)

∂xm
∈ C

∗
−1

and the integral
+∞∫

−∞

∂mu(ξ, 0)

∂ξm

∣∣∣∣∣∣
ξ=x+yt

tmea·arctg(−t)
(
1 + t2

)−m+1
2 dt (3.79)

is uniformly convergent in G ⊂ R2
+), substituting ξ = x + yt in (3.75) with

b = 1 − m, differentiating m-times with respect to y and making stated below
transformations, bearing in mind (2.54) we obtain

lim
z→x0

(
ln

1

y

)−1
∂mu

∂ym

= Λ−1(a, 1−m) lim
z→x0

(
ln

1

y

)−1
+∞∫

−∞

∂mu(ξ, 0)

∂ξm

∣∣∣∣∣∣
ξ=x+yt

tmea·arctg(−t)
(
1 + t2

)−m+1
2 dt

= Λ−1(a, 1−m) lim
z→x0

(
ln

1

y

)−1
+∞∫

−∞

∂mu(ξ, 0)

∂ξm
(ξ − x)meaθρ−m−1dξ

= Λ−1(a, 1−m) lim
z→x0

(−y)
+∞∫

−∞

∂mu(ξ, 0)

∂ξm
(ξ− x)m [a(ξ − x)− (m+ 1)y] eaθρ−m−3dξ

= −Λ−1(a, 1−m) lim
z→x0

+∞∫
−∞

∂mu(ξ, 0)

∂ξm

∣∣∣∣∣∣
ξ=x+yt

(m+1+ at)tmea·arctg(−t)
(
1 + t2

)−m+3
2 dt

=
(m+ 1)Λm(a,−m− 1) + aΛm+1(a,−m− 1)

Λ(a, 1−m)

∂mu (x0, 0)

∂xm
= −f (x0) ,

since, as we assumed u is the solution of the problem under consideration. Whence,

∂mu (x0, 0)

∂xm
=

Λ(a, 1−m)

(m+ 1)Λm(a,−m− 1) + aΛm+1(a,−m− 1)
f (x0) ,

i.e.,
u(x, 0) =

Λ(a, 1−m)

(m+ 1)Λm(a,−m− 1) + aΛm+1(a,−m− 1)
f
∗

(−m)(x).

Substituting the last expression into (3.75), we get (3.67) for m > 0. Now, it is
easily seen that (3.67) for m > 0 belongs to Tmm

(
(ln 1

y
)−1) and fulfills BC (3.60).

The case m = 0 we have considered in Section 3.2.
Solution of Problem 3.3.3* Since according to the conditions of Problem 3.3.3*
b = −m, evidently, b = −m = 1−(m+1) and Problem 3.3.5* is solvable when the
order of the derivative in BC (3.60) is m+1. Hence, exists u ∈ Tm+1

m+1

((
y ln 1

y

)−1
)

which fulfills BC
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lim
z→x0

(
y ln

1

y

)−1∂m+1u

∂ym+1
= f(x0), z ∈ R2

+, x0 ∈ R1.

By virtue of (3.74), it as solution of Problem 3.3.5* admits the representation

∗
u3(x, y) =M−1(0,−m,m+ 2)

+∞∫
−∞

f(ξ)ρmdξ,

where
f(ξ) = O(|ξ|−α), |ξ| → +∞, α > m+ 1.

But on the other hand7

lim
z→x0

(
y ln

1

y

)−1∂mu

∂ym
= lim

z→x0

(
ln

1

y

)−1∂m+1u

∂ym+1
,

provided

lim
z→x0

∂mu

∂ym
= 0, z ∈ R2

+, x0 ∈ R1.

The constructed solution, in view of (2.39), satisfies the last condition. Indeed,

lim
z→x0

∂m
∗
u3

∂ym

=M−1(0,−m,m+ 2) lim
z→x0

y

m+1
2∑

k=1

B̃k(−m,m; 0)

+∞∫
−∞

f(x+ yt)(1 + t2)−
m
2
+k−1dt

= −M−1(0,−m,m+ 2)B̃m+1
2
(−m,m; 0) lim

z→x0
y

+∞∫
−∞

f(x+ yt)(1 + t2)−
1
2dt

=M−1(0,−m,m+ 2)B̃m+1
2
(−m,m; 0) lim

z→x0
y

+∞∫
−∞

f(ξ)ρ−1dξ

=M−1(0,−m,m+ 2)B̃m+1
2
(−m,m; 0) lim

z→x0

−y
+∞∫
−∞

f(ξ)ρ−3dξ

−y−2

=M−1(0,−m,m+ 2)B̃m+1
2
(−m,m; 0) lim

z→x0
y

+∞∫
−∞

f(x+ yt)(1 + t2)−
3
2dt = 0,

since∣∣∣∣∣∣y
+∞∫

−∞

f(x+ yt)(1 + t2)−
m
2
+k−1dt

∣∣∣∣∣∣ ≤ y max
ξ∈R1
|f(ξ)|

+∞∫
−∞

(1 + t2)−
m
2
+k−1dt−→

y→0+
0,

7(y ln 1
y

)′
= − ln y − 1 ∼ − ln y as y → 0+.
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when 1 < k < m+1
2

, and analogously for k = 1

∣∣∣∣∣∣y
+∞∫

−∞

f(x+ yt)(1 + t2)−
m
2 dt

∣∣∣∣∣∣ ≤ ymax
ξ∈R1
|f(ξ)|

+∞∫
−∞

(1 + t2)−
m
2 dt−→

y→0+
0.

Thus, ∗
u3 ∈ Tmm

((
y ln 1

y

)−1
)
and satisfies BC (3.51). Note that 8

m+ 1

2
=
[m
2

]
+ 1 for m ∈ N1.

Solution of Problem 3.3.3 Let u be a solution of Problem 3.3.3. Since b =
−m < 1 and u ∈ C(R2

+

⋃
R1), u will also be a solution of Problem 2.2.1 which

takes values u(x, 0) on the boundary y = 0. Therefore, according to Theorem
3.2.3 and formula (3.35), where b = −m, it admits the representation

u(x, y) =
y1+m

Λ(0,−m)

+∞∫
−∞

u(ξ, 0)ρ−m−2dξ. (3.80)

Because of u(x, 0) ∈ C
∗
m+1(R1), taking into account the assertions (3.79) for

m+ 1, we have

lim
z→x0

(
y ln

1

y

)−1∂mu

∂ym
= −Λ−1(0,m) lim

z→x0

∞∫
−∞

∂m+1u(ξ,0)
∂ξm+1 |ξ=x+yttm+1(1 + t2)−

m+2
2 dt

ln y + 1

= − m+ 2

Λ(0,m)
lim
z→x0

y2
∞∫

−∞

∂m+1u(ξ, 0)

∂ξm+1
(ξ − x)m+1ρ−m−4dξ

= −(m+ 2)
Λm+1(0,−m− 2)

Λ(0,−m)

∂m+1u(x0, 0)

∂xm+1
= −f(x0), (3.81)

since we assumed that u is a solution of the problem under consideration. By
calculations (3.81) we took into account

lim
z→x0

∂ma

∂ym
= lim

z→x0

+∞∫
−∞

∂mu(ξ, 0)

∂ξm
|ξ=x+yttm(1 + t2)−

m+2
2 dt

=
∂mu(x0, 0)

∂xm

+∞∫
−∞

tm(1 + t2)−
m+2

2 dt = 0,

since
+∞∫

−∞

tm(1 + t2)−
m+2

2 dt = 0

8Indeed, m = 2j+1 for j ∈ N, then m+1
2 = 2j+2

2 = j+1;
[
m
2

]
+1 =

[
2j+1
2

]
+1 =

[
j+ 1

2

]
+1 =

j + 1.
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because of oddness of m. Thus,
∂m+1u(x, 0)

∂xm+1
=

Λ(0,−m)

(m+ 2)Λm+1(0,−m− 2)
f(x),

i.e.,
u(x, 0) =

Λ(0,−m)

(m+ 2)Λm+1(0,−m− 2)
f
∗

−m−1(x).

Substituting the last expression into (3.80) we get (3.65). Now, it is easily seen
that (3.65) belongs to Tmm+1

((
y ln 1

y

)−1
)
and satisfies BC (3.51).

Solution of Problem 3.3.6 Let

v :=
∂mu

∂ym
.

then
∆v = 0, z ∈ R2

+,

and
v(x, 0) = f(x), x ∈ R1.

According to (3.35) for a = b = 0 we obtain

v(x, y) =
y

π

+∞∫
−∞

f(ξ)ρ−2dξ, z ∈ R2
+,

i.e.,
∂mu(x, y)

∂ym
=
y

π

+∞∫
−∞

f(ξ)
dξ

(x− ξ)2 + y2
.

Whence,

u =
1

π

+∞∫
−∞

f(ξ)
[ y∫
y0

(y − τ)m−1

(m− 1)!

τdτ

(x− ξ)2 + τ 2

]
dξ +

m−1∑
k=0

Q̃k(x)y
k. (3.82)

Further, using the formulas, which we prove by mathematical induction∫
τ 2k+1dτ

a2 + τ 2
=

k∑
j=1

(−1)k+j a
2(k−j)τ 2j

2j
+(−1)k a

2k

2
ln(a2 + τ 2), 9 k ∈ N0,

0∑
j=1

(· · · ) ≡ 0,

9In particular cases, for k = 0, 1, 2, 3 this formula is correct (see Dwight [4] Formulas 121.1,
123.1, 125.1, 127.1). Assuming correctness for k, we prove correctness for k + 1, indeed,∫

τ2k+3dτ

a2 + τ2
=

∫
τ2k+1(τ2 + a2)dτ

a2 + τ2
−
∫

τ2k+1a2dτ

a2 + τ2

=
τ2k+2

2k + 2
− a2

[ k∑
j=1

(−1)k+j a
2(k−j)τ2j

2j
+ (−1)k a

2k

2
ln(a2 + τ2)

]

=

k+1∑
i=1

(−1)k+1+j a
2(k+1−j)τ2j

2j
+ (−1)k+1 a

2(k+1)

2
ln(a2 + τ2).
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∫
τ 2kdτ

a2 + τ 2
=

k∑
j=1

(−1)k+j+1a
2(k−j−1)τ 2j+1

2j + 1
+ (−1)k+1a2k−2τ

+(−1)ka2k−1 arctan
τ

a
, 10 k ∈ N,

and choosing the functions Q̃k(x) in such a way that (3.82) be a harmonic function
in R2

+, after some transformations and simplifications we get (3.68).
Solution of Problem 3.3.7 First of all let us note that the representation (3.70)
is true for

a = 0, b = −2n ≥ 1−m,n ∈ N0, m ∈ N\{1}.
From (3.62) for k = m it follows that

f
0

(0)(ξ) ≡ f(ξ) = O
(
|ξ|−αm

)
, |ξ| → +∞, αm > m ≥ 1,

i.e., function f(ξ) is absolutely integrable on R1. Assume that for all y > 0
functions

∂ju(x, y)

∂yj
, j = 0,m,

are absolutely integrable with respect to x on the interval ]−∞,+∞[, uniformly
with respect to y, moreover,

u, ux → 0 as |x| → +∞,

and u ∈ C2
(
R2

+

)
; in order to apply the Fourier transformation after multiplying

by eixt√
2π

and then integrating with respect to x, from

y (uxx + uyy)− 2nuy = 0 (3.83)
and

∂mu(x, y)

∂ym

∣∣∣∣
y=0

= f(x), (3.84)

we get
y
∂2U(t, y)

∂y2
− 2n

∂U(t, y)

∂y
− t2yU(t, y) = 0 (3.85)

10In particular cases, for k = 1, 2, 3, 4 this formula is correct (see Dwaight [4] Formulas 122.1,
124.1, 126.1, 128.1). Assuming correctness for k, we prove correctness for k + 1, indeed,∫

τ2k+2dτ

a2 + τ2
=

∫
τ2k(τ2 + a2)dτ

a2 + τ2
−
∫

τ2ka2dτ

a2 + τ2

=
τ2k+1

2k + 1
− a2

[ k−1∑
j=1

(−1)k+1+j a
2(k−1−j)τ2j+1

2j + 1
+ (−1)k+1a2k−2τ + (−1)ka2k−1arctg

x

a

]

=

k∑
j=1

(−1)k+2+j a
2(k−j)τ2j+1

2j + 1
+ (−1)k+2a2kτ + (−1)k+1a2k+1 arctan

τ

a
,

0∑
1

(· · · ) ≡ 0.
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and
∂mU(t, y)

∂ym

∣∣∣∣
y=0

= F (x), (3.86)

respectively, where

U(t, y) =
1√
2π

+∞∫
−∞

u(x, y)eixtdx, (3.87)

F (t) =
1√
2π

+∞∫
−∞

f(x)eixtdx. (3.88)

It is well-known that the solution of (3.85) has the form

U(t, y) = y2n+1

(
y−1 ∂

∂y

)n(
V (t, y)

y

)
, (3.89)

where V (t, y) is a solution of

∂2V (t, y)

∂y2
− t2V (t, y) = 0.

The general solution of the last equation looks like

V (t, y) =

{
C1(t)e

y|t| + C2(t)e
−y|t|, t ̸= 0;

C1y + C2, t = 0.
(3.90)

Let
C1(t) ≡ 0, C1 = 0, C2 = C2(0). (3.91)

It is easily seen that(
y−1 ∂

∂y

)n(
e−y|t|

y

)
= y−(2n+1)e−y|t|

n∑
k=0

n
ak (−y|t|)k . (3.92)

Taking into account (3.90)-(3.92), from (3.89) we get

U(t, y) = C2(t)e
−y|t|

n∑
k=0

n
ak (−|t|)k yk (3.93)

which is a solution of (3.85). Now, we choose C2(t) in order to satisfy BC (3.86)
as follows:

lim
y→0+

∂mU(t, y)

∂ym

= C2(t)
n∑
k=0

n
ak (−|t|)k

k∑
l−0

(
m
l

)
(−1)l(−k, l) (−|t|)m−l lim

y→0+
e−y|t|yk−l

= C2(t)
n∑
k=0

n
ak

(
m
k

)
k! (−|t|)m = F (t).
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Therefore, if t ̸= 0, then

C2(t) =
F (t) (−|t|)−m
n∏
j=1

[m− (2j − 1)]
, (3.94)

since easily can be verified, that
n∑
k=0

n
ak

(
m
k

)
k! =

n∑
k=0

n
ak

m!

(m− k)!
=

n∏
j=1

[m− (2j − 1)] ̸= 0.

From the condition (3.62) it follows that
−∞∫

+∞

xkf(x)dx = 0, k = 0,m− 1.

Hence, after differentiation of (3.88) k-times, k = 0,m− 1, with respect to t
under integral sign and substituting t = 0, we obtain

F (k)(0) =
1√
2π

+∞∫
−∞

xkf(x)dx = 0, k = 0,m− 1.

Now, assuming xmf(x) absolutely integrable on R1, we arrive at

C2(0) =
F (m)(0)

(−1)mm!
n∏
j=1

[m− (2j − 1)]
, (3.95)

since after applying the L’hopital rool m-times, we have

lim
t→0

F (t)

(−|t|)m
=

F (m)(0)

(−1)mm!
.

Substituting (3.94) (where for t = 0 as the value of C2(t) we take the limit of
(3.93) as t→ 0, i.e., (3.95)) into (3.93), we get

U(t, y) =
F (t) (−|t|)−m
n∏
j=1

[m− (2j − 1)]
e−y|t|

n∑
k=0

n
ak (−y|t|)k .

Whence, assuming that u(x, y) and f(x) meet the Dirichlet conditions with re-
spect to x, by virtue of (3.87) and (3.88), we obtain

u(x, y)

=
1

2π
n∏
j=1

[m− (2j − 1)]

+∞∫
−∞

 +∞∫
−∞

f(ξ)eiξtdξ

 (−|t|)m e−y|t|

×
n∑
k=0

n
ak (−y|t|)k e−ixtdt.

(3.96)
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Since, because of (3.62),
+∞∫

−∞

f(ξ)eiξtdξ = (−it)m
+∞∫

−∞

f
0

−m(ξ)eiξtdξ,

(3.96) we can rewrite in the form (3.70).
Now, we can directly verify that (3.70) satisfies equation (3.83) and BC (3.47),

provided (3.62) is fulfilled.
Since for y > 0 we can differentiate (3.70) under integral sign with respect to

x and y as much as desired, it is easily seen that (3.70) satisfies (3.83). To this
and we need to use the following equalities

2(n− k)nak + (k + 1)(2n− k)nak+1 = 0, n ∈ N, k = 0, n− 1,

which are easy to prove.
In order to prove that (3.70) satisfies equation (3.83) we need to make sub-

stitution ξ = x + yt in the integral, then for y > 0 differentiate with respect
to y under integral sign which is allowed, by virtue of (3.62). Then come back
to the variable ξ and by the calculation of the limit use m-times the L’hopital
rule. Finally, we get f(x) as the limit. In this connection we apply the following
equalities:

n∑
k=0

n
ak(−1)kΓ(k + 1)

k+1∑
δ=0

(
k + 1
δ

){
Re
Im

}
ik−δ+1

×
min{m,k+δ}∑

l=0

(
m
l

)
(−1)l(−k − δ, l)

×
[m−l

2 ]+1∑
κ=1

Bκ (2(k + 1),m− l, 0, 1)Λm+k−δ+1 (0,−2(k +m− l − κ+ 1))

=

{
(−1)m

2

(−1)m+1
2

}
m!π

n∏
j=1

[m− (2j − 1)] , m ≥ 2n−1, n ∈ N0, m ∈
{

N0
2

N1

}
,

lim
y→0+

+∞∫
−∞

f(ξ)(ξ − x)m
n∑
k=0

n
ak(−1)kΓ(k + 1)

×
k+1∑
δ=0

{
Re
Im

}
ik−δ+1(ξ − x)k−δ+1

min{γ,k+δ}∑
l=0

(
γ
l

)
(−1)l(−k − δ, l)yk+δ−l

×
[ γ−l

2 ]+1∑
k=1

Bκ (2(k + 1), γ − l, 0, y) ρ−2(k+γ−l−κ+2)dξ = 0, m ∈
{

N0
2

N1

}
.

The constructed solution is unique under the conditions

u = O
(
r−1
)
, ux, uy = O

(
r−2
)
, r → +∞,

and

lim
y→0+

yb
+∞∫

−∞

uuydx = 0,
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provided
lim
y→0+

∂mu

∂ym
= 0, x ∈ R1.

It can be proved by applying Green’s formula.
In order to finish the proof of the Theorems 3.3.8 and 3.3.13 let us investigate

the question of uniqueness of solutions.
According to Maximum Principle 3.1.1, Problem 3.3.1 is uniquely solvable

in the case m = 0, provided the conditions (3.48) are fulfilled. Therefore, as
it follows from the method of construction of the solution of Problem 3.3.1 in
the case m ∈ N, under the conditions (3.48) it is uniquely determined by means
of f

∗

(−m). But f
∗

(−m) itself is determined up to an additive constant, i.e., u1 is
determined up to an additive constant

y1−b

Λm(a, b)

+∞∫
−∞

Ceaθρb−2dξ =
Λ(a, b)

Λm(a, b)
C = const .

If we are looking for solutions in Tmm
0

(1), then it is uniquely determined by

f
(−m)
0 . But f (−m)

0 itself is uniquely determined. Whence, the constructed solution
is unique.

In the same manner we study the question of uniqueness for Problem 3.3.5,
with m ∈ N, Problem 3.3.2, and Problem 3.3.3.

In the case of Problem 3.3.5 by m = 0, we use the formula (3.2) by b = 1 for
the difference of two possible solutions. Taking into account (3.55) and tending
R to +∞, we obtain

∫ ∫
y>δ

y(u2x + u2y)dxdy = −δ
+∞∫

−∞

uuydx, (3.97)

∣∣∣∣yu∂u∂v dς
∣∣∣∣∣∣∣∣
r=R

≤ CRR−1R−2Rd
0

θ = CR−1d
0

θ,

∣∣u2∣∣∣∣
r=R
≤ CR−2Rd

0

θ = CR−1d
0

θ,

where
0

θ ∈ [0, π], C = const . Now, tending δ to 0, by virtue of (3.56) and (3.97),
we get ∫ ∫

R2
+

y(u2x + u2y)dxdy = 0. (3.98)

Hence u = const = 0, since u is vanishing at infinity. In order to show uniquely
solvability of Problem 3.3.4 we consider separately the cases b ∈]1,+∞[, b = 1,
b ∈]0, 1[, b ∈]−∞, 0].

In the first case (b > 1) if m = 0, according to the correspondence principle
(3.7), the uniqueness conditions (3.53) and (3.54) follow from the uniqueness
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conditions of Problem 3.3.1 by m = 0. If m ∈ N , then since, by virtue of (3.78),
each solution of Problem 3.3.4, when m ∈ N , at the same time is a solution of
Problem 3.3.1, by m = 0, it is unique under conditions (3.53) and (3.54) as well.

If b = 1, in view of

lim
z→x0

(
ln

1

y

)−1

u = − lim
z→x0

(−1)m−1(1,m− 1)−1ym
∂mu

∂ym
, z ∈ R2

+, x0 ∈ R1,

a solution of problem under consideration will be a solution of Problem 3.3.5 by
m = 0. Therefore, it will be unique under conditions (3.55), (3.56).

Let b ∈]0, 1[. For the difference v of two possible solutions, vanishing at
infinity, on a semicircle CR of a sufficiently big radius R(ε) we have

|v(x, y)| < ε, (3.99)
where ε > 0 is small as much as desired.

According to Generalized Weighted Zaremba-Giraud Principle, since

lim
z→x0

yb+m−1∂
mv

∂ym
= 0, z ∈ R2

+, x0 ∈]−R,+R[,

the function v cannot attain maximal positive and minimal negative values on the
interval ] − R,+R[∈ R1. On the other hand, according to the strong extremum
principle, the function v cannot attain extremal values in a half-disk KR. So,
(3.99) holds on K̄R. But v is independent of ε, hence, v(x, y) ≡ 0 when z ∈ R2

+.
Let b ∈]∞, 0[. Like of the case of Problem 3.3.5, when m = 0, since for the

difference v of two possible we have the following estimates (see (3.58), (3.59))∣∣∣∣ybv∂v∂vdς
∣∣∣∣ ≤ C1δ

bR−1R−2Rd
0

θ < Cδ
2R

−2d
0

θ,

∣∣yb−1v2dς
∣∣ ≤ C1δ

b−1R−2Rd
0

θ < Cδ
2R

−1d
0

θ, C1, C
δ
2 = const ,

first we receive (3.97) and then (3.98), where y and δ should be to the power b.
Therefore, we conclude v ≡ 0 when z ∈ R2

+.
The solution of Problem 3.3.6 under assumption of boundedness of ∂mu

∂ym
is

determined up to the additive

m−1∑
k=0

Qk(x)yk (3.100)

with (3.69) containing 2m arbitrary constants. Considering the difference of two
possible solutions it will have the form (3.100) satisfying the conditions

Qk(x) ≡ 0, k = 1,m− 1,

and Q0(x) will be bounded function. But it is possible only if

l

Cα = 0, α = 1, 2, l = 1,m− 1,
0

C1 = 0.

Hence, it remains only an arbitrary constant
0

C2 and the solution will be deter-
mined up to this additive constant.
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3.4 Behavior of the solution (and of its derivatives) of the
general boundary value problem on the boundary

The behavior of the solutions and their derivatives of the arbitrary order of the
problems 3.3.1-3.3.6 is characterized by the following limits (see [20]):

lim
z→x0

∂pu1
∂yj∂xp−j

=
Λj(a, b)

Λm(a, b)
f
∗

(p−m)(x0), f ∈ C
∗
p−m, z ∈ R2

+, x0 ∈ R1, (3.101)

when (a, b) ∈ i1,m, b ∈] −∞, 1 − j[ , j, p ∈ N0. Moreover, if a = 0 and j ∈ N1,
then

lim
z→x0

y−1 ∂pu1
∂yj∂xp−j

=
Λj+1(0, b)

Λm(0, b)
f
∗

(p−m+1)(x0), f ∈ C
∗
p−m+1, (3.102)

when b < −j, and

lim
z→x0

(
y ln

1

y

)−1
∂pu1

∂yj∂xp−j
=

(j + 2)Λj+1(0,−2− j)
Λm(0,−j)

f
∗

(p−m+1)(x0), f ∈ C
∗
p−m+1,

(3.103)
when b = −j.

lim
z→x0

yj
∂pu1

∂yj∂xp−j
=

{
0 if j > 0,
Λ(a,b)
Λm(a,b)

f
∗

(p−m)(x0) if j = 0, (3.104)

when (a, b) ∈ i1,m, b ∈ [1− j,+∞], j, p ∈ N0, f ∈ C
∗
p−m.

lim
z→x0

∂pu2
∂yj∂xp−j

=
Λj(0, b)

Λm+1(0, b)
f
∗

(p−m−1)(x0), f ∈ C
∗
p−m−1, (3.105)

when b ∈] −∞,−m[∩] −∞, 1 − j[. j, p ∈ N0, a = 0, m ∈ N1,j ∈ N1. Moreover,
if j ∈ N1, then

lim
z→x0

y−1 ∂pu2
∂yj∂xp−j

=
Λj+1(0, b)

Λm+1(0, b)
f
∗

(p−m)(x0), f ∈ C
∗
p−m, (3.106)

when b < −j,

lim
z→x0

(
y ln

1

y

)−1 ∂pu2
∂yj∂xp−j

=
(j + 2)Λj+1(0,−2− j)

Λm+1(0,−j)
f
∗

(p−m)(x0), f ∈ C
∗
p−m,

(3.107)
when b = −j.

lim
z→x0

yj
∂pu2

∂yj∂xp−j
=

{
0 if j > 0,

Λ(0,b)
Λm+1(0,b)

f
∗

(p−m−1)(x0) if j = 0, (3.108)

when b ∈ [1− j,−m], j, p ∈ N0, a = 0, m ∈ N1, f ∈ C
∗
p−m−1.
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lim
z→x0

∂pu3
∂yj∂xp−j

=
Λj(0,−m)

Λm+1(0,−2−m)
f
∗

(p−m−1)(x0), f ∈ C
∗
p−m−1, (3.109)

when j < 1 +m, j, p ∈ N0, a = 0, b = −m, m ∈ N1. Moreover, if j ∈ N1, then

lim
z→x0

y−1 ∂pu3
∂yj∂xp−j

=
Λj+1(0,−m)

(m+ 2)Λm+1(0,−2−m)
f
∗

(p−m)(x0), f ∈ C
∗
p−m, (3.110)

when j < m, and

lim
z→x0

(
y ln

1

y

)−1 ∂pu3
∂yj∂xp−j

= −f
∗

(p−j)(x0), f ∈ C
∗
p−j, (3.111)

when j = m.

lim
z→x0

yj
∂pu3

∂yj∂xp−j
= 0, f ∈ C

∗
p−m−1, (3.112)

when y ≥ 1 +m, j, p ∈ N\{1}, a = 0, b = −m, m ∈ N1.

lim
z→x0

yb+j−1 ∂pu4
∂yj∂xp−j

=
M(a, b, j)

M(a, b,m)
f
∗

(p−j)(x0), f ∈ C
∗
p−j, (3.113)

when (a, b) ∈ i2,m ∩ i2,j, p ∈ N0.

lim
z→x0

∂pu5
∂yj∂xp−j

= d−1
m (a)Λj(a, 1−m)f

∗

(p−m)(x0), f ∈ C
∗
p−m, (3.114)

when (a, b) ∈ i3,m, m > 0, j < m, p ∈ N0. Moreover, if a = 0 and j ∈ N1, then

lim
z→x0

y−1 ∂pu5
∂yj∂xp−j

= d−1
m (0)Λj(0, 1−m)f

∗

(p−m−1)(x0), f ∈ C
∗
p−m+1, (3.115)

when j < m− 1, and

lim
z→x0

(
y ln

1

y

)−1 ∂pu5
∂yj∂xp−j

= −(m+ 1)d−1
m (0)Λm(0,−1−m)f

∗

(p−m+1)(x0), f ∈ C
∗
p−m+1, (3.116)

when j = m− 1.

lim
z→x0

yj
∂pu5

∂yj∂xp−j
=

{
0 if m > 0, j ≥ m,
M(a,b,j)
1+eaπ

f
∗

(p−j)(x0) if m = 0 j > 0, (3.117)

when (a, b) ∈ i3,m, p ∈ N, f ∈ C
∗
p−j
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lim
z→x0

(
ln

1

y

)−1∂pu5
∂xp

= −f
∗

(p)(x0), f ∈ C
∗
p, (3.118)

when m = 0 (in this case u5 ≡
∗
u5), p ∈ N0.

lim
z→x0

yj−m
∂pu6

∂yj∂xp−j
= 0, f ∈ C

∗
p−j, (3.119)

when j, p ∈ N\{1}, m ∈ N, j > m.

lim
z→x0

∂pu6
∂ym∂xp−m

= f
∗

(p−m)(x0), f ∈ C
∗
p−m, (3.120)

when m, p ∈ N.

lim
z→x0

yj−m−1 ∂p
∗
u3

∂yj∂xp−j
= − M(0,−m, j)

M(0,−m, 2 +m)
f
∗

(p−j)(x0), f ∈ C
∗
p−j, (3.121)

when j, p ∈ N\{1}, m ∈ N1, 2j − 2
[
j
2

]
> 1 +m.

lim
z→x0

yj−m
∂p

∗
u5

∂yj∂xp−j
= − M(a, 1−m, j)

M(0, 1−m, 1 +m)
f
∗

(p−j)(x0), f ∈ C
∗
p−j, (3.122)

when j, p ∈ N and either a ̸= 0, m ∈ N0, j > m or a = 0, m ∈ N0
2, 2j−2

[
j
2

]
> m.

