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Chapter 1

Introduction

Historically first works concerning singular partial differential equations [PDE (in
other words PDEs with unbounded, i.e., singular, coefficients)] were devoted to
particular cases of elliptic Euler-Poisson-Darboux (EPD) equation

By = y(tgy + tyy