The equalities (3.101) - (3.103), (3.105) - (3.107), (3.109) - (3.111), (3.113) -
(3.116), (3.118), (3.121), (3.122) we prove by means of the technique used in the
sections 3.2 and 3.3. The proof of the equalities (3.104), (3.108), (3.112), (3.117)
is somewhat different. E.g., we prove (3.104) when j > 0:

lim
z→x0

yj
∂pu1

∂yj∂xp−j

= Λ−1
m (a, b) lim

z→x0

+∞∫
−∞

f
∗

(p−j−m)(x+ yt)yj+1∂
jy1−beaθρb−2

∂yj

∣∣∣
ξ=x+yt

dt

= Λ−1
m (a, b)f

∗

(p−j−m)(x0)y
j

+∞∫
−∞

∂jy1−beaθρb−2

∂yj
dξ = 0,

since
+∞∫

−∞

∂p+q

∂xp∂yq
[
y1−b−k(ξ − x)keaθρb−2

]
dξ

=
∂p+q

∂xp∂yq

[
y1−b−k

+∞∫
−∞

(ξ − x)keaθρb−2dξ
]
=
∂p+qΛk(a, b)

∂xp∂yq
= 0, (3.123)
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by z ∈ R2
+, Reb < 1− k, p, q, k ∈ N0, p2 + q2 ̸= 0.

Let us prove (3.119) and (3.120). (3.68) we can rewrite in the form (3.82),
where Q̃k(x) will be certain functions, taking into account the conditions (3.69).
After differentiation of (3.82) m-times with respect to y we get

lim
z→x0

yj−m
∂pu6

∂yj∂xp−j
= lim

z→x0
yj−m

∂p−m∂mu6
∂yj−m∂xp−j∂ym

= lim
z→x0

yj−m
∂p−j

∂xp−j
∂j−m

∂yj−m
y

π

+∞∫
−∞

f(ξ)ρ−2dξ

= lim
z→x0

yj−mπ−1

+∞∫
−∞

f
∗

(p−j)(ξ)
∂j−myρ−2

∂yj−m
dξ

= f
∗

(p−j)(x0)
yj−m

π

+∞∫
−∞

∂j−myρ−2

∂yj−m
dξ

=


0, if j > m, because of (3.123)

for a = 0, b = 0, p = 0, q = j −m, k = 0,

f
∗

(p−m)(x0), if j = m,

Thus, we have proved (3.119) and (3.120).

3.5 Boundary value problems in the finite domain

Let S be simply connected domain with the boundary ∂S = ς ∪ Ī consisting of
the open smooth arcς lying in R2

+ with the ends ζ1 = (ξ1, 0), ζn = (ξn, 0) and
the segment Ī (I :=]ξ1, ξn[). Throughout the section ζ := (ξ, η) ≡ ξ + iη ∈ ∂S,
z := (x, y) ≡ x+ iy ∈ S. A denotes the maximal ordinate of ζ ∈ ς.

Let f be a continuous function on ∂S. We consider the following BVPs (see
[16], pp.25-30 and [22]).

Problem 3.5.1. Let b ∈]−∞, 1[. Find the function u ∈ T 0(1, S) satisfying BC

u(ζ) = f(ζ), ζ ∈ ∂S.

Problem 3.5.2. Let b = 1. The arc ς is orthogonally rest on the x-axis with its
small linear ends. The function f(ξ) := f(ξ, 0) satisfies the Hölder condition at
the left ξ1 and the right ξn ends of the segment Ī and finite limits

lim
η→0+

(
ln
Ae

η

)
f(ζ),

Ae

η
̸= 1, ζ = ξ + iη ∈ ς (3.124)

exist along ς. Find the function u ∈ T 0
(
(ln Ae

y
)−1, S

)
satisfying BC

lim
z→ζ

(
ln
Ae

y

)−1

u(z) = f(ζ),
Ae

y
̸= 1, z ∈ S, ζ ∈ ∂S. (3.125)
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Problem 3.5.3. Let b ∈]1,+∞[. Find the function u ∈ T 0(yb−1, S) satisfying
BC

lim
z→ζ

yb−1u(z) = f(ζ), z ∈ S, ζ ∈ ∂S.

Problem 3.5.4. Let b = 1 and the arc ς meet the hypotheses of Problem 3.5.2.
Find the function u ∈ T 0

(((
ln Ae

y

)−1
)
, S
)
satisfying BCs

u(ζ) = f(ζ), ζ ∈ ς,

lim
z→ξ

(
ln
Ae

y

)−1

u(z) = φ(ξ), z ∈ S, (ξ, 0) ∈ Ī ,

where the function f is continuous on ς̄; the function φ is continuous on Ī,
vanishes at the ends ξ1, ξn of the segment Ī and meets the Hölder condition at
these points.
Problem 3.5.5. Let b ∈]0, 1[. The arc ς has the continuous curvature and meets
the hypotheses of Problem 3.5.2,

|a|
2π
·
Γ2
(
1
2

)
Γ(b)

{
πΓ(b)

Γ2
(
b+ 1

2

) − (1− b)
+∞∑
k=1

Γ(b+ 2k + 1)Γ2
(
k + 1

2

)
Γ(2k + 1)Γ2

(
b+1
2

+ k
) } < 1.

Find the function u ∈ T 0(1, S) ∩ Tm(yb+m−1, S) satisfying BCs

u(ζ) = f(ζ), ζ ∈ ς̄ , (3.126)

lim
z→ξ

yb+m−1∂
mu(z)

∂ym
= φ(ξ), z ∈ S, (ξ, 0) ∈ I m ∈ N, (3.127)

where the function f is continuous on ς̄, while the function φ is continuous on I,
moreover φ may have at the ends of the segment Ī singularities of the order less
than 1− b.
Theorem 3.5.6 The problems 3.5.1-3.5.5 are uniquely solvable.
Proof. In the case of Problem 3.5.1 Theorem 3.5.6 follows from the theorem
proved for the more general equation in G. Jaiani [23] (see also Section 3.9).

According to the correspondence principle (3.4), we reduce Problem 3.5.3 to
Problem 3.5.1.

In the cases of the problems 3.5.2 and 3.5.4 we prove Theorem 3.5.6 in much
the same way. More precisely, these two BVPs, actually, coincide. Therefore, we
restrict ourselves to examination of Problem 3.5.2.

By virtue of (3.124) and (3.125), we extend continuously the function f on
the entire x-axis, assuming f equal to zero outside the segment Ī.

In view of Theorem 3.3.8 (see the formula (3.67) for m = 0, i.e., (3.36)), the
function

w̃(z) = (1 + eaπ)−1

ξn∫
ξ1

f(ξ)eaθρ−1dξ
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is a solution of Problem 3.3.5 for m = 0.
Consider the following difference

ṽ(z) = u(z)− w̃(z). (3.128)

Let u(z) be a solution of Problem 3.5.2, then ṽ(z) will be a solution of (1.1)
satisfying BCs

ṽ(ζ) = ln
Ae

η
f(ζ)− w̃(ζ) =: ψ̃(ζ), ζ ∈ ς, (3.129)

lim
z→ξ

(
ln
Ae

y

)−1

ṽ(z) = 0, (ξ, 0) ∈ Ī . (3.130)

Now, we prove existence of finite limits along ς

lim
ζ→ξi

w̃(ζ), ζ ∈ ς, i = 1, n.

Let for clearness ζ → ξ1. Then, because of orthogonality of the linear ends of ς
to the x-axis,

lim
ζ→(ξ1,0)

w̃(ζ) = lim
η→0+
ξ=ξ1

w̃(ξ1, η) = (1 + eaπ)−1 lim
η→0+
ξ=ξ1

 ξ̃∫
ξ1

f(τ)ea·arg(ζ−τ)|ζ − τ |−1dτ

+(1 + eaπ)−1eaπ
ξn∫
ξ̃

f(τ)|ξ1 − τ |−1dτ

 , ζ ∈ ς, ξ1 < ξ̃ < ξn.

In the last expression the first integral is uniformly convergent with respect to
η ∈ [0, δ] if δ is as much small that the point ζ belongs to the linear ends of ς
orthogonal to x-axis (i.e. ξ = ξ1) and ξ̃ belongs to such a neighborhood of the
point ξ1, where f(ξ) meets the Hölder condition. Indeed, in this case, because of
f(ξ1) = 0 [see (3.130)], the integrand∣∣f(τ)ea arg(ζ−τ)[(ξ1 − τ)2 + η2]−1/2

∣∣ ≤ eaπ|f(τ)| |ξ1 − τ |−1

= eaπ|f(τ)− f(ξ1)| |ξ1 − τ |−1 ≤ C2|τ − ξ1|µ−1, τ ∈]ξ, ξ̃[, η ∈ [0, δ],

where C2 = const and µ ∈]0, 1] is the Hölder exponent. Therefore, exists inte-
grable majorant. Thus,

lim
ζ→ζ1

w̃(ζ) = (1 + eaπ)−1eaπ
ξ̃∫

ξ1

f(τ)|ξ1 − τ |−1dτ < +∞, ζ ∈ ς.

Similarly, we prove

lim
ζ→ζn

w̃(ζ) = (1 + eaπ)−1eaπ
ξn∫
ξ̃

f(τ)|ξn − τ |−1dτ < +∞, ζ ∈ ς.
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If we assume these limit values as the values of the function w̃ at points ξ1 and
ξn, and take into account (3.124), then defined by the equality (3.128) function ψ̃
we can consider as the continuous on ς̄ function. Consequently, we can extend ψ̃
continuously on S̄. After that, using the Wiener method (see, e.g., [1], p. 189),
we construct the bounded solution of ṽ satisfying equation (1.1) and BC (3.127).
Because of boundedness of ṽ BC (3.129) will be fulfilled as well. Now, evidently,
from the equality (3.128) we find the solution u of Problem 3.5.2. So, we have
proved the existence of the solution of Problem 3.5.2.

Let u be the difference of two possible solutions of Problem 3.5.2, then the
function

ũ =
(
ln
Ae

y

)−1

u (3.131)

will be the solution of the equation

y∆ũ+ aũx +
(
1− 2

ln Ae
y

)
ũy = 0 (3.132)

satisfying BC
ũ(ζ) = 0, ζ ∈ ∂S

But the weak extremum principle is valid for equation (3.132), hence

ũ(z) ≡ 0, z ∈ S,

i.e., by virtue of (3.131),
u(z) ≡ 0, z ∈ S,

which proves uniqueness of the solution of Problem 3.5.2 and, therefore, of The-
orem 3.5.6 in the case of Problem 3.5.2 is proved.

In the case of Problem 3.5.5, when m = 1, unique solvability is shown in
V. Evsin [5]. Form ≥ 1 the uniqueness of the solution immidiatly follows from the
generalized Zaremba-Giraud principle proved in Section 3.1, while the existence
of the solution we prove just as in [5] (for the case a = 0 see also G. Jaiani
[22]) for the case m = 1, taking into account that the existence of the m-th order
derivative ∂mu

∂ym
inside of R2

+. It follows from the Picard theorem (see, e.g., I. Vekua
[35], p. 39, and also I. Vekua [36]).

Remark 3.5.7 If there exist solutions of equation (1.1) satisfying BCs of the
Problems 3.5.2 and 3.5.4, respectively, when ς is the Jordan arc, f and φ are the
continuous functions, then these solutions are unique.

Proof. Proof is based on consideration of equation (3.132) similarly to the above
mentioned proof of uniqueness of the solution of Problem 3.5.2.

Remark 3.5.8 Let b ∈ [1,+∞[, ς be the Jordan arc, f and φ be the continuous
functions. If there exists a solution of equation (1.1) satisfying BCs of Problem
3.5.5, then it is unique.
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Proof. If b > 1, for the difference u of two possible solutions we have

lim
y→0+

yb−1u = lim
y→0+

(−1)m

(b− 1,m)
yb+m−1∂

mu

∂ym
= 0.

On the other hand, u(ζ) = 0, ζ ∈ ς̄, i.e.,

yb−1u(ζ) = 0, ζ ∈ ς̄ .

Thus
lim
z→ζ

yb−1u(z) = 0,

and the question we have reduced to the uniqueness of the solution of Problem
3.5.3.

If b = 1, then

lim
y→0+

(
ln
Ae

y

)−1

u = lim
y→0+

(−1)m

(1,m− 1)
ym

∂mu

∂ym
= 0

and the question we have reduced to the uniqueness of the solution of Problem
3.5.2.

3.6 Boundary value problems with discontinuous data.
Behaviour of the solutions at points of discontinuity
of boundary data

Let f be piece-wise continuous function on ∂S,
∗
I =

n⋃
k=1

{ξk}, ξk ∈ Ī, k = 1, n, be

a set of its points of discontinuity of the first kind,
(+)

f (ξk) and
(−)

f (ξk) be limits
of f when ζ ∈ ∂S\

∗
I tends to ξk in the negative and positive, correspondingly,

directions of the circuit of the domain S. Let
(+)
φ (ξn) ∈]0, π] and

(−)
φ (ξn) ∈]0, π]

be the angles between the x-axis and the smooth Jordan arc ς, correspondingly,
at the endpoints ξn and ξ1 of the segment Ī (see [17], [19] and [16], pp. 31-35).

Problem 3.6.1. Let b ∈] −∞, 1[. Find the function u ∈ T 0(1, S,
∗
I), satisfying

BC

lim
z→ζ

u(z) = f(ζ), z ∈ S, ζ ∈ ∂S\
∗
I.

Problem 3.6.2. Let b = 1. Find the function u ∈ T 0
((

ln Ae
y

)−1
, S,

∗
I
)
, satisfying

BC

lim
z→ζ

(
ln
Ae

z
y
)−1

u(z) = f(ζ), z ∈ S, ζ ∈ ∂S\
∗
I. (3.133)
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Problem 3.6.3. 11 Let b ∈]1,+∞[. Find the function u ∈ T 0(yb−1, S,
∗
I), satis-

fying BC

lim
z→ζ

yb−1u(z) = f(ζ), z ∈ S, ζ ∈ ∂S\
∗
I.

Theorem 3.6.4 There exists such a solution of Problem 3.6.1 which permits the
representation

(1)
u (z) = U1(z) +

n∑
k=1

hk
αk(b)

arg(z−ξk)∫
0

eaτ sin−b τ dτ (3.134)

where

hk =
(+)

f (ξk)−
(−)

f (ξk), k = 1, n; αk(b) = −Λ(a, b), k = 2, n− 1;

α1(b) = −

(−)
φ∫

0

aaτ sin−b τ dτ, αn(b) = −
π∫

(+)
φ

aaτ sin−b τ dτ,

U1(z) ∈ T 0(1, S) is the solution of Problem 3.5.1 in the case of the following
considered on the boundary continuous function

f(ζ)−
n∑
k=1

hk
αk(b)

arg(ζ−ξk)∫
0

eaτ sin−b τ dτ, ζ ∈ ∂S. (3.135)

By approaching the point z ∈ S to the point of discontinuity (ξk, 0) of the func-
tion f along the different ways lying in S, the solution

(1)
u (z) tends to any values

between
(−)

f (ξk) and
(+)

f (ξk), depending on the way of approaching characterised by
the angle between the tangent to the way (curve) at this point and x-axis.

If either a ∈ R1, b ∈]0, 1[ or a = 0, b = 0, the solution of Problem 3.6.1 i.e.,
the representation (3.134) is unique.

If either a ∈ R1, b ∈] −∞, 0[ or a ̸= 0 b = 0, the solution of Problem 3.6.1
is unique in the class of functions having the same limits of indeterminacy as
z → ξk ∈

∗
I (compare with K. Miranda [29], p. 108, Chapter IV, Section 29).

Theorem 3.6.5 Under the hypotheses of Problem 3.5.2 concerning the arc ς̄12

and considered on the boundary continuous function (3.137) (see below), there
exists the solution of Problem 3.6.2 which permits the representation

(2)
u (z) = U2(z) +

n∑
k=1

hk
βk

arg(z−ξk)∫
π
2

eaτ sin−1 τ dτ, (3.136)

11The problems 3.6.1-3.6.3 when the boundary data have the first type discontinuity points
on ς is to be investigated.

12Theorem 3.6.5 when
(±)
φ ̸= π

2 remains valid, provided Problem 2.5.2 is solvable for
(±)
φ ̸= π

2 .
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where
βk = −(1 + eaπ), k = 2, n− 1,

β1

∣∣∣(−)
φ (ξ1)=

π
2

= (ea
(−)
φ (ξ1) cos

(−)
φ (ξ1)− 1)

∣∣∣(−)
φ (ξ1)=

π
2

= −1,

βn

∣∣∣(+)
φ (ξn)=

π
2

= (−ea
(+)
φ (ξn) cos

(+)
φ (ξn)− eaπ)

∣∣∣(+)
φ =π

2

= −eaπ,

U2(z) ∈ T 0

((
ln Ae

y

)−1

, S

)
is the solution of Problem 3.5.2 in the case of the

prescribed on the boundary continuous function

f(ζ)−
n∑
k=1

hk
βk

lim
z→ζ ̸≡ξk

(
ln
Ae

y

)−1
arg(z−ξk)∫

π
2

eaτ sin−1 τ dτ, ζ ∈ ∂S. (3.137)

By approaching the point z ∈ S to the points of discontinuity (ξk, 0) of the
function f along the different ways lying in S, the function

(
ln Ae

y

)−1(2)
u (z) tends

to any value between
(−)

f (ξk) and
(+)

f (ξk), depending on the way of approaching
characterised by the angle between the tangent to the way (curve) at this point
and x-axis.

The solution of Problem 3.6.2 is unique in the class of functions having the
same limits of indeterminacy with the weight

(
ln Ae

y

)−1

as z → ξk ∈
∗
I.

Theorem 3.6.6 There exists the solution of Problem 3.6.3 which permits the
representation

(3)
u (z) = y1−bU3(z) + y1−b

n∑
k=1

hk
αk(2− b)

arg(z−ζk)∫
0

eaτ sinb−2 τ dτ, (3.138)

where y1−bU3(z) ∈ T 0(yb−1, S) is the solution of Problem 3.5.3 in the case of
prescribed on the boundary continuous function

f(ζ)−
n∑
k=1

hk
αk(2− b)

arg(z−ζk)∫
0

eaτ sinb−2 τ dτ, ζ ∈ ∂S.

By approaching the point z ∈ S to the points of discontinuity (ξk, 0) of the
function f along the different ways lying in S, the function yb−1

(3)
u (z) tends to

any value between
(−)

f (ξk) and
(+)

f (ξk), depending on the way of approaching char-
acterised by the angle between the tangent to the way (curve) at this point and
x-axis.

If either a ∈ R1, b ∈]1, 2[ or a = 0, b = 2, the solution of Problem 3.6.3, i.e.,
the representation (3.138), is unique.
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If either a ∈ R1, b ∈]2,+∞[ or a ̸= 0 b = 2, the solution of Problem 3.6.3 is
unique in the class of functions having the same limits of indeterminacy with the
weight y1−b as z → ξk ∈

∗

(1)
u k(z) =

hk
αk(b)

arg(z−ξk)∫
0

eaτ sin−b τ dτ, (3.139)

is a solution of (1.1). It is bounded and continuous in S̄\{(ξk, 0)}. Moreover,

(1)
u k(x, 0) = (3.140)

hk
αk(b)

π∫
0

eaτ sin−b τ dτ =
hk
αk(b)

Λ(a, b) = −hk, x ∈ (ξ1, ξk), k = 2, n,

0, x ∈ (ξk, ξn), k = 1, n− 1.

If z → ξk along the way whose tangent at the point ξk makes with the x-axis an
angle φ

(
Clearly, at the points ξk, k = 2, n− 1, the angle φ ∈ [0, π], at the point

ξ1 the angle φ ∈
[
0,

(−)
φ
]
, and the point ξn the angle φ ∈

[(+)
φ , π

[)
, then (3.139)

tends to the limit
hk
αk(b)

φ∫
0

eaτ sin−b τ dτ,

By crossing the point ξk in negative direction along the curve ∂S, the function
(1)
uk(ζ), by virtue of (3.140), has the jump

0− (−hk) = hk, when k = 2, n− 1;

0− hk
αk(b)

(−)
φ∫

0

eaτ sin−b τ dτ = h1, when k = 1,

and

hn
αn(b)

[ (+)
φ∫

0

eaτ sin−b τ dτ −
π∫

0

eaτ sin−b τ dτ
]
= hn, when k = n.

Hence, the function (3.135) remains continuous by crossing each point ξk since
from the function f(ζ) which has the jump hk by crossing ξk we subtract the sum
of the continuous function

n∑
j=1
j ̸=k

(1)
u j(ζ) (3.141)

Lecture Notes of TICMI, vol. 24, 2023

I.

Proof of Theorem 3.6.4 In view of (3.9) the function



105

and the function
(1)
u k(ζ) having the same jump hk which has f(ζ) at point ξk.

Thus, the function U1(z) as the solution of Problem 3.5.1, when on the boundary
the continuous function (3.135) is prescribed, exists and is unique. Consequently,
(3.134) tends to f(ζ) as z → ζ ̸= ξk, is bounded and satisfies equation (1.1)
in S. Let us analyse its behaviour as z → ξk ∈

∗
I. Let z → ξk along the way

whose tangent at the point ξk makes with the x-axis the angle φ. Then from the
expression (3.134) it follows that along the above-mentioned way

(1)
u (ζ) tends to

(1)
u φ(ξk) = Ũ1(ξk) +

hk
αk(b)

φ∫
0

eaτ sin−b τ dτ, (3.142)

where Ũ1(ξk) is the limit of the sum U1(z) and (3.141) which does not depend on
the way of approaching z to ξk. In particular, by approaching ξk along the curve
∂S in the negative direction of going around the domain we get

(+)

f (ξk) = Ũ1(ξk) +

(+)

(1)
u k(ξk), (3.143)

where
(+)

(1)
u k(ξk) =


0, k = 1, n− 1;

hn
αn(b)

(+)
φ∫

0

eaτ sin−b τ dτ, k = n.

Substituting the expression of Ũ1(ξk) determined from (3.143) into (3.142) we
obtain

(1)
u φ(ξk) =

(+)

f (ξk) +



hk
αk(b)

φ∫
0

eaτ sin−b τ dτ, k = 1, n− 1;

hn
αn(b)

φ∫
(+)
φ

eaτ sin−b τ dτ, k = n.

The right-hand part of the last equality is the continuous function of φ on the
segments [0, π],

[
0,

(−)
φ
]
,
[(+)
φ , π

]
for k = 2, n− 1, k = 1, and k = n, respectively,

and is taking at their ends values
(+)

f (ξk) and
(−)

f (ξk). Therefore, according to the
second Bolzano-Cauchy theorem (see [6], p. 171), it takes all the values between
(+)

f (ξk) and
(−)

f (ξk) on the above segments, depending on the angle φ.
If a ∈ R1 and b ∈]0, 1[, the uniqueness of the representation (3.134) follows

from the maximum principle 3.1.3.
If a = b = 0 the uniqueness of the representation (3.134) is proved in [26] (see

p. 212).
Let either a ∈ R1 and b ∈]−∞, 0[ or a ̸= 0, b = 0. If we consider the difference

of two possible solutions of Problem 3.6.1 with the same limits of indeterminacy
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as z → ξk ∈
∗
I, it is easily seen that this difference on the entire boundary except

the points ξk ∈
∗
I, where the limits along any way are zero, since both the possible

solutions have the same limits for the same φ. Taking zero as values of the above
difference at the points ξk ∈

∗
I, we get the solution of equation (1.1) which vanishes

on the boundary and is continuous on S̄. Then, according to the weak extremum
principle, the above difference of two possible solutions equals 0.

(2)
u k(z) =

hk
βk

arg(z−ξk)∫
π
2

eaτ sin−1 τ dτ, (3.144)

represents the solution of equation (1.1) in S.
The function (

ln
Ae

y

)−1(2)
u k(z) (3.145)

is bounded and continuous everywhere in S̄\{(ξk, 0)}. Indeed, its continuity on
S
⋃
ς is clear. On the set I\{ξk} (3.145) will become continuous, assuming for

its values there the limits

hk
βk

lim
z→ξ ̸=ξk

(
ln
Ae

y

)−1
arg (z−ξk)∫

π
2

eaτ sin−1 τ dτ

= −hk
βk

lim
z→ξ ̸=ξk

ea·arg(z−ξk) cos arg(z − ξk) =
hk
βk

{
eaπ, ξ < ξk;
−1, ξ > ξk.

(3.146)

Using Theorem 2.1.1, it is easy to check (3.146).
If z → ξk along the way whose tangent at the point ξk makes with the x-axis

an angle φ, then according to Remark 2.1.5 the function (3.145) tends to

−hk
βk
eaφ cosφ, (3.147)

which is bounded with respect to φ (hence, (3.145) is bounded). By crossing the
points ξk along ∂S in the negative direction of going around the domain S, by
virtue of (3.146), the function (3.145) has the jump

hk
βk

(−1− eaπ) = hk if k = 2, n− 1;

h1
β1

(
− 1 + ea

(−)
φ
cos

(−)
φ
)
= h1 if k = 1, because of

(−)
φ =

π

2
;

hn
βn

(
− ea

(+)
φ
cos

(+)
φ − eaπ

)
= hn if k = n, because of

(+)
φ =

π

2
.
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Hence, the function (3.137) remains continuous by crossing each point ξk since
from the function f(ζ) which has the jump hk by crossing the point ξk we subtract
the sum of the continuous function(

ln
Ae

y

)−1
n∑
j=1
j ̸=k

(2)
u j(ζ) (3.148)

and the function (3.145) having the same jump hk. Thus, by virtue of the hy-
potheses of the theorem 3.6.5 concerning ς and the function (3.137), there ex-
ists the function U2(z). So, taking into account the properties of the functions
(3.144), (3.145), we conclude that the expression (3.136) meets the BC (3.133)
as z → ξ ̸= ξk and belongs to the class T 0

((
ln Ae

y

)−1
, S,

∗
I
)
. Let us analyse the

behaviour of the function (3.145) as z → ξk ∈
∗
I. Let z → ξk along the way whose

tangent at the point ξk makes with the x-axis an angle φ. According to (3.136),
(3.147), the function (

ln
Ae

y

)−1(2)
u (z)

will tend to the limit
(2)
u φ(ξk) = Ũ2(ξk) +

hk
βk
eaφ cosφ, (3.149)

where Ũ2(ξk) is the limit of the sum of the function
(
ln Ae

y

)−1
U2(z) and (3.148)

which is independent of the way of approaching of z to the point ξk. In particular,
approaching to the point ξk along the curve ∂S in the negative direction, we obtain

(+)

f (ξk) = Ũ2(ξk) +

(+)

(2)
u k(ξk),

where

(+)

(2)
u (ξk) =


−hk
βk
, k = 1, n− 1;

−hn
βn
ea

(+)
φ
cos

(+)
φ = 0, k = n.

So, (3.149) we rewrite in the form

(2)
u (ξk) =

(+)

f (ξk) +


hk
βk

(1− eaφ cosφ), k = 1, , n− 1;

−hk
βk
eaφ cosφ, k = n.

Next, we argue similarly to the proof of Theorem 3.6.4. Going over to the proof
of the uniqueness, we consider the difference u of two possible solutions and verify
that on the entire boundary ∂S the function
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v =
(
ln
Ae

y

)−1

u

vanishes. But it satisfies equation (3.132) in S. So that, by virtue of the well-
known weak extremum principle for the second order elliptic equations v ≡ 0 in
S, whence u ≡ 0 in S.

Remark 3.6.7 The theorems 3.6.4-3.6.6 remain valid for R2
+ if for the uniqueness

of the solutions, we assume in addition at infinity either (3.48); or

yb−1 = O(1), r → +∞,

when either a ∈ R1, b ∈]2,+∞[ or a = 0, b = 2;

yb−1u = o(1), r → +∞,

when either a ∈ R1, b ∈]1, 2[, or a ̸= 0, b = 2; and fulfilment of (3.55) with (3.56)
when a ∈ R1, b = 1, respectively.

In these cases (3.134), (3.136), (3.138) coincide with (3.35)-(3.37), respec-
tively.

let us prove the following lemma in advance.

Lemma 3.6.8 The following equalities hold:

Λ−1(a, b)y1−b
+∞∫

−∞

[ arg(ξ−ξk)∫
0

eaτ sin−b τ dτ
]
eaθρb−2dξ

=

arg(ξ−ξk)∫
0

eaτ sin−b τ dτ, b ∈]−∞, 1[; (3.150)

(1 + eaπ)−1 p.v.
∗
R.

+∞∫
−∞

[
lim

z→ξ ̸=ξk
(ln y−1)−1

arg(z−ξk)∫
π
2

eaτ sin−1 τ dτ
]
eaθρ−1dξ

=

arg(z−ξk)∫
π
2

eaτ sin−1 τ dτ, (3.151)

where k = 2, n− 1 and the generalized principle value of the integral is defined by
the equality
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p.v.
∗
R

+∞∫
−∞

= lim
R→+∞

∗
R(R)∫
−R

,

here
∗
R = x+ y cot

∗
δ(δ), δ = arccot

x+R

y
, (3.152)

and the function
∗
δ(δ) is given implicitly by the equality

π
2∫

∗
δ

e−aτ sin−1 τ dτ =

π
2∫
δ

eaτ sin−1 τ dτ (3.153)

Proof. As
arg(ξ − ξk) =

{
π, ξ ∈]−∞, ξk[;
0, ξ ∈]ξk,+∞[,

then

Λ−1(a, b)y1−b
+∞∫

−∞

[ arg(ξ−ξk)∫
0

eaτ sin−b τ dτ
]
eaθρb−2dξ = y1−b

ξk∫
−∞

eaθρb−2dξ.

whence, after substitution ξ = x− y cot τ in the right-hand side, we get (3.150).
It will be observed that the equality (3.150) immediately follows from there,

that
arg(z−ξk)∫

0

eaτsin−bτdτ, b < 1,

is such a solution of equation (1.1) which on the boundary y = 0 takes piece-wise
constant values

arg(ξ−ξk)∫
0

eaτsin−bτdτ.

But such a solution we can respresent by the formula (3.35) which in our case
coincides with the right-hand side of the equality (3.150).

Before passing to derivation of the equality (3.151), let us clarify nature of the
functions

∗
δ =

∗
δ(δ) and

∗
R =

∗
R(R) defined by the equalities (3.153) and (3.152),

respectively.
From the second equality of (3.152) it is obvious that δ = 0 by R = +∞. If

we consider sufficiently big values of R, namely, R ≥ −x, for the fixed x, y, then
δ ∈ [0, π

2
]. The right-hand side of (3.153) continuously and strongly monotonically

increases (since the integrand is strongly positive) assuming all the values from
0 to +∞, when δ varies from π

2
to 0. The left-hand side of (3.153) behaves

George V. Jaiani. Even Order Singular Elliptic Equations
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analogously with respect to
∗
δ. Consequently, to each δ ∈ [0, π

2
], according to

(3.153), corresponds one
∗
δ ∈ [0, π

2
] and conversely. Thus, the equality (3.153)

defines the strongly monotonic function
∗
δ =

∗
δ(δ), in addition

∗
δ(0) = 0. But from

the first equality of (3.152), we have

lim
∗
δ→0+

∗
R = +∞.

So,

lim
R→+∞

∗
R(R) = +∞.

According to the definition of p.v.
∗
R, after successive application of (3.146),

substitution ξ = x − y cot τ , and (3.152), (3.153), the left-hand side of (3.151)
takes the form

(1 + eaπ)−1 lim
R→+∞

eaπ ξk∫
−R

eaθρ−1dξ −

∗
R∫

ξk

eaθρ−1dξ



= (1 + eaπ)−1 lim
R→+∞

eaπ
arg(z−ξk)∫

arccot x+R
y

eaτ sin−1 τ dτ −

arccot x−
∗
R

y∫
arg(z−ξk)

eaτ sin−1 τ dτ


=

arg(z−ξk)∫
π
2

eaτ sin−1 τ dτ

+(1 + eaπ)−1 lim
R→+∞

eaτ
π
2∫

arccotx+R
y

eaτ sin−1 τ dτ +

π
2∫

arccotx−
∗
R

y

eaτ sin−1 τ dτ


=

arg(z−ξk)∫
π
2

eaτ sin−1 τ dτ

+(1 + eaπ)−1 lim
δ→0+

eaπ
π
2∫
δ

eaτ sin−1 τ dτ +

π
2∫

π−
∗
δ

eaτ sin−1 τ dτ


=

arg(z−ξk)∫
π
2

eaτ sin−1 τ dτ
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+(1 + eaπ)−1 lim
δ→0+

eaπ
π
2∫
δ

eaτ sin−1 τ dτ − eaπ
π
2∫

∗
δ

eaτ sin−1 τ dτ


=

arg(z−ξk)∫
π
2

eaτ sin−1 τ dτ.

So, (3.151) is proved as well, and the proof of Lemma 3.6.8 is complete.

+ the theorems 3.6.4-3.6.6 remain valid also
for R2

+, if the sums in the corresponding expressions we consider from 2 to n− 1
since in the case under consideration the points ξ1 and ξ2 are absent.

Thus, the formulas (3.135) and (3.136) get the forms

(1)
u Π(z) =

y1−b

Λ(a, b)

+∞∫
−∞

[
f(ξ)−

n−1∑
k=2

hk
αk(b)

arg(ξ−ξk)∫
0

eaτ sin−b τ dτ
]
eaθρb−2dξ

+
n−1∑
k=2

hk
αk(b)

arg(z−ξk)∫
0

eaτ sin−b τ dτ (3.154)

and

(2)
u Π(z) = (1 + eaτ )−1p.v.

∗
R

+∞∫
−∞

[
f(ξ)

−
n−1∑
k=2

hk
βk

lim
z→ξ ̸=ξk

(ln y−1)−1

arg(z−ξk)∫
0

eaτ sin−1 τ dτ
]
eaθρ−1dξ

+
n−1∑
k=2

hk
βk

arg(z−ξk)∫
0

eaτ sin−1 τ dτ, (3.155)

respectively.
Let us note that we have replaced BC (3.133) by BC (3.33) and applied the

formula (3.36) interpretting it in the sense p.v.
∗
R (relying on Theorem 2.1.7, it

can be directly verified that expression (3.36) with the density (3.137), where
Ae ≡ 1, ζ ≡ ξ, and the sum is taken from 2 to n − 1, solves Problem 3.2.1 with
BC (3.33) when

∗
I = ∅ and the boundary function has the form (3.137), Ae ≡ 1,

ζ ≡ ξ).
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Proof of the Remark 3.6.7. By the proof of theorems 3.6.4-3.6.6 we have not
used finiteness of the domain except of the existence and uniqueness theorems in
the case of the continuous boundary function. Therefore, assuming the function
f bounded and applying the existence and uniqueness theorems in the case of the
continuous boundary function for R2
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By virtue of (3.149), (3.151), it is easily seen that
(1)
u Π(z) coincides with (3.35),

while
(2)
u Π(z) coincides with (3.36). Of course, we could arrive at this conclusion

also in reverse order.
Uniqueness follows from the maximum principles 3.1.1, 3.1.3, 3.1.4.
The case b > 1, as it was done many times earlier, we reduce to the case

b < 1.

3.7 Approximate solutions of boundary value problems

Below we analyse a question of application of the constructed in Section 3.2
solutions in quadratures of BVPs in the half-plane to solving approximately the
corresponding BVPs in the finite domains. The conditions on the domain S, the
coefficients of equation (1.1), and the boundary data which guarantee finding of
approximate solutions with the preassigned accuracy are established (see [18] and
[16], pp. 36-42).

Let Ī contain the segment [−γ,+γ], γ > 0, and S contain a half-disk KR with
the radius R.

Let us consider the following BCs:

lim
z→ζ

u(z) = 0, z ∈ S, ζ ∈ ς; (3.156)

lim
z→x0

u(z) = f(x0), x0 ∈ Ī\
∗
I, b ∈]−∞, 1[; (3.157)

lim
z→x0

(
ln
Ae

y

)−1

u(z) = f(x0), z ∈ S, x0 ∈ Ī\
∗
I, b = 1; (3.158)

lim
z→x0

yb−1u(z) = f(x0), z ∈ S, x0 ∈ Ī\
∗
I, b ∈]1,+∞[; (3.159)

lim
z→x0

yb+m−1∂
mu(z)

∂ym
= f(x0), z ∈ S, x0 ∈ Ī\

∗
I, b ∈]0,+∞[, m ∈ N; (3.160)

where

f(x0) :=

{
0, x0 ∈ Ī\[−γ,+γ];
f(x0), x0 ∈ [−γ,+γ]\

∗
I.

Let
M := sup

x∈[−γ,+γ]\
∗
I

|f(x)| < +∞.

Theorem 3.7.1 Let b ∈]−∞, 1[ and

R > max

 2γea
∗
aM

ε
(
1− ∗

ε
) 1

2Λ(a, b)
,
2γ
∗
ε

 , (3.161)
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where ε > 0 is a preassigned exactness of the approximate solution and ∗
ε ∈]0, 1[

is a fixed arbitrary number,

∗
a =

{
π, a > 0;
0, a ≤ 0,

then

u1 = Λ−1(a, b)y1−b
+γ∫

−γ

f(ξ)eaθρb−2dξ (3.162)

represents a solution of the class T 0(1, S,
∗
I) which satisfies BC (3.157) and the

condition

|u1(ζ)| < ε, ζ ∈ ς (3.163)
instead of BC (3.156).

If
∗
I = ∅ and uT1 ∈ T 0(1, S) is the exact solution of BVP (1.1), (3.156),

(3.157) (i.e., of a particular case of Problem 3.5.1), then the estimate

max
z∈S̄
|u1(z)− uT1 (z)| < ε (3.164)

holds.

Theorem 3.7.2 Let b = 1 and

R > 2γmax
{ ea

∗
aM

ε
(
1− ∗

ε
)1/2

(1 + eaπ)
,
1
∗
ε

}
, (3.165)

then

u2 = (1 + eaπ)−1

+γ∫
−γ

f(ξ)eaθρ−1dξ (3.166)

represents a solution of the class T 0
((

ln Ae
y

)−1
, S,

∗
I
)
which satisfies BC (3.158)

and the condition (3.163) instead of BC (3.156).
If

∗
I = ∅ and uT2 ∈ T 0

((
ln Ae

y

)−1
, S
)

is the exact solution of BVP (1.1),
(3.156), (3.158) (i.e., of particular cases of Problem 3.5.2 and Problem 3.5.4),
then the estimate

max
z∈S̄

(
ln
Ae

y

)−1

|u2(z)− uT2 (z)| < ε (3.167)

holds.

Theorem 3.7.3 Let b ∈]1,+∞[ and

R > max

(1− ∗
ε
)−1/2

[
2γea

∗
aM

εΛ(a, 2− b)

] 1
b

,
2γ
∗
ε

 . (3.168)
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then

u3 = Λ−1(a, 2− b)
+γ∫

−γ

f(ξ)eaθρ−bdξ (3.169)

represents a solution of the class T 0
(
yb−1, S,

∗
I
)

which satisfies the BC (3.159)
and the condition (3.163) instead of BC (3.156) and the condition

yb−1|u3(z)| < MAb−1, z ∈ S.

If
∗
I = ∅ and uT3 ∈ T 0

(
yb−1, S

)
is the exact solution of BVP (1.1), (3.156),

(3.159) (i.e., of a particular case of Problem 3.5.3), then the estimate

max
z∈S̄

( y
A

)b−1

|u3(z)− uT3 (z)| < ε (3.170)

holds.

Theorem 3.7.4 Let b ∈]0,+∞[ and

R > max

(1− ∗
ε
)−1/2

[
2γbea

∗
aM

ε(a2 + b2)(b,m− 1)Λ(a,−b)

] 1
b

,
2γ
∗
ε

 . (3.171)

then

u4 =
(−1)mb

(a2 + b2)(b,m− 1)Λ(a,−b)

+γ∫
−γ

f(ξ)eaθρ−bdξ (3.172)

represents a solution of the classes

T 0
(
1, S,

∗
I
)
∩ Tm

(
yb+m−1, S,

∗
I
)
and Tm

(
yb+m−1, S,

∗
I
)
,

when b ∈]0, 1[ and b ∈]1,+∞[, respectively, meeting BC (3.160) and the condition
(3.163).

If
∗
I = ∅ and

uT4 ∈
{
T 0
(
1, S

)
∩ Tm

(
yb+m−1, S

)
, b ∈]0, 1[;

Tm
(
yb+m−1, S

)
, b ∈]1,+∞[,

is the exact solution of BVP (1.1), (3.156), (3.160) (i.e., of a particular case of
Problem 3.5.5 when b ∈]0, 1[) and the following estimates

max
z∈S̄
|u4(z)− uT3 (z)| < ε, b ∈]0, 1[; (3.173)

max
z∈S̄

(
ln
Ae

y

)−1

|u4(z)− uT3 (z)| < ε, b = 1; (3.174)

max
z∈S̄

( y
A

)b−1

|u4(z)− uT3 (z)| < ε, b ∈]1,+∞[, (3.175)

hold.
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Ī assuming it equal to zero there. Then the exact solution of the
Dirichlet problem in R2

+, according to Theorem 3.2.3, will have the form (3.162)
(see the formula (3.35)). Hence, u1 will satisfy BC (3.157). Now, we choose R in
such a way that the solution u1 be less than preasigned arbitrarily small ε > 0
on the half-circle CR. Taking into account

(1− ∗
ε)

1
2 r < ρ, 0 <

∗
ε < 1. (3.176)

when
r >

2γ
∗
ε
, z ∈ R2

+

⋃
R1, |ξ| < γ,

from (3.162), because of

y1−b

ρ2−b
=
ρ1−bsin1−bθ

ρ2−b
≤ 1

ρ
,

we obtain

|u1(z)| ≤
ea

∗
aM

Λ(a, b)

+γ∫
−γ

dξ

ρ
≤ 2γea

∗
aM

(1− ∗
ε)

1
2Λ(a, b)

1

r
(3.177)

in R2
+\K 2γ

∗
ε

. If we choose R in such a way that (3.161) be fulfilled, then since
r > R, by virtue of (3.177),

|u1(z)| <
2γea

∗
aM

(1− ∗
ε)

1
2Λ(a, b)

1

R
< ε, z ∈ R2

+\KR.

In particular,
|u1(ζ)| < ε, ζ ∈ CR,

as far as ς lies in R2
+\KR. So, we may assume that u1 satisfies up to ε the

homogeneous BC on ς.
If

∗
I = ∅, then

u1(ξ, 0)− uT1 (ξ, 0) = 0, ξ ∈ Ī ,
and, in view of (3.163), according to the extremum principle,

|u1(z)− uT1 (z)| < ε, z ∈ S̄,

since the last is true on ∂S. The obtained inequality is equally matched to
(3.164).

We prove the theorems 3.7.2-3.7.4 analogously.

(3.165), when
∗
I = ∅, then

|u2(ζ)− uT2 (ζ)| < ε, ζ ∈ ς,
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Proof of the Theorem 3.7.1 We extend continuously the function f outside
the segment

Proof of Theorem 3.7.2. The formula (3.166) follows from the formula (3.36).
Similarly to the proof of Theorem 3.7.1 we conclude that if R meets the condition
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lim
z→x0

(
ln
Ae

y

)−1

[u2(z)− uT2 (z)] = 0, z ∈ S, x0 ∈ Ī ,

where u2(z) has the form (3.166).
Let

v2(z) :=

(
ln
Ae

y

)−1

u2(z), vT2 (z) :=

(
ln
Ae

y

)−1

uT2 (z).

The functions v2 and vT2 will satisfy equation (1.1) and the inequality

|v2(ζ)− vT2 (ζ)| < ε, ζ ∈ ∂S,

because of
|v2(ζ)− vT2 (ζ)| < ε

(
ln
Ae

η

)−1

≤ ε, ζ ∈ ς,

v2(ξ, 0)− vT2 (ξ, 0) = 0, ξ ∈ Ī .

Therefore, according to the weak extremum principle for equation (3.132), we
have the inequality

|v2(z)− vT2 (z)| < ε, z ∈ S̄,

since the last is true on ∂S. The obtained inequality is equally matched to
(3.167).

∗
I = ∅, then

|u3(ζ)− uT3 (ζ)| < ε, ζ ∈ ς,

lim
z→x0

yb−1[u3(z)− uT3 (z)] = 0, z ∈ S, x0 ∈ Ī ,

where u3(z) has the form (3.169).
Let

v3(z) :=
( y
A

)b−1

u3(z), vT3 (z) :=
( y
A

)b−1

uT3 (z).

By the correspondence principle (3.4) the functions v3 and vT3 will satisfy the
equation

E(a,2−b) = 0.

According to the weak extremum principle

|v3(z)− vT3 (z)| < ε, z ∈ S,

because of
|v3(ζ)− vT3 (ζ)| < ε

( η
A

)b−1

≤ ε, ζ ∈ ς;

v3(ξ, 0)− vT3 (ξ, 0) = 0, ξ ∈ Ī ,
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Proof of the Theorem 3.7.3. The formula (3.169) follows from the formula
(3.37). It is easily seen that if R meets the condition (3.168), when
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i.e., holds ( y
A

)b−1

|u3(z)− uT3 (z)| < ε, z ∈ ¯

(3.66). It is easily seen that if R meets the condition (3.171), when
∗
I = ∅, then

|u4(ζ)− uT4 (ζ)| < ε, ζ ∈ ς,

lim
z→x0

yb+m−1∂
m[u4(ζ)− uT4 (ζ)]

∂ym
= 0, z ∈ S, x0 ∈ Ī ,

where u4(z) has the form (3.172).
Let b ∈]0, 1[. According to the weak extremum and the Zaremba-Giraud

principles (see Section 3.1) the function u4 − uT4 may attain its extremal values
only on ς, i.e.,

|u4(z)− uT4 (z)| < ε, z ∈ S,

which equally matches to (3.173).
Let b = 1. Then

lim
z→x0

(
ln
Ae

y

)−1

u4(z) = lim
z→x0

∂mu4(z)
∂ym

(−1)m(1,m− 1)y−m
=

f(x0)

(−1)m(1,m− 1)
,

z ∈ S, x0 ∈ Ī .

Whence,

lim
z→x0

(
ln
Ae

y

)−1

(−1)m(1,m− 1)u4(z) = f(x0), z ∈ S, x0 ∈ Ī .

Because of
|u4(ζ)| < ε, ζ ∈ ς, (3.178)

we have
|v4(ζ)| < (1,m− 1)ε, ζ ∈ ς, (3.179)

lim
z→x0

(
ln
Ae

y

)−1

v4(z) = f(x0), z ∈ S, x0 ∈ Ī , (3.180)

where

v4(z) = (−1)m(1,m− 1)u4(z). (3.181)

By virtue of (3.180), (3.181), and Theorem 3.7.2, evidently,

max
z∈S̄

(
ln
Ae

y

)−1

|v4(z)− vT4 (z)| < (1,m− 1)ε, (3.182)
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S,

which is equally matched to (3.170).

Proof of the Theorem 3.7.4. The formula (3.172) follows from the formula
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where
vT4 (z) = (−1)m(1,m− 1)uT4 (z). (3.183)

In view of (3.181), (3.183), from (3.182) it follows (3.174).
The case b > 1 we consider analogously.

lim
z→x0

yb−1u4(z) = lim
z→x0

∂mu4(z)
∂ym

(−1)m(b− 1,m)y1−b−m
=

f(x0)

(−1)m(b− 1,m)
,

z ∈ S, x0 ∈ Ī .

Hence,
lim
z→x0

yb−1 ∗v4(z) = f(x0), z ∈ S, x0 ∈ Ī , (3.184)

where
∗
v4(z) = (−1)m(b− 1,m)u4(z). (3.185)

By (3.178), we get
|∗v4(ζ)| < (b− 1,m)ε, ζ ∈ ς. (3.186)

By virtue of (3.184), (3.186), and Theorem 3.7.3, evidently,

max
z∈S̄

( y
A

)b−1

|∗v4(z)−
∗
v
T

4 (z)| < (b− 1,m)ε, (3.187)

where
∗
v
T

4 (z) = (−1)m(b− 1,m)uT4 (z). (3.188)

In view of (3.185) and (3.188), from (3.187) it follows (3.175).

Remark 3.7.5 Substituting
ξ = x− y ctgθ

into the formulas (3.35)-(3.37), (3.66), (3.162), (3.166), (3.169), (3.172), and
taking into account

θ = arcctg
x− ξ
y

, ρ2 = (x− ξ)2 + y2,

x− ξ = ρ cos θ, y = ρ sin θ,

dξ = y sin−2 θdθ = ρ sin−1 θdθ,

we obtain more suitable for the numerical computation formulas:

y1−b

Λ(a, b)

∞∫
−∞

f(ξ)eaθρb−2dξ =
1

Λ(a, b)

π∫
0

f(x− yctgθ)eaθ sin−b θdθ, b < 1;

1

1 + eπ

∞∫
−∞

f(ξ)eaθρ−1dξ =
1

1 + eaπ

π∫
0

f(x− yctgθ)eaθ sin−1 θdθ, b = 1,
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where

f = O(sinα θ), θ → 0+; f = O(sinα(π − θ)), θ → π−, α > 0,

because of
|ξ|−α = (x− yctgθ)−α = (x sin θ − y cos θ)−α sinα θ;

1

Λ(a, 2− b)

∞∫
−∞

f(ξ)eaθρ−bdξ

=
y1−b

Λ(a, 2− b)

π∫
0

f(x− yctgθ)eaθ sinb−2 θdθ, b > 1;

M−1(a, b,m)

+∞∫
−∞

f(ξ)eaθρ−bdξ

=M−1(a, b,m)y1−b
π∫

0

f(x− yctgθ)eaθ sinb−2 θdθ, (a, b) ∈ i2,m;

u1 = Λ−1(a, b)y1−b
+γ∫

−γ

f(ξ)eaθρb−2dξ

=
1

Λ(a, b)

arcctg x−γ
y∫

arcctg x+γ
y

f(x− yctgθ)eaθ sin−b θdθ, b < 1;

u2 = (1 + eaπ)−1

+γ∫
−γ

f(ξ)eaθρ−1dξ

=
1

1 + eaπ

arcctg x−γ
y∫

arcctg x+γ
y

f(x− yctgθ)eaθ sin−1 θdθ, b = 1;

u3 = Λ−1(a, 2− b)
+γ∫

−γ

f(ξ)eaθρ−bdξ

=
y1−b

Λ(a, 2− b)

arcctg x−γ
y∫

arcctg x+γ
y

f(x− yctgθ)eaθ sinb−2 θdθ, b > 1;

u4 =
(−1)mb

(a2 + b2)(b,m− 1)Λ(a,−b)

+γ∫
−γ

f(ξ)eaθρ−bdξ
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=
(−1)mby1−b

(a2 + b2)(b,m− 1)Λ(a,−b)

arcctg x−γ
y∫

arcctgx+γ
y

f(x− yctgθ)eaθ sinb−2 θdθ, b ∈]0, 1[,

respectively.

3.8 Applications to other degenerate partial
differential equations

This section is devoted to application of the previous results on the one hand to
the axially symmetric solutions of the equation (see G. Jaiani [16], pp. 43-45,
and [21], pp. 56-59)(

x22 + · · ·+ x2p
) 1

2
(
ux1x1 + · · ·+ uxpxp

)
+ aux1 = 0 (3.189)

and on the other hand to solutions to the equation (see [16], p. 24)

F (a,b,c)u := y2∆u+ ayux + byuy + cu = 0, (3.190)

where a, b, and c are, in general, complex numbers.
In Rp, p ≥ 3, axially symmetric with respect to x1 solutions

u ∈ C2
(
Rp\

(
R1 × {0} × · · · × {0}︸ ︷︷ ︸

(p−1)−times

))
of equation (3.189) will be solutions to equation (1.1) with (1.4).

From Theorem 3.3.8 it follows the following assertions:
1. the expression (3.66) with (1.4) and p ∈ N\{1, 2},

m ∈
{

N0, p > 3,
N, p = 3,

m > 3− p

represents a unique solution of

Problem 3.8.1. Find in

Rp\
(
R1 × {0} × · · · {0}︸ ︷︷ ︸

(p−1)−times

)
the axially symmetric with respect to x1 solution

u ∈ C2
(
Rp\

(
R1 × {0} × · · · {0}︸ ︷︷ ︸

(p−1)−times

))
of equation (3.189) satisfying the following conditions:
(i) on the axis of symmetry x1

lim
(x22+···+x2p)1/2→0

(x22 + · · ·+ x2p)
p+m−3

2
∂mu(x1, . . . , xp)

∂
√
x22 + · · ·+ x2p

m = f(x1), x1 ∈ R1,

Lecture Notes of TICMI, vol. 24, 2023



121

where f is a continuous function;
if p = 3 we additionally demand

f(x1) = O(|x1|−α), |x1| → +∞, α > 0, (3.191)

and

lim
(x22+x

2
3)

1
2→0

+∞∫
−∞

(x22 + x23)
1
2u(x1, x2, x3)

∂u(x1, x2, x3)

∂
√
x22 + x23

dx1 = 0, (3.192)

when

lim
(x22+x

2
3)

1
2→0

[
1

2
ln(x22 + x23)

]−1

u(x1, x2, x3) = 0, x1 ∈ R1; (3.193)

(ii) at infinity for p ≥ 4 we assume

u(x1, . . . , xp) =


O
(
(x22 + · · ·+ x2p)

3−p
2

)
, x21 + · · ·+ x2p → +∞,

when either a ∈ R1, p ∈ N\{1, 2, 3, 4}, or a = 0, p = 4;

o
(
(x22 + · · ·+ x2p)

3−p
2

)
, x21 + · · ·+ x2p → +∞,

when a ̸= 0, p = 4,

while for p = 3 we demand

u(x1, x2, x3) = O((x21 + x22 + x23)
−1), x21 + x22 + x23 → +∞, (3.194)

∂u(x1, x2, x3)

∂x1
,
∂u(x1, x2, x3)

∂
√
x22 + x23

= O((x21 + x22 + x23)
−2), x21 + x22 + x23 → +∞,

(3.195)

2. The expression (3.67) with (1.4) and p = 3, m = 0 represents a unique
solution of

Problem 3.8.2. Find in

R3\(R1 × {0} × {0})

the axially symmetric with respect to axis x1 solution u ∈ C2(R3\(R1×{0}×{0}))
to the equation

(x22 + x23)
1
2 (ux1x1 + ux2x2 + ux3x3) + aux1 = 0,

satisfying the following conditions:
(i) on the axis of symmetry x1

lim
(x22+x

2
3)

1
2→0

[1
2
ln(x22 + x23)

]−1

u(x1, x2, x3) = f(x1), x1 ∈ R1,

where f is a continuous function, satisfying (3.191), besides (3.192) is fulfilled
for (3.193);
(ii) at infinity (3.194) and (3.195) are fulfilled.

George V. Jaiani. Even Order Singular Elliptic Equations



122

From the identity

y
b−b±

2
−1F (a,b,c)

(
y

b±−b
2 u

)
≡ E(a,b±)u,

where
b± = 1±

√
(1− b)2 − 4c, (3.196)

it follows that
y

b±−b
2 u(a,b

±) = u(a,b,c), (3.197)
where u(a,b,c) ∈ C2 is a solution to equation (3.190).

Equality (3.197) associates to each u(a,b,c) a pair of solutions u(a,b±) to equation

E(a,b±)u = 0

and vice versa.
The equality (3.197) makes possible all the results obtained concerning (1.1)

to reformulate for the case of equation (3.190). E.g., excluding the case of the
negative (1− b)2−4c, we reduce the following problem 3.8.3 to the problem 3.2.1

Problem 3.8.3. In R2
+ find u ∈ C2(R2

+) satisfying equation (3.190) and one of
the following BCs

lim
z→x0

y
b−b±

2 u(z) = f(x0), when Reb± ∈]−∞, 1[;

lim
z→x0

(
ln

1

y

)
y

b−1
2 u(z) = f(x0), when b± = 1;

lim
z→x0

y
b+b±

2
−1u(z) = f(x0), when Reb± ∈]1,+∞[,

where z ∈ R2
+, x0 ∈ R1\

∗
I, and f meets conditions of the problem 3.2.1.

So, from the Theorem 3.2.3 we get

Theorem 3.8.4 A solution of Problem 3.8.3 has the form

u(z) =



y1−
b+b±

2

Λ(a, b±)

+∞∫
−∞

f(ξ)eaθρb
±−2dξ, Reb± ∈]−∞, 1[;

y
1−b
2 (1 + eaπ)−1

+∞∫
−∞

f(ξ)eaθρ−1dξ, b± = 1;

y
b±−b

2

Λ(a, 2− b±)

+∞∫
−∞

f(ξ)eaθρ−b
±
dξ, Reb± ∈]1,∞[,

where when b± = 1 the function f meets conditions of the Theorem 3.2.3 and
setting BVPs along with ”b” depends on ”c” as well.

Remark 3.8.5 From (3.196) we have b+ = 2 − b−. Therefore, Reb− > 1 for
Reb+ < 1 and vice versa.
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Remark 3.8.6 For c = 0 equation (3.190) coincides with (1.1). For c ̸= 0, as it
follows from Theorem 3.8.4, only the weighted boundary value problems may be
well-posed. It means that in the last case all the solutions of equation (3.190) are
unbounded as y → 0 + .

3.9 The canonical form equation with order and type
degenerations

In the present section using the barrier method (see e.g. [1], pp. 187-194, [32], pp.
15-20, and also [2], [3]) the Keldysh [25] theorem for the second-order elliptic in R2

+

equation of the canonical form with the characteristic parabolic degeneration13

is generalized for the case of the elliptic equation of the second-order canonical
form with order and type degeneration see G. Jaiani [23]. The criteria under
which the Dirichlet or Keldysh problems are well-posed are given in a one-sided
neighborhood of the degeneration segment, enabling one to write the criteria in a
single form. Moreover , some cases are pointed out in which it is even necessary
to give a criterion in the neighborhood because it is impossible to establish it on
the segment of degeneracy of the equation. In this section we follow the above
Paper of G. Jaiani [23].

Let us consider the equation

L(u) := ym
∂2u

∂x2
+ yn

∂2u

∂y2
+ a(x, y)

∂u

∂x

+b(x, y)
∂u

∂y
+ c(x, y)u = 0, m, n = const ≥ 0, (3.198)

in a domain Ω bounded by a sufficiently smooth are ς lying in the upper half-plane
y ≥ 0 and by a segment AB of the x-axis;

a, b, c,∈ A(Ω̄), c ≤ 0 in Ω̄, 14 (3.199)

where A(Ω̄) is the class of functions analytic on Ω̄ with respect to x, y.
Let us examine two boundary value problems:

Problem 3.9.1. (Dirichlet Problem) Find u ∈ C2(Ω) ∩ C(Ω̄) in Ω from
prescribed continuous values of L(u) in Ω and of u on the boundary ∂Ω.

Problem 3.9.2. (Keldysh Problem) Find bounded u ∈ C2(Ω) ∩ C(Ω ∪ ς) in
Ω from prescribed continuous values of L(u) in Ω and of u only on the part ς of
the boundary ∂Ω.

13which we obtain from (3.198) for m = 0.
14Theorem 3.9.3 remains true when analyticity in (3.199) is replaced by Lipschitz continuity

(see footnotes of the present section and take into account that integral representation by means
of Green’s function of a solution of the Dirichlet problem for the non-degenerate elliptic equation
is valid also in the case of Lipschitz continuous coefficients).
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C(Ω̄) is a set of functions continuous on closure of Ω. C2(Ω) is a set of
functions with continuous derivatives of orders ≤ 2 in Ω.

Let
Iδ := {(x, y) ∈ Ω : 0 < y < δ, δ = const > 0}.

Theorem 3.9.3 If either n < 1 or n ≥ 1 15 and

b(x, y) < yn−1 on Īδ,
16 (3.200)

the Dirichlet problem is well-posed while the Keldysh problem has an infinite
number of solutions.
If n ≥ 1 and

b(x, y) ≥ yn−1 in Iδ,
17 (3.201)

furthermore
a(x, y) = O(ym), y → 0+ (3.202)

(O is the Landau symbol), the Keldysh problem is well-posed while the Dirichlet
problem, in general, has no solutions.

Proof. We look for desired solutions as follows (see, e.g. Bitsadze [1], p. 189;
Smirnov [32], p. 16).

Uniformly |uhn | < M, where M = max
(x,y)∈Ω

|f(x, y)|. (3.203)

Let h∗ be an arbitrary small fixed value of hn starting from the value h1 < h∗
for all the values hn+1 < hn < h∗ the family {uhn} is fully definite.

Let G∗(x, y, ξ, η) be the Green function of the Dirichlet problem for equation
(3.198) in Ωh∗ . Then,

uhn(x, y) =

∫
Sh∗

uhn(s)
∂G∗(x, y, ξ, η)

∂ν
ds, hn < h∗, (3.204)

15If 1 < n < 2, b(x, 0) ≤ 0 then the Dirichlet problem is well-posed (see Remark 3.9.5).
16Closure is essential, since we need b(x, y) − yn−1 < 0 on closing of the neigborhood, con-

taining a part of the line y = 0.
17There does not exist such (x0, 0) that b(x0, 0) = 0 (see Remark 3.9.10).
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A solution of the Keldysh problem with continuous data on ς we construct as
follows. Let f(x, y) ∈ CΩ). We construct a sequence of increasing domains such
that Ωhn ∈ Ω, n ∈ N with a smooth boundary. For all the points of Ωhn where
hn is sufficiently small and of boundary Shn of Ωhn we have y ≥ hn > 0. The
boundary Shn of the domain Ωhn coincides with ς for y > hn denote it ςn and
outside of some neighborhood of the endpoints {Pi} ∈ ςn go along the straight
lines y = hn parallel to the x-axis (hn → 0 as n → ∞). Let uhn(x, y) be a
solution of the Dirichlet problem for equation (3.198) obtaining values f(x, y)
on the boundary Shn . Such solutions exist since in Ωhn equation (3.198) is not
degenerate one. In view of c ≤ 0 in Ωh∗ we have

where ν is a normal to Sh∗ . Therefore, taking into account (3.203), it follows
equicontinuity and uniform boundedness of the set of functions {uhn} on Ωh∗ .



125

According to the Arzelá Theorem {uhn} will be compact inside Ω, i.e., we may
select subsequence uhni

(x, y) uniformly converging to some function

u(x, y) = lim
ni→∞

uhni
(x, y), (3.205)

which, by virtue of (3.199), will be a unique solution of (3.198) in Ω which will
take the value f(x, y) on ς.

The above-constructed solution (3.205) of equation (3.198) will serve as a
unique solution of the Keldish problem, provided we find the function W (see
bellow), while it will serve as a unique solution of the Dirichlet problem, provided
we find the s.c. barrier function (see bellow).

In Bitsadze [1] it is shown for equation (3.198) that
— if for any point (x0, 0), x0 ∈ AB, there exists barrier v ∈ C2(ωδx0), where

ωδx0 := {(x, y) ∈ Ω : y > 0, (x− x0)2 + y2 < δ, δ = const > 0},

such that
v ∈ C(ωδx0),

v(x0, 0) = 0,

v > 0 in ωδx0 \ {(x0, 0)},

L(v) < η = const < 0 in ωδx0 ,

then the Dirichlet problem is well-posed, since constructed by the above way
solution tends to prescribed values of the function f of the segment AB.

— if there exists W ∈ C2(Ω) such that:

W > 0 in Ω ∪ σ,

lim
y→0+

W (x, y) = +∞

uniformly with respect to x,

L(W ) < 0 inside Ω,

then the Keldysh problem is well-posed,
Indeed, let u(x, y) be a solution of equation (3.198) which vanishes on ς, by

virtue of L(εW ±u) < 0 inside of Ω, the function εW ±u may not have a negative
minimum in Ω and, since its limits on the boundary ∂Ω are positive, inside of Ω
we have εW ± u > 0, i.e.,|u| ≤ εW , whence, because of arbitrariness of ε > 0,
u ≡ 0 in Ω.

Let us show that by (3.200) the function

v(x, y) = (− ln y)−1 + (x− x0)2

may serve as a barrier function.
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Indeed, taking into account (3.198), we have

L(v) = 2ym + 2yn−2(− ln y)−3 − yn−2(− ln y)−2 + 2a · (x− x0)
+ b · y−1(− ln y)−2 + cv = [b(x, y)− yn−1]y−1(− ln y)−2

+ 2yn−2(− ln y)−3 + 2ym + 2a · (x− x0) + cv

< η = const < 0 in ωδx0 , (3.206)

since the sign of L(v) when y → 0+ is defined by the first term of (3.206)

[b(x, y)− yn−1]y−1(− ln y)−2, 18 (3.207)

and for n ≥ 1, in view of (3.200), there does not exist such (x0, 0) that b(x0, 0) = 0
(see Remark 3.9.9) and, therefore,

lim
y→0+

L(v) = −∞. (3.208)

If 0 ≤ n < 1, we rewrite the first term of (3.206) as

[y1−nb(x, y)− 1]yn−2(− ln y)−2. (3.209)

Because of (3.199)
lim
y→0+

[y1−nb(x, y)− 1] = −1.19

Therefore, (3.208) holds in this case too.
It is easily seen that the other properties of the barrier are also fulfilled.
To prove the second part of the theorem, let us consider the function

W (x, y) = − ln y − (x− α)l + k,

where x− α > 1, α, k = const , l > 2 is an integer.
Obviously,

18If n ≥ 2, only (3.207) tends to infinity (namly to −∞), since

lim
y→0+

2yn−2(− ln y)−3 = 0.

If 1 < n < 2, then

lim
y→0+

[
b(x, y)− yn−1

]
y−1(− ln y)−2

2yn−2(− ln y)−3
= lim

y→0+

1

2

[
b(x, y)− yn−1

]
y1−n(− ln y)

=

{
−∞ for 1 < n < 2
lim

y→0+

1
2

[
b(x, y)y1−n − 1

]
(− ln y) = −∞ for 0 ≤ n < 1.

19Evidently, for negativeness of the limit it will be sufficient if

lim
y→0+

y1−nb(x, y) = γ = const < 1.

it is true, because of γ = 0 for continuous b(x, y) in Ω and all the more for Lipschitz continuous
and analytic function b(x, y) in Ω. So, in our case γ = 0.
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L(W ) = −l(l − 1)(x− α)l−2ym + yn−2 − la · (x− α)l−1 − b

y
+ cW

=
yn−1 − b(x, y)

y
− 1

3
l[ym(l − 1) + 3a · (x− α)](x− α)l−2

− 2

3
l(l − 1)(x− α)l−2ym + cW. (3.210)

In view of (3.202), l can be chosen so that

l − 1 > 3max
Ω

(x− α) sup
Ω

|a|
ym
≥ 3|a|(x− α)

ym
in Ω. (3.211)

On the other hand, by virtue of (3.201),

yn−1 − b(x, y)
y

≤ 0; in Iδ.

Hence, taking into account that 1 < (x− α)l−2 and

−2

3
l(l − 1)ym > −2

3
l(l − 1)(x− α)l−2ym in Ω,

from (3.210) we have

L(W ) < −2

3
l(l − 1)(x− α)l−2ym + cW

≤ −2

3
l(l − 1)ym < 0; in Iδ, (3.212)

sinceW > 0 in Ω∪σ for suitably chosen k. It is clear that there exist A, l = const
such that

yn−1 − b(x, y)
y

< A; and l(l − 1) >
3A

ym
; in Ω \ Iδ.

Further,

L(W ) < A− 2

3
l(l − 1)ym + cW < −1

3
l(l − 1)ym < 0; in Ω \ Iδ. (3.213)

from (3.212) and (3.213) there follows

L(W ) < 0 in Ω.

The fulfillment of the other properties of the function W is obvious.

The following remarks should be considered as tasks for subsequent discussion
on the topic.
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Remark 3.9.4 Condition (3.202) is not necessary. If a(x, y) ≥ 0 in Iδ then

L(W ) < −l(l − 1)(x− α)l−2ym < −l(l − 1)ym < 0; in Iδ,

and, by virtue of (3.213), which is valid since (3.211) holds for Ω \ Iδ, the theorem
remains true without restriction (3.202). On the other hand, if (3.201) is fulfilled
in Ω and c < 0 in Ω̄ or b(x, y) > yn−1 in Ω and c ≤ 0 in Ω̄, then

W ∗ = − ln y + k

can serve as the Keldysh function, since

L(W ∗) =
yn−1 − b(x, y)

y
+ cW ∗ < 0 in Ω,

and condition (3.202) is again unnecessary.

Remark 3.9.5 When 1 < n < 2, b(x, 0) ≤ 0, the sign of L(v) (see (3.206)) is
defined by (3.207). Since b ∈ A(Ω̄),

[b(x, y)− yn−1]y−1 ln−2 y = [b(x, 0) +
∂b(x, 0)

∂y
y +O(y2)]y−1(ln y)−2

−yn−2 ln−2 y ≤
[
∂b(x, 0)

∂y
−O(y)

]
ln−2 y − yn−2 ln−2 y,

where the first term tends to zero and the second one tends to - ∞. Therefore,
(3.208) is fulfilled and the Dirichlet problem is well-posed. The same remains true
if b(x, y) is not analytic but it is Lipschitz continuous i.e., b(x, y)−b(x, 0) ≤ const y
in Ω, since in some neighborhood of y = 0 we will have

b(x, y)y−1 ln−2 y =
[
b(x, y)− b(x, 0)

]
y−1 ln−2 y + b(x, 0)y−1 ln−2 y

≤ const ln−2 y + b(x, 0)y−1ln−2y ≤ const ln−2 y,

by virtue of
b(x, y)− b(x, 0) < const y in Ω,

and
lim
y→0+

b(x, y)y−1 ln−2 y ≤ const lim
y→0+

ln−2 y = 0.

So, in this case the Keldysh criterion of well-posedness of the Dirichlet problem
is valid also for equation (3.198).

Remark 3.9.6 Because of the continuity on Ω̄ of both sides of (3.201) for n ≥ 1,
(3.201) holds also in Īδ.

Remark 3.9.7 Because of (3.199) b(x, y) ̸≡ yn−1 in Ω̄ when {n} ̸= 0 ({n} is
a fractional part of n) since yn−1, {n} ̸= 0, is neither analytic nor Lipschitz
continuous on Ω̄.
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Remark 3.9.8 For 0 ≤ n < 1, because of the boundedness (see (3.199)) of b(x, y)
and lim

y→0+
yn−1 = +∞. (3.200) is always fulfilled in Iδ and (3.201) cannot take

place in Iδ. In that case from (3.200) in Iδ there follows

y1−nb(x, y)− 1 < 0 in Īδ,

and the well-posedness of the Dirichlet problem is clear (see the proof of the
Theorem 3.9.3). Hence, we can embrace the case 0 ≤ n < 1 with condition
(3.200). But because of the clearness of the question (for 0 ≤ n < 1 the Dirichlet
problem is always well-posed), this case is considered separately.

Remark 3.9.9 When (3.200) holds we have either n = 1, b(x, 0) < 1 or n >
1, b(x, 0) < 0 and vice versa. Indeed, when n = 1, (3.200) obviously implies
b(x, 0) < 1, x ∈ AB, and from the latter there follows (3.200) since [1− b(x, y)] ∈
C(Ω̄) (see (3.199)) and has to preserve its sign in closure of some Iδ∗ ⊂ Iδ, δ

∗ < δ.
If n > 1 from (3.200) there follows b(x, 0) < 0 and from the latter as above
b(x, y) < 0 in some Iδ∗ and, therefore, there obviously follows (3.200), since
b(x, y) < 0 ≤ yn−1 in Īδ∗ .

Remark 3.9.10 When (3.201) holds we have either n = 1, b(x, 0) ≥ 1 or 1 <
n < 2, b(x, 0) > 0 (see here also the next paragraph) or n ≥ 2, b(x, 0) ≥ 0 for
x ∈ AB. The reverse motion is not true, in general, but if n = 1, b(x, 0) > 1 or
n > 1, b(x, 0) > 0, x ∈ AB, then

b(x, y) > yn−1 in Iδ. (3.214)

In the latter case, there exist b0 and δ such that b(x, y) ≥ b0 = const > 0 in Īδ.
Hence, (3.214) will be fulfilled if δ = b

1
n−1

0 . The arguments of the proof of the second
part of Theorem 3.9.3 concerning W , are correct also for n = 1, b(x, 0) > 1; and
for 1 < n < 2, b(x, 0) > 0, since in both the cases we can choose δ in such a way
that b(x, y)− 1 > 0 in Iδ respectively, where δ := min{δ∗, δ̃}, δ∗ := b

1
n−1

0 , b0 :=
minb(x, y) > 0 on Īδ̃ (such a δ̃ exists since b(x, 0) > 0 preserves positive sign in
some right neighbourhood of the segment AB), b(x, y) ≥ b0 = (δ∗)n−1 ≥ δn−1 ≥
yn−1.

For 1 < n < 2 condition (3.201) does not exclude the existence of such
x0 ∈ AB where b(x0, 0) = 0. But in that case, because of (3.199),

b(x0, y) = b(x0, 0) +
∂b(x0, 0)

∂y
y +

1

2

∂2b(x0, 0)

∂y2
y2 + · · · =

= y

[
∂b(x0, 0)

∂y
+

1

2

∂2b(x0, 0)

∂y2
y + · · ·

]
= yκ(x0, y)20, 0 ≤ y < δ,

20The same is true if b(x, y) is Lipschitz continuous in Ω since from

|b(x, y)− b(x, 0)| ≤ const y in Ω

it follows that
|b(x0, y)| ≤ const y,
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with κ(x0, y) bounded for 0 ≤ y < δ and, in view of (3.201), we have

yκ(x0, y) ≥ yn−1, 0 < y < δ,

i.e.,
κ(x0, y) ≥ yn−2, 0 < y < δ,

which means the unboundedness of κ. This is a contradiction. Therefore, if
1 < n < 2, then b(x0, 0) ̸= 0 and b(x, 0) > 0 for all x ∈ AB. The other cases are
obvious.

Example 3.9.11 Consider the following four exercises

n = 1 and b(x, y) = ±1± y.

Remark 3.9.12 For m = 0 from Theorem 3.9.3 there follows the Keldysh The-
orem [25].

For reader’s convenience we state the Keldysh Theorem for equation (3.198)
with m = 0 here

Theorem 3.9.13 If
either 1) n < 1,
or 2) n = 1, and b(x, 0) < 1,
or 3) 1 < n < 2, and b(x, 0) ≤ 0,
or 4) n ≥ 2, and b(x, 0) < 0,

then the Dirichlet problem is uniquely solvable, while the Keldysh problem has an
infinite number of bounded solutions.

If
either 1) n = 1, and b(x, 0) ≥ 1;
or 2) 1 < n < 2, and b(x, 0) > 0;
or 3) n ≥ 2, and b(x, 0) ≥ 0,

the Dirichlet problem is not solvable, in general, while the Keldysh problem is
uniquely solvable.

Remark 3.9.14 Let us consider in Ω two equations: one with order and type
degeneration

ym
∂2u

∂x2
+ yn

∂2u

∂y2
+ b(x, y)

∂u

∂y
= 0 (3.215)

and an other one with characteristic type degeneration

∂2u

∂x2
+ yn

∂2u

∂y2
+ b(x, y)

∂u

∂y
= 0, (3.216)

where
b(x, y) = b0y

[n]−1, b0 = const , m ≥ [n]− 1, n ≥ 2, (3.217)
and [n] is the integral part of n.

i.e.,
κ(x0, y) =

b(x0, y)

y
.
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In both cases b(x, 0) = 0. Hence, in view of the Keldysh Theorem 3.9.13 [25],
the Keldysh problem is well-posed for (3.216) by any b0. Similarly, it is expected
the well-posedness of the Keldysh problem for (3.215). Now, let us apply the
Theorem 3.9.3 and check the fulfillment of (3.201). The condition (3.214) will be
fulfilled for (3.201) iff

b0 ≥ y{n} in Iδ. (3.218)

The latter will be fulfilled iff

b0 ≥ 1 when {n} = 0, (3.219)

b0 > 0 when {n} > 0. (3.220)

(Indeed, if n is an integer, (3.218) and (3.219) coincide. When n is not an integer,
for any b0 > 0 we can find the neighborhood Iδ, δ = b

1
{n}
0 where (3.218) will be

fulfilled). In these cases the well-posedness of the Keldysh problem follows from
our Theorem 3.9.3.

If
b0 < 1 when {n} = 0,
b0 ≤ 0 when {n} > 0,

(3.221)

(3.200) is fulfilled in Iδ but in Īδ the inequality cannot be strong and we are not
able to use our theorem. However, after dividing both sides of (3.215) by y[n]−1

in Ω, we obtain the equation

ym−[n]+1∂
2u

∂x2
+ y{n}+1∂

2u

∂y2
+ b0

∂u

∂y
= 0,

and now we can apply our theorem, which by (3.221) asserts the well-posedness
of Dirichlet problem.

Thus, for both equations (3.215) and (3.216) b(x, 0) = 0. Nevertheless the
Keldysh problem is well-posed for (3.216) for any b0; the Keldysh problem is
well-posed for (3.215) for some b0 (see (3.219), (3.220)), and the Dirichlet problem
is well-posed for other b0 (see (3.221)). It means that for equation (3.216) with
type degeneration the well-posedness of admissible problems depends on values of
b(x, y) on the line of degeneracy of the equation, while for equation (3.215) with
order and type degeneration, the well-posedness of admissible problems essentially
depends on the behavior of b(x, y) in a neighborhood not on the segment of
degeneracy of the equation. In other words, the Keldysh Theorem in the classical
formulation for equation with characteristic type degeneration can not be valid
for equations with order and type degeneration.

Therefore, when m > 0, n > 2, b(x, 0) = 0, the well-posedness of the boundary
value problems for (3.198), even under assumptions (3.199), essentially depends
on additional properties of b(x, y) in the neighborhood (see (3.200),(3.201)) of
line of degeneracy of (3.198), i.e., it is necessary to give the criteria in the neigh-
borhood because it is impossible to establish them on the segment of degeneracy
of the equation.
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Remark 3.9.15 Theorem 3.9.14 remains true if analyticity in (3.199) is replaced
by Hölder continuity on Ω a, b, c ∈ C(0,λ)(Ω) which garanties existence of the Green
function k and of the representation

u(x, y) =

∫
Γ

k(x, y, s)f(s)ds

of a regular solution (see A. Bitsadze [1], [2] K. Miramda [29] in the part of Ω̄,
where equation (3.198) is elliptic and in addition b(x, y) is Lipshitz continuous
on Ω̄ (concerning the last see footnotes of this section).
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Chapter 4

Singular Generalized Analytic
Functions

In this chapter the generalized Cauchy-Riemann system of the first order partial
differential equations generated by the second order partial differential equation
of the general form in the plane has been considered. The solutions u(x, y),
v(x, y) of the above system, called conjugate generalized harmonic functions,
satisfy first, second or third order partial differential equations, depending on
coefficients of the generator equation. The question of solving of boundary value
problems for one conjugate generalized harmonic function by means of solutions
of corresponding boundary value problems for another one has been investigated.
As an example of a generator, the degenerate equation

y (φxx + φyy) + aφx + bφy = 0, a, b = const ,

has been treated.

4.1 Introduction

The Laplace equation
φxx + φyy = 0

after introduction of notations

u := φy, v := φx (4.1)

leads to the Cauchy-Riemann system

ux = vy, vx = −uy

By given u (or v) one can define v (u) up to an additive constant. The necessary
and sufficient condition ensuring it

uxx = −uyy (vyy = −vxx)

is fulfilled if u (v) ∈ C2. It is also known that from solution of the Dirichlet
problem with respect to one of conjugate functions u and v one can obtain the
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solution of the Neumann problem for another one. The present chapter deals
with similar questions when the generator of a system of first order partial dif-
ferential equations is the general second order partial differential equation of two
independent variables [5]:

Lφ := A(x, y)φxx + 2B(x, y)φxy + C(x, y)φyy + a(x, y)φx + b(x, y)φy = 0. (4.2)

Taking into account (4.1), we have the following system (compare with [7])

ux = vy, (4.3)

Avx + 2Bvy(= 2Bux) + Cuy + av + bu = 0. (4.4)

Definition 4.1.1 The functions u and v satisfying the system (4.3), (4.4) will be
called conjugate generalized harmonic functions in the sense of the system (4.3),
(4.4), provided equation (4.2) is elliptic.

In the case of harmonic functions u and v the combination

w(z) = u(x, y) + iv(x, y), z = x+ iy,

leads to an analytic function of the complex variable z provided u, v ∈ C1. In this
chapter considering, in particular, the EPD equation as a generating equation
we construct singular analytic functions. In contrast to the complex analytic
functions, when both the real and imaginary parts are harmonic functions, i.e.,
they satisfy the same second order equation in case of singular generalized analytic
functions the imaginary part satisfies EPD equation, while the real part fulfills a
third order equation. Moreover, we solve (in general) weighted BVPs for singular
generalized analytic functions, when on the straight line of singularity the m-th
order derivative either of the imaginary or of the real part with the corresponding
weight is prescribed. in the particular case, when a = b = 0, we get the classical
Schwartz formula for the analytic function in the half-plane.

4.2 Equations for conjugate generalized harmonic func-
tions

The characteristic form of the system (4.3), (4.4) has the form∣∣∣∣ 1
Cλ

−λ
A+ 2Bλ

∣∣∣∣ = A+ 2Bλ+ Cλ2.

Therefore, the equation (4.2) and the system (4.3), (4.4) are of the same type or
degeneration.

Let A,B,C, a, b,∈ C2(Ω), domain Ω ⊂ R2.

Case 4.2.1. A ≡ 0, a ≡ 0 in Ω.

For u from (4.4) we obtain the first order equation

L1u := 2Bux + Cuy + bu = 0 in Ω. (4.5)
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Case 4.2.2. A ≡ 0, a ≡/ 0 in Ω.

From (4.4) we immediately have v expressed in terms of u:

v = −a−1L1u in Ωa, (4.6)

where
Ωa := {(x, y) ∈ Ω : a(x, y) ̸= 0} ,

After differentiation of (4.6) with respect to y, and substitution of the obtained
expression into (4.3), we get

2Buxy + Cuyy + (2By + a− 2a−1ayB) ux
+(Cy + b− a−1ayC) uy + (by − a−1bay) u = 0 in Ωa.

(4.7)

On the remained subset Ω\Ωa we have (4.5).

Case 4.2.3. A ≡/ 0, (aA−1)y ≡ 0 in Ω.

From (4.4) we have

vx = −A−1L1u− aA−1v in ΩA, (4.8)

where
ΩA := {(x, y) ∈ Ω : A(x, y) ̸= 0}

The expression
vxdx+ vydy,

where vx and vy are given by (4.8) and (4.3), correspondingly, will be the total
differential if and only if (iff):

uxx = AyA
−2L1u

−A−1 (2Byux + 2Buxy + Cyuy + Cuyy + byu+ buy)
− (aA−1)y v − aA−1vy in ΩA.

(4.9)

Further,
uxx = A−1 [AyA

−1 (2Bux + Cuy + bu)
−2Byux − 2Buxy − Cuyy
− (Cy + b) uy − byu]− aA−1ux in ΩA,

since in case under consideration(
aA−1

)
y
≡ 0 and vy = ux.

Therefore,

Auxx + 2Buxy + Cuyy + (a+ 2By − 2A−1AyB) ux
+(b+ Cy − A−1AyC) uy
+(by − bA−1Ay) u = 0 in ΩA.

(4.10)

In (Ω\ΩA)∩Ωa we have (4.7); in (Ω\Ωa)∩ (Ω\ΩA) , i.e., in Ω\ (ΩA ∪ Ωa) we have
(4.5).

George V. Jaiani. Even Order Singular Elliptic Equations



138

Case 4.2.4. A ≡/ 0, (aA−1)y ≡/ 0 in Ω.

In view (4.3), replacing in (4.9) vy by ux, and determining v from the obtained
expression, we have

v = −
[
A (aA−1)y

]−1

[Auxx + 2Buxy + Cuyy

+(a+ 2By − 2A−1AyB) ux + (b+ Cy − A−1AyC) uy
+(by − bA−1Ay) u] in Ω(aA−1)y

∩ ΩA,

(4.11)

where
Ω(aA−1)y

:=
{
(x, y) ∈ Ω :

(
aA−1

)
y
̸= 0
}
.

In order to exclude v from the condition (4.11), we have to substitute its ex-
pression given by (4.11) [assuming u ∈ C3(Ω)] into (4.3) which should be fulfilled
by u and v:

Auxxy + 2Buxyy + Cuyyy + (AK + Ay) uxx

+
(
a+ 4By − 2A−1AyB + 2BK

)
uxy +

(
b+ 2Cy − A−1AyC + CK

)
uyy

+
[
A
(
aA−1

)
y
+
(
a+ 2By − 2A−1AyB

)
K −2

(
A−1AyB

)
y
+ 2Byy + ay

]
ux

+
[(
b+ Cy − A−1AyC

)
K −

(
A−1AyC

)
y
−bA−1Ay + Cyy + 2by

]
uy

+
[(
by − bA−1Ay

)
K −

(
bA−1Ay

)
y
+ byy

]
u = 0, in Ω(aA−1)y

∩ ΩA, (4.12)

where
K := A

(
A−1a

)
y

{[
A
(
aA−1

)
y

]−1
}
y

.

In
(
Ω\Ω(aA−1)y

)
∩ΩA we have (4.10); in

[
Ω\
(
Ω(aA−1)y

∪ ΩA

)]
∩Ωa we have (4.7);

in Ω\
(
Ω(aA−1)y

∪ ΩA ∪ Ωa

)
we have (4.5).

Because of symmetry

u←→ v, A←→ C, a←→ b, x←→ y, (4.13)

the equation for v will have the following forms.

Case 4.2.5. C ≡ 0, b ≡ 0, in Ω.

L2v := 2Bvy + Avx + av = 0 in Ω. (4.14)

Case 4.2.6. C ≡ 0, b ≡/ 0, in Ω.

2Bvyx + Avxx + (2Bx + b− 2b−1bxB) vy
+(Ax + a− b−1bxA) vx + (ax − ab−1bx) v = 0 in Ωb,

(4.15)

where
Ωb := {(x, y) ∈ Ω : b(x, y) ̸= 0} .

On the remained subset we have (4.14).
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Case 4.2.7. C ≡/ 0, (bC−1)x ≡ 0 in Ω.

Cvyy + 2Bvyx + Avxx + (b+ 2Bx − 2BC−1Cx) vy
+(a+ Ax − AC−1Cx) vx + (ax − aC−1Cx) v = 0 in ΩC ,

(4.16)

where
ΩC := {(x, y) ∈ Ω : C(x, y) ̸= 0} .

In (Ω\ΩC) ∩ Ωb we have (4.15); in Ω (ΩC ∪ Ωb) we have (4.14).

Case 4.2.8. C ≡/ 0, (bC−1)x ≡/ 0 in Ω.

Cvyyx + 2Bvyxx + Avxxx + (CM + Cx) vyy

+
(
b+ 4Bx + 2BC−1Cx + 2BM

)
vyx +

(
a+ 2Ax − AC−1Cx + AM

)
vxx

+
[
C
(
bC−1

)
x
+
(
b+ 2Bx − 2BC−1Cx

)
M −2

(
BC−1Cx

)
x
+ 2Bxx + bx

]
vy

+
[(
a+ Ax − AC−1Cx

)
M −

(
AC−1Cx

)
x
−aC−1Cx + Axx + 2ax

]
vx

+
[(
ax − aC−1Cx

)
M −

(
aC−1Cx

)
x
+ axx

]
v = 0 in Ω(bC−1)x

∩ ΩC , (4.17)

where

M := C
(
bC−1

)
x
·
{[
C
(
bC−1

)
x

]−1
}
x
, Ω(bC−1)x

:=
{
(x, y) ∈ Ω :

(
bC−1

)
x
̸= 0
}
.

In
[
Ω\Ω(bC−1)x

]
∩ΩC we have (4.16); in

[
Ω\
(
Ω(bC−1)x

∪ ΩC

)]
∩Ωb we have (4.15);

in Ω\
[
Ω(bC−1)x

∪ ΩC ∪ Ωb

]
we have (4.14).

Corollary 4.2.9 If A, B, C, a, b are independent of x then v will be satisfying
the generator equation (4.2);
If A, B, C, a, b are independent of y then u will be satisfying the generator
equation (4.2);
If A, B, C, a, b are constants then both the conjugate functions will be satisfying
the generator equation (4.2).

Proof. Let A, B, C, a, b be independent of x. Then Case 4.2.8 is excluded
since (bC−1)x ≡ 0; the equations (4.15), (4.16) will coincide with (4.2); after
differentiation with respect to x from (4.14) we also obtain (4.2). The second
part of the corollary will be proved by analogy with preceding.

Remark 4.2.10 In Cases 4.2.1, 4.2.5 conjugate functions satisfy first order equa-
tions; in Cases 4.2.4 and 4.2.8 they satisfy the third order equations which are
of composite type provided that (4.2) is elliptic; in Cases 4.2.2, 4.2.3 and 4.2.6,
4.2.7 they satisfy the second order equations with main parts coinciding with the
main part of (4.2), and therefore, all the above equations are of the same type.
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Remark 4.2.11 The equations (4.12) and (4.17) are the pure differential equa-
tions of lowest order for u ∈ C3 and v ∈ C3, correspondingly, in appropriate cases.
But they are also satisfying the following loaded integro-differential equations of
the second order:

x∫
x0

(A−1L1u
)
y
(t, y) +

(
A−1L1u

)
(t, y)

t∫
x0

(
aA−1

)
y
(ξ, y)dξ

 e t∫
x0

(aA−1)(ξ,y)dξ
dt

+

 y∫
y0

ux (x0, τ) dτ + C0 −
x∫

x0

(
A−1L1u

)
(t, y)e

t∫
x0

(aA−1)(ξ,y)dξ
dt


×

x∫
x0

(
aA−1

)
y
(t, y)dt+ e

t∫
x0

(aA−1)(ξ,y)dξ
ux(x, y)− ux (x0, y) = 0,

C0 = v (x0, y0) ; (4.18)

y∫
y0

(C−1L2v
)
x
(x, τ) +

(
C−1L2v

)
(x, τ)

τ∫
y0

(
bC−1

)
x
(x, η)dη

 e τ∫
y0

(bC−1)(x,η)dη
dτ

+

 x∫
x0

vy (t, y0) dt+ C∗ −
y∫

y0

(
C−1L2v

)
(x, τ)e

τ∫
y0

(bC−1)(x,τ)dη
dτ


×

y∫
y0

(
bC−1

)
x
(x, τ)dτ+e

y∫
y0

(bC−1)(x,η)dη
vy(x, y)−vy (x, y0) = 0, C∗ = u (x0, y0) .

Proof. From (4.4) we have

vx + aA−1v + A−1L1u = 0.

Obviously,

v(x, y) = e
−

x∫
x0

(aA−1)(t,y)dt
l(y)− x∫

x0

(
A−1L1u

)
(t, y)e

t∫
x0

(aA−1)(ξ,y)dξ
dt

 . (4.19)

In order to determine l(y) we have to substitute (4.19) into (4.3):

ux = vy = e
−

x∫
x0

(aA−1)(ξ,y)dξ
l′(y)−

x∫
x0

[(
A−1L1u

)
(t, y)

+
(
A−1L1u

)
(t, y)

t∫
x0

(
aA−1

)
y
(ξ, y)dξ

 e t∫
x0

(aA−1)(ξ,y)dξ
dt


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−

l(y)− x∫
x0

(
A−1L1u

)
(t, y)e

t∫
x0

(aA−1)(ξ,y)dξ
dt



×
x∫

x0

(
aA−1

)
y
(ξ, y)dξe

−
t∫

x0

(aA−1)(ξ,y)dξ
. (4.20)

Since l(y) is independent of x, substituting x = x0 into (4.20), we obtain

ux (x0, y) = l′(y). (4.21)

Hence,

l(y) =

y∫
y0

ux (x0, τ) dτ + C0. (4.22)

Substituting (4.21), (4.22) into (4.20), we get (4.18)
From (4.19) and (4.22) there follows

v (x0, y0) = l (y0) = C0.

4.3 Construction of conjugate functions in terms of each
other

If u is given, then in Case 4.2.1 from (4.3) there follows

v(x, y) =

y∫
y0

ux(x, τ)dτ + v0(x) in Ω (4.23)

and, therefore, the following statement is valid.

Statement 4.3.1. In Case 4.2.1 v is defined up to an arbitrary function v0(x).

Statement 4.3.2. In Cases 4.2.2 and 4.2.4 v is uniquely defined by the formulas
(4.6) and (4.11), correspondingly.

In Case 4.2.3, substituting (4.23) into (4.4), for v0(x) we have the following
equation:

A (x, y0) v
′
0(x) + a (x, y0) v0(x) + 2B (x, y0) ux (x, y0)

+C (x, y0) uy (x, y0) + b (x, y0) u (x, y0) = 0,

taking into account that v0 is independent of y, and setting there y = y0. Further,

v′0(x) + (aA−1) (x)v0(x) + 2 (A−1B) (x, y0) ux (x, y0)
+ (A−1C) (x, y0) uy (x, y0) + (bA−1) (x, y0) u (x, y0) = 0 in ΩA

(4.24)
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since in this case (
aA−1

)
y
≡ 0, (4.25)

and, therefore, aA−1 depends only on x. Obviously, the general solution of (4.24)
has the form

v0(x) = e
−

x∫
x0

(aA−1)(ξ)dξ
C0 −

x∫
x0

[
2
(
A−1B

)
(t, y0) ux (t, y0)

+
(
A−1C

)
(t, y0) uy (t, y0) +

(
bA−1

)
(t, y0) u (t, y0)

]
×e

t∫
x0

(aA−1)(ξ)dξ
dt

 , C0 = const , in ΩA. (4.26)

After substitution of (4.26) into (4.23), which is valid in all the cases, we have

v(x, y) = e
−

x∫
x0

(aA−1)(ξ)dξ
C0 +

y∫
y0

e

x∫
x0

(aA−1)(ξ)dξ
ux(x, τ)dτ

−
x∫

x0

e

t∫
x0

(aA−1)(ξ)dξ
A−1 (t, y0)

× [2B (t, y0) ux (t, y0) + C (t, y0) uy (t, y0) + b (t, y0) u (t, y0)] dt} in ΩA. (4.27)

On the other hand the integral
(x,y)∫

(x0,y0)

e
x∫

x0

(aA−1)(ξ)dξ
ux(x, y)dy − e

x∫
x0

(aA−1)(ξ)dξ
A−1(x, y)

× [2B(x, y)ux(x, y) + C(x, y)uy(x, y) + b(x, y)u(x, y)] dx} (4.28)

is independent of a curve of integration lying in ΩA if

e

x∫
x0

(aA−1)(ξ)dξ
[(aA−1) (x, y)ux(x, y) + uxx] = −e

x∫
x0

(aA−1)(ξ)dξ

×
[
2 (A−1B)y (x, y)ux(x, y) + 2 (A−1B) (x, y)uxy(x, y)

+ (A−1C)y (x, y)uy(x, y) + (A−1C) (x, y)uyy(x, y)

+ (bA−1)y (x, y)u(x, y) + (bA−1) (x, y)uy(x, y)
]
.

(4.29)

Hence, after multiplying both sides of (4.29) by

A · e
−

x∫
x0

(aA−1)(ξ)dξ
,

we obtain (4.10) which is really fulfilled in Case 4.2.3. Now, taking as the curve
of integration a piecewise linear curve connecting points (x0, y0), (x, y0), (x, y),
the integral (4.28) will be coincided with the integral

y∫
y0

e

x∫
x0

(aA−1)(ξ)dξ
ux(x, τ)dτ −

x∫
x0

e

x∫
x0

(aA−1)(ξ)dξ
A−1 (t, y0)
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× [2B (t, y0) ux (t, y0) + C (t, y0) uy (t, y0) + b (t, y0) u (t, y0)] dt.

Therefore, we can rewrite (4.27) as follows

v(x, y) = e
−

x∫
x0

(aA−1)(ξ)dξ
〈
C0 +

(x,y)∫
(x0,y0)

e

x∫
x0

(aA−1)(ξ)dξ {
ux(x, y)dy − A−1(x, y)

× [2B(x, y)ux(x, y) + C(x, y)uy(x, y) + b(x, y)u(x, y)] dx}⟩ in ΩA. (4.30)

If u = 0, then

v(x, y) = C0e
−

x∫
x0

(aA−1)(ξ)dξ
,

and this last pair (u, v) should satisfy the system (4.3), (4.4). It is easily seen
that this pair fulfills (4.4). Substituting them into (4.3), we have

−C0e
−

x∫
x0

(aA−1)(ξ)dξ
x∫

x0

(
aA−1

)
y
dξ = 0.

Hence, it should be realized

C0

x∫
x0

(
aA−1

)
y
dξ = 0 in ΩA.

But, by virtue of (4.25),

x∫
x0

(
aA−1

)
y
dξ = 0 in ΩA.

Consequently, C0 can be an arbitrary constant.

Statement 4.3.3. In Case 4.2.3 v has been defined in ΩA in terms of u up to
the additive term

C0e
−

x∫
x0

(aA−1)(ξ)dξ
,

where C0 is an arbitrary constant.

Because of symmetry (4.13) three following statements hold:

Statement 4.3.4. In Case 4.2.5, by given v,

u(x, y) =

x∫
x0

vy(t, y)dt+ u0(y) in Ω,

where u0(y) is an arbitrary function.
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Statement 4.3.5. In Cases 4.2.6 and 4.2.8 u is uniquely defined in terms of v
by the formulas

u = −b−1L2v in Ωb,

and
u = −

[
C (bC−1)y

]−1

[Cvyy + 2Bvyx + Avxx

+(b+ 2Bx − 2BC−1Cx) vy + (a+ Ax − AC−1Cx) vx
+(ax − aC−1Cx) v] in Ω(bC−1)x

∩ ΩC ,

correspondingly.

Statement 4.3.6. In Case 4.2.7 u has been defined in ΩC in terms of v up to
the additive term

C0e
−

y∫
y0

(bA−1)(η)dη
,

where C is an arbitrary constant. It has been given by the formula

u(x, y) = e
−

y∫
y0

(bC−1)(η)dη
〈
C0 +

(x,y)∫
(x0,y0)

e

y∫
y0

(bC−1)(η)dη {
vy(x, y)dx− C−1(x, y)

× [2B(x, y)vy(x, y) + A(x, y)vx(x, y) + a(x, y)v(x, y)] dy}⟩ in ΩC . (4.31)

Remark 4.3.7 By given solution φ of (4.2) the corresponding [in view of (4.1)]
solution (u, v) of the system (4.3), (4.4) is uniquely defined. By given (u, v) the
corresponding [in view of (4.1)] solution φ of (4.2) is defined up to an additive
constant C0:

φ(x, y) =

(x,y)∫
(x0,y0)

vdx+ udy + C0. (4.32)

Equation (4.3) guarantees independence of this integral on a form of the curve of
integration. Equation (4.4) guarantees that (4.32) is the solution of (4.2).

In fact, from (4.32) there follows (4.1), and after substitution of (4.1) into
(4.4) we obtain (4.2).

Remark 4.3.8 If we consider the more general than (4.2) equation

Lφ+ cφ = 0 (4.33)

then (4.1) does not lead to the system of type (4.3), (4.4) since cφ in (4.33) can
not be expressed in terms of u and v without integration. But if in the domain Ω
there exists a positive regular solution ψ of (4.33), then substituting into (4.33)
the product

φ = χ · ψ,
where φ is a solution of (4.33), we will have

Aχxx + 2Bχxy + Cχyy
+ [a+ 2A(lnψ)x + 2B(lnψ)y]χx
+ [b+ 2B(lnψ)x + 2C(lnψ)y]χy = 0.
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Hence, χ will be a solution of an equation of type (4.2). If (4.2) is of the canonical
form and elliptic, then its positive regular solution (see [10], [11]) always exists,
in general, locally.

Remark 4.3.9 Summarizing the Statements 4.3.1 - 4.3.6, we arrive at the fol-
lowing conclusion: if u and v are conjugate functions in sense of the system (4.3),
(4.4), then u is defined in terms of v up to the addend

u∗(y) =


u0(y) in Case 4.2.5;
0 in Cases 4.2.6, 4.2.8;

C0e
−

x∫
x0

(bC−1)(η)dη
in Case 4.2.7.

and v is defined in terms of u up to the addend

v∗(y) =


v0(y) in Case 4.2.1;
0 in Cases 4.2.2, 4.2.4;

C0e
−

x∫
x0

(aA−1)(ξ)dξ
in Case 4.2.3.

Remark 4.3.10 Let R be the operator corresponding to the equations (4.5), (4.7),
(4.10), (4.12) and I be the operator corresponding to the equations (4.14) - (4.17).
Then in Ω

Ru = 0, (4.34)

Iv = 0. (4.35)

If in the half-plane y > 0 denoted as R2
+ for the equation (4.34) the boundary

value problem (BVP) with the boundary condition (BC)

lim
y→0+

γm+1(y)
∂mu

∂ym
= f(x), (4.36)

where γm+1(y) is a certain weight function, is uniquely solvable under some re-
strictions, then under some restrictions on u the BVP for the equation (4.35)
with BC

lim
y→0+

γm+1(y)
∂m+1v

∂ym+1
= f ′(x) (4.37)

will be solvable up to the addend v∗(x).

In fact, after differentiation of (4.3) m times with respect to y, we have

∂m+1u

∂ym∂x
=
∂m+1v

∂ym+1
. (4.38)

Further, after differentiation of (4.36) with respect x, in view (4.38) we have

f ′(x) = lim
y→0+

γm+1(y)
∂m+1u

∂ym∂x
= lim

y→0+
γm+1(y)

∂m+1v

∂ym+1
(4.39)
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If in R2
+ for the equation (4.35) the BVP with with BC (4.37) is uniquely

solvable under same restrictions, under same restrictions on v for the equation
(4.34) the BVP with BC (4.36) will be solvable up to the addend u∗(y); here BC
(4.36) will be fulfilled up to an additive constant.

In fact, from (4.38) and (4.37) there follows (4.39). After integration of the
latter, we will have

lim
y→0+

γm+1(y)
∂mu

∂ym
= f(x) + const .

4.4 A system generated by EPD equation

Let A ≡ C ≡ y, B ≡ 0, a, b = const . Then the equation (4.2) will have the form

yφxx + yφyy + aφx + bφy = 0, (4.40)

and the system (4.3), (4.4) generated by it will have the form

ux = uy, yvx + yuy + av + bu = 0. (4.41)

Since in R2
+ A ≡ y ̸= 0 then (aA−1)y = −ay−2 ̸= 0 if a ̸= 0, and from (4.12) there

follows that
y (uxxy + uyyy) + 2uxx + auxy + (b+ 2)uyy = 0; (4.42)

if a = 0 then (aA−1)y = 0, and (4.10) gives

y (uxx + uyy) + buy − by−1u = 0, (4.43)

i.e.,
y2 (uxx + uyy) + byuy − bu = 0. (4.44)

After differentiation of (4.44) with respect to y and division by y, we obtain
(4.42), where a = 0. Therefore, for any a (4.42) is fulfilled but the class of regular
solutions of (4.42) when a = 0 is wider than the class of regular solutions of
(4.43). Hence, these two equations are not equivalent.

Since in R2
+ C ≡ y ̸= 0, then (bC−1)x = b (y−1)x = 0, and from (4.16) there

follows
E(a,b)v := y (vxx + vyy) + avx + bvy = 0. (4.45)

Remark 4.4.1 Let us consider (see Section 3.8)

F (a,b,c)u := y2 (uxx + uyy) + ayux + byuy + cu = 0, a, b, c = const . (4.46)

From identity
y

b−b±
2

−1F (a,b,c)
(
y

b±−b
2 u

)
≡ E(a,b±)u,

where
b± := 1±

√
(1− b)2 − 4c, (4.47)
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there follows
y

b±−b
2 u(a,b±) = u(a,b,c). (4.48)

The last relation represents one to one correspondence between solution u(a,b,c) of
the equation (4.46) and solutions u(a,b±) of the equation

E(a,b±)u = 0.

If c = 0 then (4.46), after division by y, when y ̸= 0, coincides with (4.45). In
this case from (4.47) it is obvious that either b± = b or b± = 2− b. If c ̸= 0, then
b± ̸= b, 2− b.

Thus, if a ̸= 0, then third order equation (4.42) and second second order
equation (4.45) are conjugate in sense of the system (4.41). Hence, in view of
Remark 4.3.10 from the solutions of BVP for second order equation (4.45) we
can receive solution of the corresponding BVP for the third order equation (4.42)
which is of composite type since the equation (for composite type equations see
[6], [8])

y
(
ξ2η + η3

)
= 0, i.e., y

[
η

ξ
+

(
η

ξ

)3
]
= 0,

when y > 0, has both real
(
η

ξ
= 0

)
, and imaginar

(
η

ξ
= ±i

)
solutions. If y = 0,

the order of (4.42) degenerates.

Let

γm(y) =


1 when b < 1−m;
−(lny)−1 when b = 1−m;
yb+m−1 when b > 1−m,

(4.49)

where m ∈ {0, 1, 2, . . .}.
Let remind that

Tm (γm(y)) :=

{
v ∈ C2

(
R2

+

)
: γm(y)

∂mv

∂ym
∈ C

(
R2
ε

)}
,

R2
ε := {(x, y) : x ∈ R1, 0 ≤ y ≤ ε < 1} ;

Tmn (γm(y)) :=

{
v ∈ Tm (γm(y)) : v ∈ C

(
R2

+ ∪R1
)
, u(x, 0) ∈ C

∗
n (R1) , n ≥ 1

}
;

Tmn
◦

(γm(y)) :=

{
v ∈ Tmn (γm(y)) : lim

|x|→+∞
v(x, 0) = 0

}
,

Tm0
◦

:= Tm0 := Tm;

C
∗
n be class of bounded functions from Cm with bounded derivatives;

f(ξ) ∈


C
∗
−m when b < 1−m or b = 1−m, m > 0;

C
∗
−1 when b = 1−m, m = 0;

C and f(ξ) = O (|ξ|−α) , |ξ| → +∞, α > 1− b,
if b ∈]−∞, 1], when b > 1−m,
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where C
∗
−m be class of continuous functions with bounded antiderivatives of the

order
≤ m; C

◦
−m ⊂ C

∗
−m be class of functions with the m-th order antiderivative

vanishing at infinity;

αm :=

{
0 when b ≤ 1−m,
−m when b > 1−m.

Theorem 4.4.2 (see Section 3.3 and also [2], [3] §2.1, and [4], §1). - The BVP
for (4.45) with BC

lim
y→0+

γm(y)
∂mv

∂ym
= f(x), x ∈ R1,

is always solvable in Tmm+αm
(γm(y)). If b ≤ 1 − m, m = 0; or b > 1 − m, the

solution is unique; if b ≤ 1 −m, m > 0, it is defined up to an additive constant
under some restrictions at infinity (e. g., boundedness if b < 1−m and b < 0 or
u = O

(
y1−b

)
, r := x2 + y2 → +∞ if b > 1 −m and b > 2; also Problem 4.4.5).

If b < 1 −m, m > 0, and f ∈ C
◦
−m, the solution is unique in Tmm

◦
(γm(y)) under

the above restrictions at infinity. The solution has the form

v(x, y) =



M−1
m (a, 2− b, 0)y1−b

+∞∫
−∞

f
∗

(−m)(ξ)eαθρb−2dξ when b < 1−m,

d−1
m (a)ym

+∞∫
−∞

f
∗

(−m)(ξ)eαθρ−m−1dξ when b = 1−m,

M−1
0 (a, b,m)

+∞∫
−∞

f(ξ)eαθρ−bdξ when b > 1−m,

(4.50)

where

Mk(a, b,m) := yb+m−1

+∞∫
−∞

(ξ − x)k ∂
meαθρ−b

∂ym
dξ,

dm(a) :=

{
(m+ 1)Mm(a,m+ 3, 0) + aMm+1(a,m+ 3, 0) for m > 0;
1 + eaπ for m = 0,

ρ := (x− ξ)2 + y2, θ = arcctg
x− ξ
y
∈ [0, π].

Problem 4.4.3. Let b < −m. Find u ∈ C3
(
R2

+

)
satisfying the equation (4.42)

and BC
lim
y→0+

∂mu

∂ym
= f(x), x ∈ R1, f ∈ C

∗
1
(
R1
)
∩ C

∗
−m (R1

)
, (4.51)

when conjugate function (in sense of the system (4.41))

v ∈ Tm+1
m+1 (1), and v = O(1), r → +∞.
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Problem 4.4.4. Let b = −m. Find u ∈ C3
(
R2

+

)
satisfying the equation (4.42)

and BC

lim
y→0+

(−lny)−1∂
mu

∂ym
= f(x), x ∈ R1, f ∈ C1

(
R1
)
∩ C

∗
−m (R1

)
, (4.52)

when conjugate function (in sense of the system (4.41)

v ∈ Tm+1
m+1

(
(−lny)−1

)
, v = O(1), r → +∞.

Problem 4.4.5. Let b > −m. Find u ∈ C3
(
R2

+

)
satisfying the equation (4.42)

and BC
lim
y→0

yb+m
∂mu

∂ym
= f(x), x ∈ R1, f ∈ C

∗
1
(
R1
)
, (4.53)

where
f(ξ) = O

(
|ξ|−α

)
, |ξ| → +∞, α > −b if b ∈]−∞, 0],

when conjugate function (in sense of the system (4.41))

v = O
(
y1−b

)
,

v = o
(
y1−b

)
,

v = O (r−1) ,

r → +∞,
r → +∞,
vx, vy = (r−2) ,

for b ∈]2,+∞[;
for b ∈]1, 2];
r → +∞,

lim
y→0+

y

+∞∫
−∞

v · vydx = 0 when lim
y→0+

(lny)−1v = 0, x ∈ R1, for b = 1;

v ∈ C
(
R2

+ ∪R1
)
, v = o(1), r → +∞, for b ∈]0, 1[;

v =
∗
I +O

(
r−1
)
, vx =

∗
Ix +O

(
r−2
)
, vy =

∗
Iy +O

(
r−2
)
, r → +∞,

∗
I :=M−1

0 (a, b,m+ 1)

+∞∫
−∞

f ′(ξ)eαθρ−bdξ,

lim
y→0+

yb
+∞∫

−∞

v · vydx = 0 when lim
y→0+

yb+m
∂m+1v

∂ym+1
= 0, x ∈ R1, for b ∈]−∞, 0].

Theorem 4.4.6 All the solutions of the Problems 4.4.3 - 4.4.5, correspondingly,
have the following form

u(x, y) =



M−1
m+1(a, 2− b, 0)y−b

×
+∞∫

−∞

f
∗

(−m)(ξ)(ξ − x)eαθρb−2dξ + C∗y
−b, b < −m;

d−1
m+1(a)y

m

+∞∫
−∞

f
∗

(−m)(ξ)(ξ − x)eαθρ−m−2dξ + C∗y
m,

b = −m;

M−1
0 (a, b,m+ 1)

+∞∫
−∞

f(ξ)
∂eαθρ−b

∂y
dξ, b > −m,

(4.54)
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where C∗ = const , f
∗

(−m) means bounded one among antiderivatives of the m-th
order:

f (−m)(ξ) :=

ξ∫
ξ0

(ξ − τ)m−1

(m− 1)!
f(τ)dτ +

m−1∑
k=0

ckξ
k, ξ ∈ R1, ck = const .

Proof. According to Remark 4.3.10, in order to solve Problems 4.4.3 - 4.4.5, we
have to solve BVP for (4.45) with BC (4.37). Therefore, by virtue of Theorem
4.4.2 (see (4.49), (4.50), where we have to replace m and f by m + 1 and f ′,
correspondingly),

v(x, y) =



M−1
m+1(a, 2− b, 0)y1−b

+∞∫
−∞

[f ′(ξ)]
(−m−1)
∗ eαθρb−2dξ, b < −m;

d−1
m+1(a)y

m+1

+∞∫
−∞

[f ′(ξ)]
(−m−1)
∗ eαθρ−m−2dξ, b = −m;

M−1
0 (a, b,m+ 1)

+∞∫
−∞

f ′(ξ)eαθρ−bdξ, b > −m,

(4.55)
where [·]−m−1

∗ means bounded antiderivative of the m+ 1 order.
If b < −m, in view of the statement 4.3.6, taking into account (4.55), we have

u(x, y) = y−byb0

C0 +

(x,y)∫
(x0,y0)

yby−b0

[
M−1

m+1(a, 2− b, 0)

×
+∞∫

−∞

f
∗

(−m)(ξ)
∂y1−beαθρb−2

∂y
dξdx− y−1M−1

m+1(a, 2− b, 0)y1−b

×
+∞∫

−∞

f
∗

(−m)(ξ)

(
y
∂eαθρb−2

∂x
+ aeαθρb−2

)
dξdy


since

[f ′(ξ)](−m−1)
∗ =



{
[f ′(ξ)]

(−1)
∗

}(−m)

=
{
[f(ξ) + const ]

(−1)
∗

}(−m+1)

=
{
[f(ξ)]

(−1)
∗

}(−m+1)

=

{
f
∗

(−1)(ξ)

}(−m+1)

= · · · = f
∗

(−m)(ξ) when m > 0,

[f ′(ξ)](−1)
∗ = f(ξ) + const when m = 0,
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and the last constant we take equal to zero in order to fulfill (4.51) exactly (see also
the end of the Remark 4.3.10). In case m > 0, we also have to take equal to zero
the above constant and all other constants, but the last, arising by integration.
Otherwise the boundedness of the next antiderivative will be violated. The last
restriction is connected with the question of uniqueness of representation (4.50).
If we did not care for the question of uniqueness, we could take [f ′(ξ)](−m−1)

instead of f−m

∗
(ξ) but then we had to take the above constant equal to zero in

order to fulfill (4.51) exactly.
Evidently,

∂y1−beαθρb−2

∂y
=
∂(ξ − x)y−beαθρb−2

∂x
,

y
∂eαθρb−2

∂x
+ aeαθρb−2 = −∂(ξ − x)e

αθρb−2

∂y
.

Hence,

u(x, y) = y−b

yb0C0 +M−1
m+1(a, 2− b, 0)

+∞∫
−∞

f
∗

(−m)(ξ)

×
(x,y)∫

(x0,y0)

[
∂(ξ − x)eαθρb−2

∂x
dx+

∂(ξ − x)eαθρb−2

∂y
dy

]
dξ


= y−b

yb0C0 +M−1
m+1(a, 2− b, 0)

+∞∫
−∞

f
∗

(−m)(ξ)
[
(ξ − x)eαθρb−2

]∣∣∣∣∣∣
(x,y)

(x0,y0)

dξ


= y−b

C∗ +M−1
m+1(a, 2− b, 0)

+∞∫
−∞

f
∗

(−m)(ξ)(ξ − x)eαθρb−2dξ

 , (4.56)

where
C∗ := yb0C0 −M−1

m+1(a, 2− b, 0)

×
+∞∫

−∞

f
∗

(−m)(ξ)
[
(ξ − x)eαθρb−2

]∣∣∣∣∣∣
(x0,y0)

dξ = const .

It is easily seen directly that (4.56) satisfies (4.51).
Case b = −m can be considered in analogous way.
If b > −m, after integration by parts from (4.55) we obtain

v(x, y) = −M−1
0 (a, b,m+ 1)

+∞∫
−∞

f(ξ)
∂eαθρ−b

∂ξ
dξ

=M−1
0 (a, b,m+ 1)

+∞∫
−∞

f(ξ)
∂eαθρ−b

∂x
dξ.
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Then, in view of (4.31),

u(x, y) = y−byb0

C0 +

(x,y)∫
(x0,y0)

yby−b0

[
M−1

0 (a, b,m+ 1)

×
+∞∫

−∞

f(ξ)
∂2eαθρ−b

∂x∂y
dξdx− y−1M−1

0 (a, b,m+ 1)

×
+∞∫

−∞

f(ξ)

(
y
∂2eαθρ−b

∂x2
+ a

∂eαθρ−b

∂x

)
dξdy

 .

But

yb−1

(
y
∂2eαθρ−b

∂x2
+ a

∂eαθρ−b

∂x

)
= −

∂yb
∂eαθρ−b

∂y

∂y
.

Hence,

u(x, y) = y−b

yb0C0 +M−1
0 (a, b,m+ 1)

+∞∫
−∞

f(ξ)

×
(x,y)∫

(x0,y0)

∂y
b∂e

αθρ−b

∂y

∂x
dx+

∂yb
∂eαθρ−b

∂y

∂y
dy


 dξ

= y−b

C∗ +M−1
0 (a, b,m+ 1)

+∞∫
−∞

f(ξ)yb
∂eαθρ−b

∂y
dξ

 , (4.57)

where

C∗ := yb0C0 −M−1
0 (a, b,m+ 1)

+∞∫
−∞

f(ξ)

[
yb
∂eαθρ−b

∂y

]∣∣∣∣∣∣
(x,y)

(x0,y0)

dξ = const .

It is easily seen immediately that (4.57) satisfies (4.53), if C∗ = 0.

Remark 4.4.7 Since in case under consideration u satisfies also (4.18), from
Theorem 4.4.6 there follows that (4.54) (4.54) is the solution of BVP for loaded
integro-differential equation of second order (4.18), where A ≡ C ≡ y, B ≡ 0,
a, b = const , with the appropriate BVC out of (4.51) - (4.53).

Remark 4.4.8 Let us now consider the case a = 0. In the case of the Dirichlet
problem for v ≡ u(0,b) the weight is γ0(y) (see (4.49), Section 3.2 and also [3]).
Let us find the weight for the Neumann problem for the equation (4.45), where
a = 0. The conjugate function u satisfies (4.44), i.e., u ≡ u(0,b,−b). On the one
hand, in view of (4.48),

u(0,b,−b) = y−bu(0,−b). (4.58)
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On the other hand, by virtue of (4.3), conjugate in sense of (4.41) functions
u(0,b,−b) and u(0,b) satisfy the following relation

u(0,b,−b)x = u(0,b)y . (4.59)

Evidently, from (4.58) we have

u(0,b,−b)x = y−bu(0,−b)x .

Taking into account the latter, from (4.59) there follows

u(0,−b)x = ybu(0,b)y . (4.60)

Since in R2
+ BVP with BC

lim
y→0+

γ0(y)u
(0,−b)(x, y) = f(x), x ∈ R1, (4.61)

where

γ0(y) =


1 when b > −1;
−(lny)−1 when b = −1;
y−b−1 when b < −1,

is correct, obviously,

lim
y→0+

γ0(y)u
(0,−b)
x (x, y) = f ′(x), x ∈ R1. (4.62)

Finally, from (4.60), (4.62) there follows

lim
y→0+

ybγ0(y)u
(0,b)
y (x, y) = f ′(x), x ∈ R1,

where

ybγ0(y) =


y−1 when b < −1;
−(ylny)−1 when b = −1;
yb when b > −1,

is the weight function for the Neumann problem. The solution of the Neumann
problem can be constructed in the following way: Under conditions of Theorem
4.4.2 when m = 0, the unique solution u(0,−b) of the BVP with BC (4.61) is
given by (4.50), where m = 0. Further, from (4.58) we find u(0,b,−b) and than in
usual way by means of (4.30) we find its conjugate function, which is just desired
solution.

4.5 BVPs for singular generalized analytic functions

Introducing the notation

w := u+ iv, ∂z :=
1

2
(∂x − i∂y) , ∂z̄ :=

1

2
(∂x + i∂y) , z := x+ iy,
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and taking into account that, by virtue of (4.3),

∂z̄w + ∂zw̄ = 0,

we can rewrite the system (4.3), (4.4) in the following form

α∂zw + β∂z̄w − β∂zw̄ − ᾱ∂z̄w̄ + γw − γ̄w̄ = 0

where
α :=

A− C
2

+ iB, β :=
A+ C

2
, γ :=

a+ ib

2
.

If
AC − B2 = β2 − (Reα)2 − (Imα)2 > 0, 1

then w is called a generalized analytic [11] or pseudo-analytic [1] function.
In particular, the system (4.41) can be rewritten in the following form

(z − z̄) ∂z̄w(z, z̄) + Re [(ia− b)w(z, z̄)] = 0, a, b = const . (4.63)

Hence, the solution w of the equation (4.63) is generalized analytic function when
y ̸= 0, and when y = 0, the equation (4.63) degenerates in algebraic one. Let
a ̸= 0.

Problem 4.5.1. Find w(z) ∈ C2(R2
+) fulfilling in R2

+ the equation (4.63) when
either

lim
y→0+

γm+1(y)
∂mRew

∂ym
= f(x) (4.64)

or
lim
y→0+

γm(y)
∂mImw

∂ym
= f(x) (4.65)

under conditions of Theorems 4.4.6 and 4.4.2 respectively, and under following
additional conditions in case of boundary condition (4.65):

f(ξ) = O (|ξ|−α) , |ξ| → +∞, α > b, if m = 0, 0 ≤ b < 1,
when b > 1−m;

f (−m)(ξ) = O (|ξ|−α) , |ξ| → +∞, α > 1−m, if m = 0, 1,
when b = 1−m;

and when 1 − m < b ≤ 0, the arbitrary constants in the expression of f (−1)(ξ)
arising by integration should be taken equal to zero.

Theorem 4.5.2 All the solutions of Problem 4.5.1 have the following forms:

w(z) = D−1y−b
+∞∫

−∞

f
∗

(−m)(ξ)ea·arg(ξ−z)
|ξ − z|b

ξ − z
dξ + C∗y

−b, (4.66)

where
D :=Mm+1(a, 2− b, 0) when b < −m, (4.67)

1B = Imα, A = β +Reα, C = β − Reα.
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D := dm+1(a) when b = −m, (4.68)

D :=Mm(a, 2− b, 0) when b < 1−m, (4.69)

D := dm(a) when b = 1−m, (4.70)

C∗ is an arbitrary real constant;

w(z) = 2i

+∞∫
−∞

F (ξ)∂z
(
ea·arg(z−ξ)|ξ − z|−b

)
dξ, (4.71)

where
F (ξ) :=M−1

0 (a, b,m+ 1)f(ξ) when b > −m, (4.72)

F (ξ) :=M−1
0 (a, b,m)f (−1)(ξ) when b < 1−m. (4.73)

(4.67), (4.68), (4.72) and (4.69), (4.70), (4.73) correspond to the boundary con-
ditions (4.64) and (4.65), respectively.

Proof. In view of the well-known Picard Theorem (see, e.g., [9], [10]), solutions
u, v ∈ C2

(
R2

+

)
of the system (4.41) are analytic functions with respect to the

real variables x, y since v satisfies (4.45), and u satisfies the non-homogeneous
equation

uxx + uyy + ay−1ux + (b+ 1)y−1uy = −y−1vx

with analytic in R2
+ with respect to x, y coefficients and the right hand side.

In case of the boundary condition (4.64), according to the Theorem 4.4.6, the
solution w of the Problem 4.5.2 can be constructed by means of (4.54), (4.55) as
u+ iv, taking into account that

θ = arg(ξ − z), ρ = |ξ − z|,

ξ − z + iy =
(ξ − z)2 + y2

ξ − z
=

ρ2

ξ − z
,

∂

∂y

(
eαθρ−b

)
+ i

∂

∂x

(
eαθρ−b

)
= 2i∂z

(
eαθρ−b

)
.

In case of boundary condition (4.65), at first we find v which will have the form
(4.50). Further, in the similar way as proof of Theorem 4.4.6, we find conjugate
u. Therefore, it will have the form (4.54), where in coefficients of integrals and
in conditions with respect to b the non-negative integer m should be replaced by
m− 1. At last, we calculate u+ iv.

Remark 4.5.3 If m ≥ 1, and b < 0, is cases (4.67) - (4.70), the representation
(4.66), because of f

∗

(−m)(ξ), besides of C∗y
−b, contains as well the following arbi-

trariness:

CD−1

+∞∫
−∞

ea·arcctg(−t)
(
1 + t2

) b
2
dt

t− i
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= CD−1

+∞∫
−∞

ea·arcctg(−t)(t+ i)
(
1 + t2

) b
2
−1
dt

= CD−1 [M1(a, 2− b, 0) + iM0(a, 2− b, 0)]

= CD−1
[
−a
b
M0(a, 2− b, 0) + iM0(a, 2− b, 0)

]
= CD−1

(
i− a

b

)
M0(a, 2− b, 0),

where C is an arbitrary real constant.

In the case (4.73), if b > 0, because of f (−1)(ξ), the representation (4.71)
contains the following arbitrariness

2iC

+∞∫
−∞

∂z
[
ea·arg(z−ξ)|ξ − z|−b

]
dξ

= iC

−ea·arg(z−ξ)|ξ − z|−b∣∣+∞
−∞ − i

+∞∫
−∞

∂

∂y

[
ea·arg(z−ξ)|ξ − z|−b

]
dξ


= C ·M0(a, b, 1)y

−b,

where C is an arbitrary real constant.
Let now a = 0, then u satisfies the second order equation (4.44). In this case

the boundary value problem can be set and solved in the similar way, taking into
account that, by virtue of Remark 4.4.8, now

γ0(y) =



1 if b < 1−m and m = 2k, orb = −2k ≥ 1−m;
y−1 if b < −m and m = 2k + 1;
(−ylny)−1 if b = −m and m = 2k + 1;
yb+m−1 if −m < b < 1−m and m = 2k + 1,

or b > 1−m, m ≥ 0 and b ̸= −2k > 1−m;
(−lny)−1 if b = 1−m and m = 2k,

k ∈ {0, 1, . . .}.

4.6 Some general remarks

In Section 4.2 some sets have been introduced.
Since functions indicated in indices of sets

Ωa, ΩA, Ω(aA−1)y
, Ωb, ΩC , Ω(bC−1)x

(which are subsets of a domain Ω and whose closures are supports of the above
functions) are continuous (even more a, b, A, C ∈ C2(Ω), (aA−1)y ∈ C1 (ΩA),
(bC−1)

x ∈ C1 (ΩC)), the above sets are open and locally simply connected i.e.,
for any point from each of the above sets there exists simply connected domain
contained in the above set and containing point under consideration. On the
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other hand the above sets can be multiply connected domains and even unions
of domains without joint points.

In Section 4.3 in all the cases we have formulas for construction of v by means
of u and vice versa of u by means of v either only by differentiation [see (4.6),
(4.11), and Statement 4.4.5] or by differentiation and quadratures [see (4.23),
(4.30), and Statements 4.4.4, 4.4.6].

Here should be emphasized that the formulas (4.6), (4.11) mentioned in State-
ment 4.4.2 (or formulas of Statement 4.4.5), where v (correspondingly u) is deter-
mined by u (correspondingly by v) only by differentiation without integration, are
valid in indicated sets without any additional restrictions. The formulas (4.23),
(4.30), (4.31) and the formula of Statement 4.4.4, containing integration, are valid
locally, in general, in indicated sets. The above formulas will be valid globally
in indicated sets if we demand simply connectness of corresponding sets (such
are they in Sections 4.4 and 4.5). Moreover, in (4.23) and in Statement 4.4.4, Ω
should be convex parallel to axis y and x, correspondingly (i.e., whenever the set
contains two points lying on a line parallel to the axis, it contains the segment
connecting the above points). In formulas (4.30), (4.31) there have been taken
into the consideration the following reasonings: if a path of the integration lies
in two-dimensional domain and the integrand depends only on one variable, then
the curvilinear integral of the second kind (with respect to the above variable) is
equal to the integral along the projection of the above path on the corresponding
axis, where the integrand can be defined by means of parallel (to another axis)
transfer.

Thus, we have the above-described chain of the first order partial differen-
tial equations system (4.3), (4.4), its generator partial differential equation of
the second order (4.2), and the conjugate first (4.5), (4.14), second (4.7), (4.10),
(4.15), (4.16) and third (4.12), (4.17) order partial differential equations. Now,
if we are able to solve certain boundary value problems for one of them, then we
can solve the corresponding (not the same) boundary value problems for other
ones. This is illustrated in Sections 4.4 and 4.5 in the case when the generator
equation is a second order elliptic differential equation (4.40) (which arises in the
theory of elastic cusped plates) with the order degeneration. So, in Section 4.4,
by means of solutions of the boundary value problem when on the boundary the
m-th order derivative of the solution of the second order equation (4.45) with the
suitable weight is given, the corresponding boundary value problem for the third
order partial differential equation (4.42) has been solved; by means of the weight
function for Dirichlet problem for the second order degenerate equation (4.45),
the weight functions of Neumann problem for conjugate second order degener-
ate equation (4.44) have been constructed and the way how to solve the above
weighted Neumann problem has been shown. In Section 4.5, for a singular gener-
alized analytic function [i.e., for solution of the first order degenerate (singular)
complex partial differential equation (4.63) generated by the degenerate equation
(4.40)], the weighted Riemann-Hilbert type problems have been solved.
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Chapter 5

Weighted Boundary Value
Problems for Higher Order
Partial Differential Equations

In this chapter, based on the results of Chapter 3, we investigate (in general
weighted) Dirichlet and Riquier BVPs for higher order degenerate PDEs. In par-
ticular, the above-mentioned equations are obtained by iterating elliptic EPD
operators with different constant coefficients. We give two ways of constructing
solutions to weighted, in general, BVPs for degenerate higher (even) order equa-
tions. Here we employ the results of Sections 3.2 and 3.3 concerning weighted, in
general, BVPs for second order degenerate EPD equations.

5.1 The iterated EPD equation

The 2n order equation(
n−1∏
j=0

E(aj ,bj)

)
φ(x, y) = 0, n ∈ N\{1}, (5.1)

where aj, bj, j = 0, . . . , n − 1, are (in general) complex constants, will be called
the iterated EPD equation (see, G. Jaiani [2], [4]-[7] and [8], pp. 46-57).

The principal part of the equation (5.1) has the form

yn∆nu = yn
(
∂2

∂x2
+

∂2

∂y2

)n
u = yn

n∑
k=0

(
n
k

)
∂2n

∂x2(n−k)∂y2k
.

Let us consider corresponding 2n order form with respect to real constants λ1,
λ2:

K (λ1, λ2) = yn
n∑
k=0

(
n
k

)
λ
2(n−k)
1 λ2k2 = y2

(
λ21 + λ22

)n
.

Since the conical manifold

K (λ1, λ2) = y2
(
λ21 + λ22

)n
= 0
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for y ̸= 0, has not real points except the point λ1 = 0, λ2 = 0, equation (5.1) is
of elliptic type for y ̸= 0 according to classification (see [1], p.10). When y = 0
equation (5.1) has an order degeneration from the order 2n to n. Let us also
consider the following particular case of equation (5.1) (see, G. Jaiani [2], [3], [5],
[6] and [7], pp.59-95)

Eb
nφ :=

(
n−1∏
j=0

E(aj ,b)

)
φ(x, y) = 0, n ∈ N\{1}. (5.2)

It is easily seen that operator Eb
n is independent of the order of factors E(aj ,b).

The following corresponding principle

φ(b)(x, y) = y1−bφ(2−b)(x, y) (5.3)

is valid. The principle (5.3) to each solution φ(b)(z) corresponds solution φ(2−b)(z)
and vice versa. The above corresponding principal follows from the identity

Eb
n[φ(z)] = y1−bE2−b

n [y1−bφ(z)] (5.4)

where φ ∈ C2n
(
R2

+

)
. The identity (5.4) evidently is true for n = 1 [see (5.3)].

Let it be true for n = m− 1 ≥ 1, then

Eb
mφ = E(am−1,b)

(
Eb
m−1φ

)
= E(am−1,b) = y1−bE2−b

m−1

(
yb−1φ

)
= yb−1E(am−1,2−b)

[
E2−b
m−1

(
yb−1φ

)]
y1−bE2−b

m

(
yb−1φ

)
,

i.e., (5.4) is true for n = m too. Thus, according to the method of mathematical
induction (5.4) is true for an arbitrary n ∈ N.

5.2 The first BVP in the half-plane

In this section we assume that

aj ̸= ak, j ̸= k, j, k = 0, . . . , n− 1. (5.5)

For the sake of brevity let z := (x, y) and x0 := (x0, 0).

Problem 5.2.1. In R2
+ find a function φ ∈ C2n

(
R2

+

)
satisfying equation (5.2)

in R2
+ and either BCs

lim
z→x0

∂kφ(z)

∂yk
= fk (x0) , k = 0, . . . , n− 1, Reb < 2− n, (5.6)

or BCs
lim
z→x0

∂kyb−1φ(z)

∂yk
= fk (x0) , k = 0, . . . , n− 1, Reb > n, (5.7)

where z ∈ R2
+, x0 ∈ R1, and f (j−k)

k ∈ C
∗
(R1) , j = 0, . . . , n − 2, k = 0, . . . , n − 1;

while f (n−1−k)
k ∈C

∗

(
R1\

∗
I
)
, k = 0, . . . , n − 1;

∗
I is a union of discontinuity points

of the first kind of the last functions; subscript ”*” means the subset of bounded
functions of the corresponding class of functions.
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Theorem 5.2.2 A solution of the Problem 5.2.1 has the following form

((1)
φ (z) =

y1−b

D(b)

n−1∑
j=0

+∞∫
−∞

Dj(b, ξ)e
ajθρb−2dξ, when Reb < 2− n, (5.8)

and

((2)
φ (z) =

1

D(2− b)

n−1∑
j=0

+∞∫
−∞

Dj(2− b, ξ)eajθρ−bdξ, when Reb > n, (5.9)

Dj (b, ξ) :=∣∣∣∣∣∣∣
Λ0 (a0, b)

...
Λn−1 (a0, b)

. . .
...
. . .

Λ0 (aj−1, b)
...

Λn−1 (aj−1, b)

f0 (ξ)
...

f
(1−n)
n−1 (ξ)

Λ0 (aj+1, b)
...

Λn−1 (aj+1, b)

. . .
...

. . . ,

Λ0 (an−1, b)
...

Λn−1 (an−1, b)

∣∣∣∣∣∣∣ .
Proof. We look for solution of the Problem 5.2.1 under BC (5.6) in the form of
the following sum

φ(z) =
n−1∑
j=0

ψj(z), (5.10)

where functions ψj(z) ∈ C2
(
R2

+

)
, j = 0, . . . , n− 1; are solutions of the following

BVPs
E(aj ,b)ψj(z) = 0, z ∈ R2

+, j = 0, . . . , n− 1,

lim
z→x0

∂jψj(z)

∂yj
= Fj (x0) , z ∈ R2

+, x0 ∈

{
R1, j = 0, . . . , n− 2,

R1\
∗
I, j = n− 1,

provided that functions Fj satisfy the conditions of Problem 5.2.1 with respect
to fj. At the same time functions Fj, j = 0, ..., n− 1, should be chosen in such a
way that

lim
z→x0

n−1∑
j=0

∂kψj(z)

∂yk
= fk (x0) , z ∈ R2

+, x0 ∈

{
R1, k = 0, . . . , n− 2,

R1\
∗
I, k = n− 1.

(5.11)

If Reb < 1 − j and aj ̸= 0 for odd j (it could be assumed with out loss of
generality, since on the one hand, in view of (5.5), only one of the constants aj
can be equal to zero; on the other hand operator Eb

n is independent of the order
of cofactor operator E(aj ,b) and, therefore, we always can give the even index j to
the coefficient aj which is equal to zero), then, by virtue of Theorem 3.3.8 (see
formula (3.63)) and Remark 3.3.10

ψj(z) =
y1−b

Λj (aj, b)

+∞∫
−∞

F
(−j)
j (ξ)eajθρb−2dξ, j = 0, . . . , n− 1. (5.12)
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Substituting (5.12) into (5.11) and let z → x, we get

n−1∑
j=0

Λk (aj, b)

Λj (aj, b)
Fj
∗

(k−j)(x) = fk(x), x ∈

{
R1, k = 0, . . . , n− 2,

R1\
∗
I, k = n− 1.

, (5.13)

whence, after differentiation of the k-th equation (n− k − 1)-times we obtain

n−1∑
j=0

Λk (aj, b)

Λj (aj, b)
F

(n−j−1)
j (x) = f

(n−k−1)
k (x), k = 0, . . . , n− 1. (5.14)

Solving the system of algebraic equations (5.14) with respect to functions
F

(n−j−1)
j (x), we get

F
(n−j−1)
j (x) = D̃−1(b)

n−1∑
j=0

Akjf
(n−k−1)
k (x), (5.15)

where

D̃(b) := D̃ (a0, . . . , an−1, b) := D (a0, . . . , an−1, b)

[
n−1∏
j=0

Λj (aj, b)

]−1

(5.16)

is the determinant of the system (5.14). Here

D(b) := D (a0, . . . , an−1, b) =

∣∣∣∣∣∣∣
Λ0 (a0, b) ,

...
Λn−1 (a0, b)

. . . ,
...

. . . ,

Λ0 (an−1, b) ,
...

Λn−1 (an−1, b)

∣∣∣∣∣∣∣ ,

and Akj is the cofactor of its element

Λk (aj, b)

Λj (aj, b)

of the determinant D̃(b).
By virtue of (2.64), and well-known properties of determinants we have
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D(b) := D (a0, . . . , an−1, b) = (−1)n−1

n−1∏
j=0

Λ (aj, b)

n−2∏
k=0

[
k∏
j=0

(b+ j)

]

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 . . .
a0 . . .
(2)
c 0 − a20 . . .
.
.
.

k−2
2∑
j=0

(k)
c 2ja

2j
0 − ak0, k ∈ N2

k−3
2∑
j=0

(k)
c 2j+1a

2j+1
0 + ak0, k ∈ N1,

−1∑
j=0

(·) := 0

. . .

.

.

.

n−3
2∑
j=0

(n−1)
c2j a

2j
0 − an−1

0 , n− 1 ∈ N2

n−4
2∑
j=0

(n−1)
c2j+1 a2j+1

0 + an−1
0 , n− 1 ∈ N1

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(j-th column we can get from the first one replacing a0 by aj−1, j = 2, n− 1)

= (−1)n−1

n−1∏
j=0

Λ (aj, b)

n−2∏
k=0

(b+ j)n−1−j

∣∣∣∣∣∣∣∣∣∣∣

1
a0
a20
...

an−1
0

· · ·
· · ·
· · ·

1
an−1

a2n−1
...

an−1
n−1

∣∣∣∣∣∣∣∣∣∣∣
×

{
(−1)n−1

2 , (n− 1) ∈ N2;

(−1)n−1
2 , (n− 1) ∈ N1

(taking into account that the last one is the Wandermond determinant)

= (−1)
ñ
2

n−1∏
j=0

Λ (aj, b)

n−2∏
j=0

(b+ j)n−1−j

∏
0≤k<j≤n−1

(aj − ak) ,

where ñ is the greatest even number which is not grater than n. Hence, by virtue
of (2.59),

D(b) ̸= 0
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and, moreover, by virtue of (5.16), (2.59),

D̃(b) ̸= 0,

when (5.5) is fulfilled and aj, b ∈ R1. If aj and b are complex numbers, then we
have to assume that (2.55), (2.56) are fulfilled. Since,

An−1 n−1 = D̃ (a0, . . . , an−2, b) ,

An−1j = D̃ (a0, . . . , aj−1, an−1, aj+1, . . . , an−2, b) , j = 0, . . . , n− 2,

under same restrictions

An−1j ̸= 0, j = 0, . . . , n− 1. (5.17)

On the one hand after integration by parts (n− j − 1)-times
ξ∫

ξ0

(ξ − τ)n−2

(n− 2)!
F

(n−j−1)
j (τ)dτ

=

n−j−2∑
l−1

(−1)l+1 (ξ − ξ0)
n−2−l

(n− 2− l)!
F

(n−j−2−1)
j (ξ0) +

ξ∫
ξ0

(ξ − τ)j−1

(j − 1)!
Fj(τ)dτ

= Fj
∗

(−j)(ξ) +
n−2∑
l=0

c̃l
j
ξl, j = 0, . . . , n− 1,

−1∑
l=0

(·) := 0. (5.18)

On the other hand taking into account equalities (5.15), (5.17),
ξ∫

ξ0

(ξ − τ)n−2

(n− 2)!
F

(n−j−1)
j (τ)dτ

= D̃−1(b)
n−1∑
k=0

Akj

ξ∫
ξ0

(ξ − τ)n−2

(n− 2)!
f
(n−j−1)
k (τ)dτ

= D̃−1(b)
n−1∑
k=0

Akj

[
fk
∗

(−k)(ξ) +
n−2∑
l=0

≈
cl ξ

l

]
= D̃−1(b)

{
n−2∑
k=0

Akjfk
∗

(−k)(ξ)

+An−1 j

[
fn−1

∗

(−n+1)(ξ) + A−1
n−1 j

n−1∑
k=0

Akj

n−2∑
l=0

≈
cl
k
ξl

]}

= D−1(b)

{
n−2∑
k=0

Akjfk
∗

(−k)(ξ) + An−1 j

[
fn−1

∗

(−n+1)(ξ) +
n−2∑
l=0

∗
clξ

l

]}
, (5.19)

∼
cl
j
,
≈
cl
k
,
∗
cl = const .

From the equality of the left hand sides of (5.18), (5.19) it follows that

Fj
∗

(−j)(ξ) = D̃−1(b)

{
n−2∑
k=0

Akjfk
∗

(−k)(ξ)
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+An−1 j

[
f
(−n+1)
n−1
∗

(ξ) +
n−2∑
l=0

(
∗
cl −

∼
cl
j
A−1
n−1 jD̃(b)

)
ξl

]}

= D̃−1(b)
n−2∑
k=0

Akjfk
∗

(−k)(ξ).

Therefore, by virtue of (5.16), we obtain

Fj
∗

(−j)(ξ) = Λj (aj, b)
Dj(b, ξ)

D(b)
. (5.20)

Substituting (5.20) into (5.12), in view of (5.10), we get (5.8).
From (5.20) we have

Fj(x) = Λj (aj, b)D
−1(b)D

(j)
j (b, x), j = 0, . . . , n− 1.

Hence, under the restrictions of the theorem we conclude that functions Fj(x),
j = 0, ..., n− 1, satisfy conditions of the Problem 5.2.1 with respect to fj.

If fk(x) ≡ 0, k = 0, ..., n − 1, then the solution of the problem under con-
sideration can be represented as (5.8), where function f0(x) ≡ 0, while functions
f
(−j)
j (x), j = 0, ..., n − 1 are arbitrary polynomials of order (j − 1). It is easy to
see that this solution is trivial one (s. [7], p. 63, 64).

Solution of Problem 5.2.1 with boundary condition (5.7) according to the cor-
respondence principle (5.3), can be reduced to the Problem 5.2.1 under boundary
condition (5.6).

Remark 5.2.3 Let

Reb > n+ pk, pk ∈ N0, k = 0, . . . , n− 1.

It is easily check that (5.9) is a solution of equation (5.2) which satisfies the
following BCs (s. [7], pp. 66-69)

lim
z→x0

∂pk

∂ypk

(
yk−b+1∂

kyb−1φ

∂yk

)
∂pkyk−b+1

∂ypk

= fk (x0) , z ∈ R2
+, (x0) ∈ R1, k = 0, . . . , n− 1.

Remark 5.2.4 A solution of Problem 5.2.1 under the BCs (5.6) is unique if

aj, b ∈ R1,
∗
I = ∅,

φ, Eb
iφ ∈ C∗

(
R2

+

⋃
R1
)
, j = 1, . . . , n− 1; (5.21)

lim
z→x0

yj−k−l
∂p+q−l∆j−kφ

∂xp∂yq−l
= 0, (5.22)

j−k−l > 0, p+q = k, j = 1, . . . , n−1, k = 0, . . . , j, l = 0, . . . , q, p, q = 0, . . . , k;

∂jφ

∂xs∂yl−s
∈ C

(
R2

+

⋃
R1
)
, (5.23)

s = 0, . . . , j, j = 1, . . . , n− 1.
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Proof. It can be proved that

Eb
j ≡

j∑
k=0

p+q=k∑
p,q=0,...,k

q∑
l=0

j

apqkly
j−k−l∂

p+q−l∆j−k

∂xp∂yq−l

=

j∑
k=0

p+q=k∑
p,q=0,...,k

q∑
l=0

j−k∑
r=0

j

bpqkl
r

yj−k−l
∂2j−l−k

∂xp+2r∂yq−l+2(j−k−r) , (5.24)

where
j

apqkl ,
j

bpqkl
r

are certain constants, in particular
j

apqkl =
j

bpqkl
r

= 0 for j − k − l < 0

and
j

a0000 = 1, j = 1, . . . , n− 1.
If φ satisfies BCs (5.6), then, according to (5.23),

lim
z→x0

j∑
k=0

p+q=k∑
p,q=0,...,k

q≥j−k

j

apqk j−k
∂2k−j∆j−kφ

∂xp∂yq−j+k

= lim
z→x0

j∑
k=0

p+q=k∑
p,q=0,...,k

q≥j−k

j−k∑
r=0

j

bpqk j−k
r

∂jφ

∂xp+2r∂yj−p+2r

=

j∑
k=0

p+q=k∑
p,q=0,...,k

q≥j−k

j−k∑
r=0

j

bpqk j−k
r

f
(p+2r)
j−p−2r (x0) , j = 1, . . . , n− 1. (5.25)

If now, φ is a difference of two possible solutions (i.e., fj = 0, x ∈ R1,
j = 1, ..., n − 1, for this difference), which satisfy conditions (5.21)-(5.23), then
by virtue of (5.6), (5.24), (5.22), (5.25), we have

lim
z→x0

φ = 0, lim
z→x0

Eb
jφ = 0, j = 1, . . . , n− 1.

Hence, φ(x, y) ≡ 0 how it is proved below in Section 5.3 for the case n = 2.

Remark 5.2.5 A solution of Problem 5.2.1 under the BC (5.7) is unique if

aj, b ∈ R1,
∗
I = ∅,

yb−1φ, yb−1Eb
iφ ∈ C∗

(
R2

+

⋃
R1
)
, j = 1, . . . , n− 1;

lim
z→x0

yj−k−l
∂k−l∆j−k (yb−1φ

)
∂xp∂yq−l

= 0,

j−k−l > 0, p+q = k, j = 1, . . . , n−1, k = 0, . . . , j, l = 0, . . . , q, p, q = 0, . . . , k;

∂jyb−1φ

∂xs∂yj−s
∈ C

(
R2

+

⋃
R1
)
, s = 0, . . . , j, j = 1, . . . , n− 1.

Lecture Notes of TICMI, vol. 24, 2023



167

Remark 5.2.6 Solution (5.8) satisfies conditions (5.21)-(5.23).

Proof. By virtue of (5.7), when α + β = j we have

lim
z→x0

yj−k−l
∂k−l∆j−k

(1)
φ

∂xp∂yq−l
= lim

z→x0

j−k∑
r=0

(
j − k
r

)
yj−k−l

∂2j−k−l
(1)
φ

∂xp+2r∂yq−l+2(j−k−r)

= D−1(b)

j−k∑
r=0

[(
j − k
r

) n−1∑
η=0

lim
z→x0

yj−k−l

×
∞∫

∞

D(j)
η (b, ξ)

∂j−k−ly1−b−β(ξ − x)βeaηθρb−2

∂xp+2r−α∂yq−l+2(j−k−r)−β dξ


= D−1(b)

j−k∑
r=0

[(
j − k
r

) n−1∑
η=0

D(j)
η (b, x0) y

j−k−l+1

×
∞∫

∞

∂j−k−ly1−b−β(ξ − x)βeaηθρb−2

∂xp+2r−α∂yq−l+2(j−k−r)−β

∣∣∣∣∣∣
ξ=x+yt

dt

 = 0.

So, (5.22) takes place. Since (5.24) is true for
(1)
φ , from (5.22)-(5.24) it follows

validity (5.11) for
(1)
φ (boundedness becomes clear after substitution ξ = x +

yt).

5.3 The generalized Riquier problem in the half-plane

The method used in the previous subsection excludes consideration of the case
when either ai = aj for i ̸= j or bi ̸= bj for i ̸= j.

For the sake of simplicity we consider the fourth order equation

E(a1,b1) ◦ E(a0,b0)φ0 = 0 (5.26)

and apply another method of solution of basic BVPs which allows investigation
of the general case for (5.1).

Let the constants a1, b1 ∈ R1, j = 1, . . . , n− 1.
Let us introduce the following classes of functions.
Km0,m1(

0
γ(y),

1
γ(y)), mδ ∈ N0, δ = 0, 1, is the class of functions φ0 satisfying

the conditions:

φ0 ∈ C4(R+
2 ), E(a1,b1) ◦ E(a0,b0)φ0 = 0,

δ
γ(y)

∂mδφδ
∂ymδ

∈ C(R2
ε), δ = 0, 1,
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where
φ1(x1, y) := E(a0,b0)φ0(x, y),

R2
ε := {(x, y) : x ∈ R1, 0 ≤ y ≤ ε = const < 1},

Km0,m1
n0,n1

(
0
γ(y),

1
γ(y)), nδ ∈ N, is the class of functions φ0 satisfying the condi-

tions:
(i) φ0 ∈ Km0,m1(

0
γ(y),

1
γ(y));

(ii) φδ ∈ C(R2
+ ∪ R1), δ = 0, 1, lim

|x|→+∞
φ1(x, 0) = 0;

(iii) φδ ∈ Cnδ

∗
(R1), δ = 0, 1.

Km0,m1

0,0 := Km0,m1 .

Km0,m1
,n1

(
0
γ(y),

1
γ(y)) (or Km0,m1

n0,
(
0
γ(y),

1
γ(y))) is the class of functions φ0 satis-

fying all the conditions of the class

Km0,m1
n0,n1

except of the second and third conditions for δ = 0 (δ = 1).
Km0,n1

0,n1
≡ Km0,m1

,n1
.

Km0,m1

n0,0
≡ Km0,m1

n0,
.

Km0,m1

,0 ≡ Km0,m1 .
Km0,m1

0, ≡ Km0,m1 .

Km0,m1
n0,n1

0

(
0
γ(y),

1
γ(y)) ⊂ Km0,m1

n0,n1
(
0
γ(y),

1
γ(y)), n0, n1 ∈ N0 is the class of func-

tions φ0 satisfying the conditions

lim
|x|→+∞

φ1(x, 0) = 0 for n0 ̸= 0.

Bellow (see [2], [4], [5], also [7], pp. 69-95 and [8], pp. 46-57) the following
BVPs are solved.

Problem 5.3.1. Let b1 ∈ ]−∞, 2−m0[ and (aδ, bδ) ∈ i1,mδ
, δ = 0, 1. Find a

function φ0 ∈ Km0,m1
m0,m1

(1, 1) which satisfies the following boundary conditions

lim
z→x0

∂mδφδ
∂ymδ

= fδ (x0) , z ∈ R2
+, x0 ∈ R1, δ = 0, 1, (5.27)

where
fδ ∈ C

∗
(−mδ−δ), δ = 0, 1, f1 ∈ C

∗
−m0−m1−1, φ1 := E(a0,b0)φ0,

and the conditions

φδ(x, y) =


O(1), r →∞ when either aδ ∈ R1, bδ ∈]−∞, 0[

or aδ = 0, bδ = 0;
o(1), r →∞ when either aδ ∈ R1, bδ ∈]0, 1[

or aδ ̸= 0, bδ = 0,

(5.28)

δ = 0, 1.
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Problem 5.3.2. Let b1 ∈]−∞, 2−m0[ and (a0, b0) ∈ i3,m0 , (a1, b1) ∈ i1,m1 . Find
a function

φ0 ∈ Km0,m1
m0,m1

((
ln
1

y

)−1

, 1

)
which satisfies the following BCs:

(i) (5.27) for δ = 1;
(ii)

lim
z→x0

(
ln
1

y

)−1
∂m0φ0

∂ym0
= f0 (x0) , z ∈ R2

+, x0 ∈ R1, (5.29)

where
f1 ∈ C

∗
(−m1−1); f1 ∈ C

∗
m0−m1−2

(
or f1

0

(m0−m1−1)(ξ) = O
(
|ξ|−α

)
, |ξ| → +∞, α > 0

)
; (5.30)

f0 ∈

{
C
∗
(−m0), m0 > 0,

C
∗
(−1), m0 = 0,(

or if f0 ∈ C and f0(ξ) = O
(
|ξ|−α

)
, |ξ| → +∞, α > 0, for m0 = 0

)
; (5.31)

and if m0 > 0, m1 ≥ 0, then φ0 satisfies conditions (5.28); while when m0 = 0,
m1 ≥ 0 it satisfies (3.55), (3.56), and (5.28) δ = 1.

Problem 5.3.3. Let m0 < m1 + 1 and (a0, b0) ∈ i1,m0 , (a1, b1) ∈ i3,m1 . Find a
function

φ0 ∈ Km0,m1
m0,m1

(
1,

(
ln
1

y

)−1
)

which satisfies the following BCs:
(i) (5.27) for δ = 0;
(ii)

lim
z→x0

(
ln
1

y

)−1
∂m1φ1

∂ym1
= f1 (x0) , z ∈ R2

+, x0 ∈ R1, (5.32)

where fδ ∈ C
∗
(−mδ−δ); δ = 0, 1, and if m0 ≥ 0, m1 > 0, then φ0 satisfies conditions

(5.28); while when m0 ≥ 0, m1 = 0 it satisfies condition (5.28) for δ = 0 and φ1

satisfies (3.55), (3.56).

Problem 5.3.4. Let m0 < m1 + 1 and (aδ, bδ) ∈ i3,mδ
, δ = 0, 1. Find a function

φ0 ∈ Km0,m1
m0,m1

((
ln
1

y

)−1

,

(
ln
1

y

)−1
)

which satisfies boundary conditions (5.29), (5.32) where fδ ∈ C
∗
(−mδ−δ), δ = 0, 1,

when m0 > 0 (if m0 = 0, either (5.31) is valid or f0 ∈ C
∗
(−1), f1 ∈ C

∗
(−m−2) or
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(5.30) is fulfilled for m0 = 0); and if mδ > 0, δ = 0, 1, then φ0 satisfies condition
(5.28), if mδ = 0, δ = 0, 1, satisfy (3.55), (3.56) φδ, δ = 0, 1, if m0 = 0, m1 > 0
φ0 satisfies (3.55), (3.56) for φ0 and φ1 satisfies (5.28) when δ = 1, while if
m0 > 0, m1 = 0, then φ1 satisfies conditions ((3.55), (3.56) and φ0 satisfies
condition (5.28) for δ = 0.

Problem 5.3.5. Let b0 = b1 = b; moreover b > 1−m0 and either a0 ̸= 0, or

a0 = 0, b ̸= 0,−2, . . . ,−2
(
m0 −

[m0

2

]
− 1
)
, m0 ∈ N\{1}.

In addition b > 1−m1 and either a1 ̸= 0, or

a1 = 0, b ̸= 0,−2, . . . ,−2
(
m1 −

[m1

2

]
− 1
)
, m1 ∈ N\{1}.

Find function φ0 ∈ Km0,m1
(
yb+m0−1, yb+m1−1

)
which satisfies BCs

lim
z→x0

yb+mδ−1∂
mδφδ
∂ymδ

= fδ (x0) , z ∈ R2
+, x0 ∈ R1, δ = 0, 1, (5.33)

where fδ ∈ C
∗
(−δ), δ = 0, 1; if b ∈]−∞, 1], then

f0(ξ), f1
∗

(−1)(ξ) = O
(
|ξ|−α

)
, (ξ)→ +∞, α > 1− b,

and conditions (3.53)-(3.59) for φ0 and φ1, where u, a are replaced by φ0, a0 and
φ1, a1, respectively.

Theorem 5.3.6 The solutions of Problems 5.3.1-5.3.5 have the following forms

(1)
φ 0 = Λ−1

m0
(a0, b0) y

1−b0

+∞∫
−∞

{
f0
∗

(−m0)(ξ) +
[
Hm0

(π
2
, a0, a1 − a0, b0, b1 − b0

)

−Λm0 (a0, b0) Ω
(
θ,
π

2
, a1 − a0, b1 − b0

)] f1
∗

(−m1−1)(ξ)

Λm1 (a1, b1)

 ea0θρb0−2dξ, (5.34)

(2)
φ 0 = d−1

m0
(a0) y

m0

+∞∫
−∞

{
f0
∗

(−m0)(ξ)

+
[
a0Hm0+1

(π
2
, a0, a1 − a0,−m0 − 1, b1 +m0 − 1

)
+(m0 + 1)Hm0

(π
2
, a0, a1 − a0,−m0 − 1, b1 +m0 − 1

)
+Λm0+1 (a1, b1 − 2)− dm0 (a0) Ω

(
θ,
π

2
, a1 − a0, b1 −m0 − 1

)]
×Λ−1

m1
(a1, b1) f1

∗

(−m1−1)(ξ)

}
ea0θρ−m0−2dξ, (5.35)
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(3)
φ 0 = Λ−1

m0
(a0, b0) y

1−b0

×
+∞∫

−∞

{
f0
∗

(−m0)(ξ) +
[
Hm0

(π
2
, a0, a1 − a0, b0, 1−m1 − b0

)
−Λm0 (a0, b0) Ω

(
θ,
π

2
, a1 − a0, 1−m1 − b0

)]
×d−1

m1
f1
∗

(−m1−1)(ξ)

}
ea0θρb0−2dξ, (5.36)

(4)
φ 0 = d−1

m0
(a0) d

−1
m1

(a1) y
m0

+∞∫
−∞

{
dm1 (a1) f0

∗

(−m0)(ξ)

−
[
dm0 (a0) Ω

(
θ,
π

2
, a1 − a0,m0 −m1

)
−a0Hm0+1

(π
2
, a0, a1 − a0,−m0 − 1,m0 −m1

)
− Λm0+1 (a1,−m1 − 1)

− (m0 + 1)Hm0

(π
2
, a0, a1 − a0,−m0 − 1,m0 −m1

)]
×f1

∗

(−m1−1)(ξ)

}
ea0θρ−m0−1dξ, (5.37)

(5)
φ (x, y)

=



M−1 (a0, b,m0)

+∞∫
−∞

[f0(ξ)

+
M (a1, b,m0)

(a1 − a0)M (a1, b,m1)
f1
∗

(−1)(ξ)

]
ea0θρ−bdξ

− (a1 − a0)−1M−1 (a1, b,m1)

+∞∫
−∞

f1
∗

(−1)(ξ)ea0θρ−bdξ, a1 ̸= a0;

M−1 (a0, b,m0)

+∞∫
−∞

[
f0(ξ) +

M (a, b,m0)

M (a, b,m1)
f1
∗

(−1)(ξ)

]
ea0θρ−bdξ

−M−1 (a, b,m1)

+∞∫
−∞

f1
∗

(−1)(ξ)θeaθρ−bdξ, a1 = a0 = a,

(5.38)

respectively, where

Hk (θ0, a0, a1 − a0, γ, b1 − b0)

:=

+∞∫
−∞

tkea0arcctg(−t)Ω (arcctg(−t), θ0, a1 − a0, b1 − b0)
(
1 + t2

) γ
2
−1
dt.

(5.39)

Problems 5.3.1-5.3.4 for m0 = 0 and Problem 5.3.5 are uniquely solvable.
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Solutions of Problems 5.3.1-5.3.4 for m0 > 0 are defined up to an additive
constant.

If fδ ∈ C
0

(−mδ−δ), δ = 0, 1, then Problems 5.3.1-5.3.4 are uniquely solvable in
the classes

Km0,m1
m0,m1

0

(1, 1), Km0,m1
m0,m1

0

((
ln
1

y

)−1

, 1

)
,

Km0,m1
m0,m1

0

(
1,

(
ln
1

y

)−1
)
, Km0,m1

m0,m1

0

((
ln
1

y

)−1

,

(
ln
1

y

)−1
)
,

respectively (when we are looking for solutions in the above mentioned classes in
the expressions (5.34)-(5.37) of solutions stars should be replaced by zeros).

Remark 5.3.7 If m0 = 0, then in solutions (5.34) and (5.36) of Problem 5.3.1
and Problem 5.3.3, respectively, the terms which correspond to the constant C in
the expression of f1

0

(−m1−1)(ξ) are equal to zero, since, by virtue of (5.39),

y1−b0
+∞∫

−∞

[
H0

(π
2
, a0, a1 − a0, b0, b1 − b0

)
−Λ (a0, b0) Ω

(
θ,
π

2
, a1 − a0, b1 − b0

)]
Cea0θρb0−2dξ = 0

and this assertion remains also for b1 = 1−m1.
If m0 = 0, then in solutions (5.35) and (5.37) of Problem 5.3.1 and Problem

5.3.4, respectively, under the assumption of Theorem 5.3.6, either

f1
∗

(−m1−1)(ξ) = O
(
|ξ|−α

)
, |ξ| → +∞, α > 0, (5.40)

or exists f1
∗

(−m1−2)(ξ). But then f1
∗

(−m1−1)(ξ) may not contain the arbitrary ad-

ditive constant, otherwise, either (5.40) will be violated or f1
∗

(−m1−2)(ξ) will be
unbounded.

In (5.38) the sum of the terms corresponding to the arbitrary additive constants
in f1

∗

(−1) is equal to zero, since, because of equalities

+∞∫
−∞

eaθρ−bdξ = y1−bM(a, b, 0), z ∈ R2
+,

+∞∫
−∞

θeaθρ−bdξ = y1−bM(a, b, 1, 0), z ∈ R2
+,

M (aδ, b,m0) = (−1)m0 (b− 1,m0)M (aδ, b, 0) , δ = 0, 1,

M0 (a, b, 1,m0) = (−1)m0 (b− 1,m0)M0 (aδ, b, 1, 0) .
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The expression

M−1 (a0, b,m0)

+∞∫
−∞

CM−1 (a1, b,m1)


M (a1, b,m0)

a1 − a0
M0 (a, b, 1,m0)

 ea0θρ−bdξ

−M−1 (a1, b,m1)

+∞∫
−∞

C

{
(a1 − a0)−1

θ

}
ea1θρ−bdξ

=
Cy1−b

M (a1, b,m1)

[
M−1 (a0, b,m0)

{
(a1 − a0)−1M (a0, b, 0)M (a1, b,m0)
M0 (a, b, 1,m0)M(a, b, 0)

}
−
{

(a1 − a0)−1M (a1, b, 0)
M0 (a, b, 1, 0)

}]
= 0, b > 1,

where in the braces the upper and lower expressions correspond to the cases
a1 ̸= a0 and a1 = a0 = a, respectively.

Remark 5.3.8 If in the formulas (5.34)-(5.38) f0 and f1 are piece-wise contin-
uous functions satisfying all the hypotheses of problems 4.3.1-4.3.5, except every-
where continuity, then the expressions (5.34)-(5.38) will satisfy equation (5.26) in
R2

+ and the pairs of BCs (5.27); (5.27) for δ = 1, (5.29); (5.27) for δ = 0, (5.32);
(5.29), (5.32); (5.33), respectively, at the points of continuity of the functions f0
and f1, even if aδ, bδ, δ = 0, 1, be complex numbers and Re bδ, δ = 0, 1, satisfy
the same conditions which were satisfied by the real constants bδ, δ = 0, 1 (except
of the cases b0 = 1−m0 and b1 = 1−m1, when bδ, δ = 0, 1, are always supposed
real ones). Naturally, we exclude the complex values of aδ and bδ, δ = 0, 1, when
the dinominators in (5.34)-(5.38) vanish.

E(a0,b0)φ0 = φ1, (5.41)

we equivalently reduce Problems 5.3.1 - 5.3.5, to the pairs of BVPs like Problem
3.3.1 - 3.3.5 for the homogeneous equation

E(a1,b1)φ1 = 0 (5.42)

and for the non-homogeneous equation (5.41). Here the function φ1 in the right-
hand side of equation (5.41) is a solution of the certain BVP for equation (5.42).
In that cases, when in the Theorem 5.3.6 is claimed uniquely solvability of Prob-
lems 5.3.1 - 5.3.5 there are assumed that the conditions with respect to φ1 and
φ0 of uniquely solvability of the corresponding Problems 3.3.1 - 3.3.5 are fulfilled.

Thus, if we consider a difference of two possible solutions of Problems 5.3.1 -
5.3.5, first we get certain BVP of the form of Problems 3.3.1 - 3.3.5 for equation
(5.42) with homogeneous BCs under assumptions of uniquely solvability of the
BVP, i.e.,

φ1(x, y) ≡ 0, z ∈ R2
+,
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and then we get a certain BVP of the form of Problems 3.3.1 - 3.3.5 for equation
(5.41) which is converted in to the homogeneous one with homogeneous BCs
under assumptions of uniquely solvability of the BVP, i.e.,

φ0(x, y) ≡ 0, z ∈ R2
+.

Now, we pass to the constructing of solutions. Problem 5.3.1 is equivalently
reduced to the following pair of BVPs.

Problem 5.3.9. Let (a1, b1) ∈ i1,m1 . Find a function

φ1 ∈ Tm1
m (1)

satisfying equation (5.42) and conditions (5.27), (5.28) for δ = 1.

Problem 5.3.10. Let b1 ∈]−∞, 2−m0[ and (a0, b0) ∈ i1,m0 . Find a function

φ0 ∈ Tm1
m1

(1)

satisfying the non-homogeneous (instead of homogeneous according to the def-
inition of the class Tm1

m1
(1)) equation (5.41) and conditions (5.27), (5.28) for

δ = 0.

By virtue of (3.62), all the solutions of Problem 5.3.9 have the form

φ1 = Λ−1
m1

(a1, b1) y
1−b1

+∞∫
−∞

f1
∗

(−m1)(ξ)ea1θρb1−2dξ. (5.43)

Let us find a particular solution of equation (5.41) with the right-hand side
of the form (5.43). We look for it in the integral form

φp1(x, y) = Λ−1
m1

(a1, b1)

+∞∫
−∞

f1
∗

(−m1)(ξ)ω1(x− ξ, y)dξ, z ∈ R2
+, (5.44)

where the function ω1(x− ξ, y) is to be determined.
Assuming (5.44) twice differentiable under sign of integral, from (5.41) we

obtain
E(a0,b0)ω1 = y1−b1ea1θρb1−2.

In the polar coordinate system the last equation we rewrite in the form

ρ2
∂2ω1

∂ρ2
+ρ

∂ω1

∂ρ
+
∂2ω1

∂θ2
+a0ρctgθ

∂ω1

∂ρ
−a0

∂ω1

∂θ
+b0ρ

∂ω1

∂ρ
+b0ctgθ

∂ω1

∂θ
= ea1θsin−b1θ.

Whence, particular solutions depending only on θ satisfy the following equation

∂2ω1

∂θ2
+ (b0ctgθ − a0)

∂ω1

∂θ
= ea1θsin−b1θ
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and have the form

ω1 =

θ∫
θ0

ea0tsin−b0t

C1 +

t∫
θ0

e(a1−a0)τ sin(b0−b1)τdτ

 dt+ C2, (5.45)

where C1, C2, θ0 = const , θ0 =]0, π[. Let

C1 = C2 = 0, θ0 =
π

2
.(

If

b1 = b2 = b, θ0 =
π

2
, C2 = 0, C1 =

{
(a1 − a0)−1 e(a1−a0)

π
2 , a1 ̸= a0,

π

2
, a1 = a0,

then

ω1(x− ξ, y) =



(a1 − a0)−1

θ∫
π
2

ea1θsin−bθdθ, a1 ̸= a0,

θ∫
π
2

eaθsin−bθdθ, a1 = a0 = a.
) (5.46)

Substituting (5.45) into (5.44), after integration by parts, regarding

f1
∗

(−m1−1)(ξ) = −O
(
|ξ|−α

)
, |ξ| → +∞, α > 0, (5.47)

by virtue of (3.13)-(3.15) we arrive at the desired particular solution
φp1(x, y) = −Λ−1

m1
(a1, b1)

×
+∞∫

−∞

f1
∗

(−m1−1)(ξ)ea0θsin−b0θΩ
(
θ,
π

2
, a1 − a0, b1 − b0

) ∂θ
∂ξ
dξ

= − y1−b0

Λm1 (a1, b1)

+∞∫
−∞

f1
∗

(−m1−1)(ξ)ea0θρb0−2Ω
(
θ,
π

2
, a1 − a0, b1 − b0

)
dξ. (5.48)

Now, supposing f1 ∈ C
∗
−m1−1 (without restriction (5.47)) it is easily seen that

(5.48) is a particular solution of equation (5.41), when φ1 has the form (5.43).
Indeed,

E(a0,b0)φp1(x, y) = −Λ−1
m1

(a1, b1)

×
+∞∫

−∞

f1
∗

(−m1−1)(ξ)
{
ρ−2ea1θsin1−b1θ [a1sinθ + (2− b1) cosθ]

}
dξ

= −Λ−1
m1

(a1, b1)

+∞∫
−∞

f1
∗

(−m1−1)(ξ)
∂

∂ξ

[
ρ−1ea1θsin1−b1θ

]
dξ
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= Λ−1
m1

(a1, b1)

+∞∫
−∞

f1
∗

(−m1)ρ−1ea1θsin1−b1θdξ

= Λ−1
m1

(a1, b1) y
1−b1

+∞∫
−∞

f1
∗

(−m1)(ξ)ea1θρb1−2dξ.

Further, in view of b1 < 2−m0,

lim
z→x0

∂m0φp1
∂ym0

= −Hm0 (θ0, a0, a1 − a0, b0, b1 − b0) Λ−1
m1

(a1, b1) f1
∗

(m0−m1−1) (x0) .

The solution of Problem 5.3.10 will be the sum of the particular solution (5.48)
and the solution of the equation

E(a0,b)
0
φ(x, y) = 0, z ∈ R2

+

satisfying the BCs condition

lim
z→x0

∂m0
0
φ

∂ym0
= f0 (x0)− lim

z→x0

∂m0φp1
∂ym0

.

Whence, having constructed all the solution
0
φ according to the formula (3.63)

and summing it with (5.48) we obtain all the solutions of Problem 5.3.1.
We solve similarly other problems. E.g., by solving Problem 5.3.5 we need

to find a particular solution of equation (5.41), when the right-hand side has the
form

M−1 (a1, b,m1)

+∞∫
−∞

f1(ξ)e
a1θρ−bdξ.

We are looking for a particular solution in the form

φp5 =M−1 (a1, b,m1) y
1−b

+∞∫
−∞

f1(ξ)ω5(x− ξ, y)dξ. (5.49)

In this case for the function ω5 we get the equation
E(a0,b)y1−bω5(x− ξ, y) = ea1θρ−b.

Hence, by virtue of the identity (3.4), we have
E(a0,2−b)ω5(x− ξ, y) = yb−1ea1θρ−b.

But the particular solution of this equation we have already found and it has
the form (5.46), provided b is replaced by 2− b. Substituting it into (5.49), after
simple transformations, we obtain

φp5 =


−M

−1 (a1, b,m1)

a1 − a0

+∞∫
−∞

f1
∗

(−1)(ξ)ea1θρ−bdξ, a1 ̸= a0;

−M−1 (a, b,m1)

+∞∫
−∞

f1
∗

(−1)(ξ)θea1θρ−bdξ, a1 = a0 = a.
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Therefore,

lim
z→x0

yb+m0−1∂
m0φp5
∂ym0

=

 − (a1 − a0)−1M−1 (a1, b,m1)M (a1, b,m0) f1
∗

(−1) (x0) , a1 ̸= a0;

−M−1 (a, b,m1)M0 (a, b, 1,m0) f1
∗

(−1) (x0) , a1 = a0 = a.

Then acting as above by solving of Problem 5.3.1 we arrive at (5.38).
The solutions of Problems 5.3.1 - 5.3.5 make possible to solve a number of

BVPs of the type of the first BVP, in particular, the first BVP proper. It should
be noted that such a passage is possible only in the case of degeneration of the
order of the equation. The equation under consideration in the present chapter
is such one.

Problem 5.3.11. Let b0 < −m1, f0 ∈ C
∗
−m0

⋂
C
∗
m1−m0+1. Find a solution of

Problem 5.3.1 satisfying BC

lim
z→x0

∂m1+1φ0

∂ym1+1
= f̃1 (x0) , z ∈ R2

+, x0 ∈ R1, f̃1 ∈ C
∗
−m1−1

⋂
C
∗
m0−m1+1, (5.50)

(instead of BC (5.27) for δ = 1) and the following conditions

lim
z→x0

y
∂m1∆φ0

∂ym1
= 0, z ∈ R2

+, x0 ∈ R1, (5.51)

lim
z→x0

∂m1+1φ0

∂x1+δ∂ym1−δ
= Λ−1

m0
(a0, b0)

{
Λm1−δ (a0, b0) f0

∗

(m1−m0+1) (x0)

+
Hm0,m1−δ

Hm0,m1+1

[
Λm0 (a0, b0) f̃1 (x0)− Λm1+1 (a0, b0) f0

∗

(m1−m0+1) (x0)

]}
, δ = 0, 1,

(5.52)
where

Hm,n := Hm

(π
2
, a0, a1 − a0, b0, b1 − b0

)
Λn (a0, b0)

−Λm (a0, b0)Hn

(π
2
, a0, a1 − a0, b0, b1 − b0

)
.

(5.53)

Problem 5.3.12. Let b0 ∈ [−m1, 1 − m1[, f0 ∈ C
∗
m1−m0+1. Find a solution of

Problem 5.3.1 satisfying BC

lim
z→x0

∂m1

∂ym1

(
y
∂2

∂y2
+ b0

∂

∂y

)
φ0 = f̃1 (x0) , f̃1 ∈ C

∗
−m1−1

⋂
C
∗
m0−m1−1 (5.54)

(instead of BC (5.27) for δ = 1) and the following conditions

lim
z→x0

y
∂m1+2φ0

∂x2∂ym1
= 0, z ∈ R2

+, x0 ∈ R1, (5.55)
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lim
z→x0

∂m1+1φ0

∂x1+δ∂ym1−δ
= Λ−1

m0
(a0, b0)

〈
Λ−1
m1−δ (a0, b0) f0∗

(m1−m0+1) (x0)

+

(
∗
Hm0,m1

)−1

Hm0,m1−δ
{
Λm0 (a0, b0) f̃1 (x0)

+ [m1Λm1−1 (a0, b0) + a0Λm1 (a0, b0)] f0
∗

(m1−m0+1) (x0)

}〉
, (5.56)

∗
Hm0,m1 := Λm0 (a0, b0)

[
Λm1 (a1, b1) +m1Hm1−1

(π
2
, a0, a1 − a0, b0, b1 − b0

)
+ a0Hm1

(π
2
, a0, a1 − a0, b0, b1 − b0

)]
−Hm0

(π
2
, a0, a1 − a0, b0, b1 − b0

)
[m1Λm1−1 (a0, b0) + a0Λm1 (a0, b0)] ,

m1Hm1−1(., ., ., ., .)|m1=0 ≡ 0, m1Λm1−1(., .)|m1=0 ≡ 0.

Problem 5.3.13. Let m1 < m0 − 1, m0 ∈ N \ {1}, f0 ∈ C
∗
m1−m0+1, f̃1 satisfy

the condition (5.30), f0 satisfy the condition (5.31). Find a solution of Problem
5.3.2 satisfying BC (5.50) (instead of BC (5.27) for δ = 1) and the following
conditions

lim
z→x0

∂m1+1φ0

∂x1+δ∂ym1−δ
= d−1

m0
(a0)

{
Λm1−δ (a0, 1−m0) f0

∗

(m1−m0+1) (x0)

+
H̃m0+1,m1

H̃m0+1,m1+1

[
dm0 (a0) f̃1 (x0)

−Λm1+1 (a0, 1−m0) f0
∗

(m1−m0+1) (x0)

]}
, (5.57)

where
H̃m.n1 :=

[
a0Hm

(π
2
, a0, a1 − a0,−m− 1, b1 +m− 1

)
+mHm−1

(π
2
, a0, a1 − a0,−m, b1 +m− 2

)
+ Λm+1 (a1, b1 − 2)

]
Λn (a0, 2−m)

−dm−1 (a0)Hn

(π
2
, a0, a1 − a0, 2−m, b1 − 2 +m

)
.

Problem 5.3.14. Let b0 < 1−m1, f0 ∈ C
∗
m1−m0+1. Find a solution of Problem

5.3.3 satisfying the following BC

lim
z→x0

(
ln
1

y

)−1
∂m1

∂ym1

(
y
∂2

∂y2
+ b0

∂

∂y

)
φ0 = f̃1 (x0) , (5.58)

where f̃1 satisfies the conditions of Problem 5.3.3 with respect of f1 (instead of
BC (5.32)) and the following conditions

lim
z→x0

(
ln
1

y

)−1

y
∂m1+2φ0

∂x2∂ym1
= 0, z ∈ R2

+, x0 ∈ R1, (5.59)

lim
z→x0

(
ln
1

y

)−1
∂m1+1φ0

∂x1+δ∂ym1−δ
= 0, z ∈ R2

+, x0 ∈ R1, δ = 0, 1. (5.60)
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Problem 5.3.15. Let m1 = m0 = m, f0 ∈ C
∗
1 and f (0)

0 , f̃1 satisfy conditions of
Problem 5.3.4 with respect to f1. Find a solution of Problem 5.3.4 satisfying BC
(5.58) (instead of BC (5.32)) and the conditions (5.59) and(

ln
1

y

)−1
∂m+1φ0

∂x1+δ∂ym−δ

{
∈ C (R2

ε) , δ = 0;
= o(1), z → x0, δ = 1.

(5.61)

Problem 5.3.16. Let f0 ∈ C
∗
1 and f

(1)
0 , f̃1 satisfy the conditions of Problem

5.3.5 with respect to f1. Find a solution of Problem 5.3.5 satisfying the following
BC

lim
z→x0

yb+m1−1 ∂
m1

∂ym1

(
y
∂2

∂y2
+ b

∂

∂y

)
φ0 = f̃1 (x0) (5.62)

(instead of BC (5.33) for δ = 1) and the following conditions

lim
z→x0

yb+m1
∂m1+2φ0

∂x2∂ym1
= 0, (5.63)

lim
z→x0

yb+m1−1 ∂m1+1φ0

∂x2∂ym1−1
= 0, (5.64)

lim
z→x0

yb+m1−1∂
m1+1φ0

∂x∂ym1

=



M−1 (a0, b,m0)M (a0, b,m1) f
′
0 (x0) + M̃0 (a0, a1, b,m0,m1)

× M (a0, b,m0) f̃1 (x0) + a0M (a0, b,m1) f
′
0 (x0)

a1M (a1, b,m1)M (a0, b,m0)− a0M (a1, b,m0)M (a0, b,m1)
,

a1 ̸= a0;

M−1 (a, b,m0)M (a, b,m1) f
′
0 (x0) + M̃1 (a, a, b,m0,m1)

× f̃1 (x0) + aM (a, b,m1)M
−1 (a, b,m0) f

′
0 (x0)

M (a, b,m1)− a0M̃1 (a, a, b,m0,m1)
, a1 = a0 = a,

(5.65)

where z ∈ R2
+, x0 ∈ R1,

M̃j(a0, a1, b,m0,m1)

:=M0(a1, b, j,m0)M(a0, b,m1)M
−1(a0, b,m0)−M0(a1, b, j,m1).

Remark 5.3.17 If m1 = 0, then the conditions (5.52), (5.56), (5.57), (5.60),
(5.61) for δ = 1 and the condition (5.64) in Problems 5.3.11 - 5.3.16 are absent. If
m1 = m0 = 0, then the conditions (5.52), (5.56) may be replaced by the following
equivalent condition

∂φ

∂x
∈ C

(
R2
ε

)
.

If m1 = m0 =: m, then the condition (5.65) may be replaced by the equivalent
condition

yb+m−1∂
m+1φ0

∂x∂ym
∈ C2

(
R2
ε

)
.
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Theorem 5.3.18 All the solutions of the Problems 5.3.11 and 5.3.12 we get from
(5.34) substituting there

f1(x) =

Λm1 (a1, b1)

[
Λm0 (a0, b0) f̃1(x)− Λm1+1 (a0, b0) f0

∗

(m1−m0+1)(x)

]
Hm0,m1+1

(5.66)

and

f1(x) =

Λm0 (a0, b0) f̃1(x)

[
m1Λm1−1 (a0, b0)− a0Λm1 (a0, b0) f0

∗

(m1−m0+1)(x)

]
Λ−1
m1

(a1, b1)
∗
H
m0,m1+1 ,

(5.67)
respectively.
All the solutions of Problem 5.3.16 we get from (5.35) substituting there

f1(x) =

dm0 (a0) f̃1(x) + Λm1+1 (a0, 1−m0) f0
∗

(m1−m0+1)(x)

Λ−1
m1

(a1, b1) H̃m0+1,m1+1
. (5.68)

All the solutions of Problem 5.3.14 we get from (5.36), where

f1(x) = f̃1(x). (5.69)

All the solutions of Problem 5.3.15 we get from (5.37), where m1 = m0 =: m and

f1(x) = a0f
∗

′(x) + f̃1(x). (5.70)

All the solutions of Problem 5.3.15 has the form (5.38), where

f1(x)

=



(a1 − a0)M (a1, b,m1)
[
M (a0, b,m0) f̃1 (x0) + a0M (a0, b,m1) f

′
0 (x0)

]
a1M (a1, b,m1)M (a0, b,m0)− a0M (a1, b,m0)M (a0, b,m1)

,

a1 ̸= a0;

f̃1 (x0) + aM (a, b,m1)M
−1 (a, b,m0) f

′
0 (x0)

1− a0M−1 (a, b,m1) M̃1 (a, a, b,m0,m1)
, a1 = a0 = a.

(5.71)

Solutions of Problem 5.3.6 and for m0 = 0 of Problems 5.3.11, 5.3.12, 5.3.14,
5.3.15 are uniquely determined.

Solutions of Problem 5.3.10 and for m0 > 0 of Problems 5.3.11, 5.3.12, 5.3.14,
5.3.15 are determined up to an additive constant.

Remark 5.3.19 The classes of uniqueness of solutions of Problem 5.3.10 and
for m0 > 0 of Problems 5.3.11, 5.3.12, 5.3.14, 5.3.15 easily follow from Theorem
5.3.6.
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Remark 5.3.20 If m0 = m1 + 1, as it could be easily foreseen, from (5.53) it
follows that

Hm0,m1+1 = 0.

If m1 = m0 = 0, then
Hm0,m1+1 ̸= 0. (5.72)

While for other values of m1, m0, using (2.65) and the equality

Hk

(π
2
, a0, a1 − a0, γ, b1 − b0

)
= − 1

γ + k − 1

[
a0Hk−1

(π
2
, a0, a1 − a0, γ, b1 − b0

)
+(k − 1)Hk−2

(π
2
, a0, a1 − a0, γ, b1 − b0

)]
,

γ <

{
1− k when b1 − b0 ≤ 1;
2− k + b0 − b1 when b1 − b0 > 0,

k ≥ 2,

we easily obtain conditions on the coefficients for fulfilment of (5.72).
Similarly, can be investigated the nominators of the expressions (5.67), (5.68),

(5.71).

lim
z→x0

(
ln
1

y

)−1
∂m1φ1

∂ym1
= a0f

∗

′ (x0) + f̃1(x), z ∈ R2
+, x0 ∈ R1.

Therefore, the difference of two possible solutions of Problem 5.3.15 is the solution
of Problem 5.3.4 with the homogeneous BCs.

It is easy to prove that under admissible conditions for f0 of Problems 5.3.11-
5.3.16 the solution

(1)
φ0 of Problem 5.3.1 satisfies the conditions (5.51), (5.52),

(5.55), and (5.56); the solution
(2)
φ0 of Problem 5.3.2 satisfies the conditions (5.51)

and (5.57); the solution
(3)
φ0 of Problem 5.3.3 satisfies the conditions (5.59), (5.60);

the solution
(4)
φ0 of Problem 5.3.4 satisfies the conditions (5.59), (5.61); the solution

(5)
φ0 of Problem 5.3.5 satisfies the conditions (5.63)-(5.65).

E.g. we can easily follow the following calculations

lim
z→x0

y
∂m1+2

(1)
φ 0

∂x2∂ym1

= Λ−1
m0

(a0, b0) lim
z→x0

y
∂

∂y
y2−b0−m1

+∞∫
−∞

{
f0
∗

(m1−m0+1)(ξ)(ξ − x)m1−1

+
[
Hm0

(π
2
, a0, a1 − a0, b0, b1 − b0

)
− Λm0 (a0, b0) Ω

(
θ,
π

2
, a1 − a0, b1 − b0

)]
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Proof of Theorem 5.3.18. Conditions (5.51), (5.52), (5.55)-(5.57), (5.59)-
(5.61), (5.63)-(5.65) lead the question of investigation of the uniqueness of solu-
tions of Problems 5.3.11-5.3.16 to the question of investigation of the uniqueness
of solutions of Problems 5.3.1-5.3.5. E.g., in the case of Problem 5.3.15, because
of (5.59) and (5.61) we have
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×Λ−1
m1

(a1, b1) f1(ξ)(ξ − x)m1−1
}
ea0θρb0−2dξ

= lim
z→x0

+∞∫
−∞

[
Λ−1
m0

(a0, b0) f0
∗

(m1−m0+1)(x+ yt)

+
Hm0

(π
2
, a0, a1 − a0, b0, b1 − b0

)
Λm0 (a0, b0) Λm1 (a1, b1)

f1(x+ yt)


×
{
y2
∂

∂y

[
y2−b0−m1(ξ − x)m1−1ea0θρb0−2

]}
|ξ=x+yt

dt

−Λ−1
m1

(a1, b1) lim
z→x0

+∞∫
−∞

f1(x+ yt)

{
y2
∂

∂y

[
y2−b0−m1Ω

(
θ,
π

2
, a1 − a0, b1 − b0

)
×(ξ − x)m1−1eaθρb0−2

]}
|ξ=x+yt dt

[
Λ−1
m0

(a0, b0) f0
∗

(m1−m0+1) (x0)

+
Hm0

(π
2
, a0, a1 − a0, b0, b1 − b0

)
Λm0 (a0, b0) Λm1 (a1, b1)

f1 (x0)


× lim
z→x0

+∞∫
−∞

{
y2
∂

∂y

[
y2−b0−m1(ξ − x)m1−1eaθρb0−2

]}
|ξ=x+yt

dt

−Λ−1
m1

(a1, b1) f1 (x0) lim
z→x0

+∞∫
−∞

{
y2
∂

∂y

[
y2−b0−m1Ω

(
θ,
π

2
, a1 − a0, b1 − b0

)
×(ξ − x)m1−1eaθρb0−2

]}
|ξ=x+yt dt = 0,

when b0 < 2−m1, m1 ∈ N, since, because of (3.123),
+∞∫

−∞

{
y2
∂

∂y

[
y2−b0−m1(ξ − x)m1−1eaθρb0−2

]}
|ξ=x+yt

dt = 0 when b0 < 2−m1;

and
+∞∫

−∞

{
y2
∂

∂y

[
y2−b0−m1Ω

(
θ,
π

2
, a1 − a0, b1 − b0

)
(ξ − x)m1−1eaθρb0−2

]}
|ξ=x+yt

dt

= y
∂

∂y

y2−b0−m1

+∞∫
−∞

Ω
(
θ,
π

2
, a1 − a0, b1 − b0

)
(ξ − x)m1−1eaθρb0−2dξ


= y

∂

∂y
Hm1−1

(π
2
, a1 − a0, b0, b1 − b0

)
when b0 < 2−m1, b1 < 3−m1, m1 ∈ N.

According to the similar arguments we get

lim
z→x0

y
∂m1+2

(1)
φ 0

∂ym1+2
= 0 when b0 < −m1, b1 < 1−m1, z ∈ R2

+, x0 ∈ R1.

If m1 = m0 = m, then
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lim
z→x0

(
ln

1

y

)−1
∂m+1

(4)
φ 0

∂x∂ym
= lim

z→x0
y

〈
d−1
m (a0)d

−1
m (a1)

+∞∫
−∞

{
dm(a1)f

∗

′
0(ξ)(ξ − x)m

−
[
dm(a0)Ω

(
θ;
π

2
, a1 − a0, 0

)
− a0Hm+1

(π
2
, a0, a1 − a0,−m− 1, 0

)
−Λm+1(a1,−m− 1)−(m+ 1)Hm

(π
2
, a0, a1− a0,−m− 1, 0

)]
f1(ξ)(ξ − x)m

}

×ea0θρ−m−3 [a0(x−ξ)−(m+1)y] dξ+dm(a0)

+∞∫
−∞

f1(ξ)(ξ−x)m+1ea1θρ−m−3dξ

〉

= −d−1
m (a0)d

−1
m (a1)

{
dm(a1) [a0Λm+1(a0,−m−1)+(m+1)Λm(a0,−m−1)] f

∗

′
0(x0)

−dm(a0)
[
a0Hm+1

(π
2
, a0, a1 − a0,−m− 1, 0

)
+(m+ 1)Hm

(π
2
, a0, a1 − a0,−m− 1, 0

)]
f1(x0)

+
[
a0Hm+1

(π
2
, a0, a1 − a0,−m− 1, 0

)
+ Λm+1(a1,−m− 1)

+(m+ 1)Hm

(π
2
, a0, a1 − a0,−m− 1, 0

)]
[a0Λm+1(a0,−m− 1)

+(m+ 1)Λm(a0,−m− 1)] f1(x0)− dm(a0)Λm+1(a1,−m− 1)f1(x0)}

= −d−1
m (a0)d

−1
m (a1)

{
dm(a0)dm(a1)f

∗

′
0(x0)

−dm(a0)
[
a0Hm+1

(π
2
, a0, a1 − a0,−m− 1, 0

)
+(m+ 1)Hm

(π
2
, a0, a1 − a0,−m− 1, 0

)]
f1(x0)

+dm(a0)
[
a0Hm+1

(π
2
, a0, a1 − a0,−m− 1, 0

)
+ Λm+1(a1,−m− 1)

+(m+ 1)Hm

(π
2
, a0, a1 − a0,−m− 1, 0

)]
f1(x0)

−dm(a0)Λm+1(a1,−m− 1)f1(x0)} = −f
∗

′
0(x0) for z ∈ R2

+, x0 ∈ R1.

If a1 ̸= a0 then
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lim
z→x0

yb+m1
∂m1+2

(5)
φ 0

∂x2∂ym1

= lim
z→x0

yb+m1

M−1
0 (a0, b,m0)

+∞∫
−∞

[
f
∗

′
0(ξ) +

M(a1, b,m0)

(a1 − a0)M(a1, b,m1)
f1(ξ)

]

× ∂m1+1

∂x∂ym1

(
ea0θρ−b

)
dξ − (a1 − a0)−1

M(a1, b,m1)

+∞∫
−∞

f1(ξ)
∂m1+1ea0θρ−b

∂x∂ym1
dξ


=M−1

0 (a0, b,m0)

[
f
∗

′
0(x0)+

M(a1, b,m0)f1(x0)

(a1−a0)M(a1, b,m1)

] +∞∫
−∞

(
yb+m1+1∂

m1+1ea0θρ−b

∂x∂ym1

)∣∣∣∣∣∣
ξ=x+yt

dt

− (a1 − a0)−1M−1(a1, b,m1)f1(x0)

+∞∫
−∞

(
yb+m1+1∂

m1+1ea0θρ−b

∂x∂ym1

)∣∣∣∣∣∣
ξ=x+yt

dt

=M−1
0 (a0, b,m0)

[
f
∗

′
0(x0)+

M(a1, b,m0)f1(x0)

(a1−a0)M(a1, b,m1)

]
y
∂

∂x

+∞∫
−∞

yb+m1+1∂
m1ea0θρ−b

∂ym1
dξ

− (a1 − a0)−1M−1(a1, b,m1)f1(x0)y
∂

∂x

+∞∫
−∞

(
yb+m1+1∂

m1+ea0θρ−b

∂x∂ym1

)∣∣∣∣∣∣
ξ=x+yt

dξ

=M−1(a0, b,m0)

[
f
∗

′
0(x0)+

M(a1, b,m0)

(a1 − a0)M(a1, b,m1)
f1(x0)

]
y
∂

∂x
M(a0, b,m1)

−(a1 − a0)−1M−1(a1, b,m1)f1(x0)y
∂

∂x
M(a1, b,m1) = 0 when z ∈ R2

+, x0 ∈ R1

Now, taking into account (5.51), (5.52), (5.55)-(5.57), (5.59)-(5.61), (5.63)-
(5.65), and comparing in pairs (5.27) for δ = 1 with (5.50); (5.27) for δ = 1
with (5.54); (5.32) with (5.58); (5.33) for δ = 1 with (5.64) it is easy to obtain
(5.66)-(5.71).

Remark 5.3.21 After constructing explicitly solutions of Problems 5.3.11-5.3.16
without taking into account the conditions (5.51), (5.52), (5.55)-(5.57), (5.59)-
(5.61), (5.63)-(5.65) we directly check that they are solutions for the complex
constants aδ, bδ, δ = 0, 1 (see also Remark 5.3.8) as well. So that the above
conditions we need only for the analysing the question of the uniqueness of the
solutions.

Remark 5.3.22 In the particular case when m1 = m0 = 0, b1 = b0 = b <
0, a1 = ic, a0 = ic with the real constant c ̸= 0 the operator Eb

2 is real one and
the real solution (5.34) of Problem 5.3.11 with regard to (5.66) after some simple

Lecture Notes of TICMI, vol. 24, 2023



185

transformations will get the form

φ(x, y) = y1−b
+∞∫

−∞


cA(c, b)f0(ξ) + bB(c, b)

∼
f
∗
1
(−1)(ξ)

c[A2(c, b) + B(c, b)]
cos(cθ)

+

cB(c, b)f0(ξ)− bA(c, b)
∼
f
∗
1
(−1)(ξ)

c[A2(c, b) + B(c, b)]
sin(cθ)

 ρb−2dξ, z ∈ R2
+. (5.73)

As we have shown (see Section 2.1, the formulas (2.55), (2.56) and the corre-
sponding consequent ones)

A2(c, b) + B2(c, b) = 22b(1− b)−2π2B̃−2

(
2 + c+ b

2
,
2− c− b

2

)
> 0

for b < ±c.
If b = −1 and c = 1, then the operator y−2E−1

2 will be biharmonic one and
from (5.73) we have the following well-known formula

φ(x, y) =
2y3

π

+∞∫
−∞

f0(ξ)ρ
−4dξ +

y2

π

+∞∫
−∞

f̃
(−1)
1 (ξ)ρ−2dξ

for the half-plane.

Remark 5.3.23 If m1 = m0 = 0, b1 = b0 = b, then the solution of Problem
5.3.12 has the form

φ(x, y)

=



y1−b

a1 − a0

+∞∫
−∞

a1f0(ξ) +
∼
f
∗
1
(−1)(ξ)

Λ(a0, b)
ea0θ −

a0f0(ξ) +
∼
f
∗
1
(−1)(ξ)

Λ(a1, b)
ea1θ

 ρb−2dξ

when a1 ̸= a0;

y1−b

Λ(a, b)

×
+∞∫

−∞


[Λ(a, b) + aM0(a, 2− b, 1, 0)]f0(ξ) +M0(a, 2− b, 1, 0)

∼
f
∗
1
(−1)(ξ)

Λ(a, b)

− [af0(ξ) +
∼
f
∗
1
(−1)(ξ)]θ

}
eaθρb−2dξ when a1 = a0 = a

(5.74)

φ ∈ K0,0 (1,1) is unique and satisfies the conditions (5.28) and

∂φ

∂x
∈ C(R2

ε), lim
z→x0

∂2φ

∂x2
= 0, z ∈ R2

+, x0 ∈ R1.
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Remark 5.3.24 If b > 0, ai = ic, a0 = ic, where real number c ̸= 0, then we
easily reduce the solution of Problem 5.3.16 to the following form

φ(x, y) =
b

c(b2 − c2)[A2(c,−b) +
∗
A2(c,−b)]

+∞∫
−∞

{[
(−1)m0cA(c,−b)

(b,m0 − 1)
f0(ξ)

+
(−1)m1B(c,−b)

(b,m1 − 1)

∼
f
∗
1

(−1)(ξ)

]
cos(cθ) +

[
(−1)m0cB(c,−b)

(b,m0 − 1)
f0(ξ)

+
(−1)m1 A(c,−b)

(b,m1 − 1)

∼
f
∗
1

(−1)(ξ)

]
sin(cθ)

}
ρ−bdξ.

(5.75)
Evidently,

A2(c,−b) + B2(c,−b) = 2−2b(1 + b)−2π2B̃−2

(
2 + c+ b

2
,
2− c+ b

2

)
> 0

for b > ±c.

5.4 On a way of constructing solutions of BVPs for higher
order equations

In this section the simple way of constructing solutions of boundary value prob-
lems for higher order equations by means of solutions of boundary value problems
for equations of less order is pointed out (see, G. Jaiani [9]).

Suppose that a domain Ω ∈ R2 and its boundary is ∂Ω. We seek a function
φ satisfying

Fφ :=
( n−1∏
j=0

Ej

)
φ = 0 in Ω, (5.76)

Bjφ = fj, j = 0, n− 1, on ∂Ω, (5.77)
where Ej, j = 0, n− 1, are second order elliptic operators which can degenerate
on the part of the boundary or on the whole one; Bj, j = 0, n− 1, are differential
operators of certain order (zero order is also admitted), in general, containing
the weight functions and fj, j = 0, n− 1, are given functions. Suppose that the
operator F remains unchangeable by an arbitrary rearrangement of operators Ej,
j = 0, n− 1.

Let us assume that the problems

Lkφk = 0 in Ω, B∗
kφk = ψk, k = 0, n− 1, on ∂Ω, (5.78)

where B∗
k, k = 0, n− 1, are certain differential operators, ψk, k = 0, n− 1, are

given functions, are solvable in classical sence and the solutions have the form

φk = Ψk(ψk), k = 0, n− 1, (5.79)

where the operator Ψk, k = 0, n− 1, are such that one can define

BjΨk(ψk), k, j = 0, n− 1, on ∂Ω.
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Theorem 5.4.1 Suppose that the system

n−1∑
k=0

BjΨk(ψk) = fj, j = 0, n− 1, on ∂Ω (5.80)

is solvable with respect to ψk, k = 0, n− 1. Then the problem (5.76), (5.77) is
solvable in the classical sense and the solution has the form

φ =
n−1∑
k=0

Ψk(ψk). (5.81)

Proof. Let us seek the solution of the problem (5.76), (5.77) in the form

φ =
n−1∑
k=0

φk, (5.82)

where φk, k = 0, n− 1, are the solutions of the problems (5.78). Since Ej,
j = 0, n− 1, in (5.76) are rearrangable, (5.82), obviously, is solution of (5.76)
and, by virtue of (5.79), has the form (5.81). On the other hand, in view of
(5.80), such φ satisfies (5.77).

It is clear that a similar proposition holds true also for more general cases
in the sense of type and order of operators Ej, j = 0, n− 1, and a number of
independent variables under various initial, boundary and mixed conditions.

By application of this proposition there are two principal moments: suitable
choice of boundary operators B∗

k, k = 0, n− 1, and solvability of the system
(5.80).

This method has been applied to investigation of equation (5.2) (see Section
5.2 and also [9]).

5.5 Some general comments and problems to be solved

In this chapter problems set for the iterated EPD equation in the half-plane are
completely investigated. All the solutions are constructed in explicit form, in
quadratures.

The analogues BVPs are to be investigated for the iterated EPD equation in
the finite domain as it was done for the single EPD equation.

The methods of approximate and numerical solution of the posed BVPs are
to be developed.

Efficiency of the explicit solutions constructed in Section 5.2 and Section 5.3
for numerical solution of BVPs should be studied.
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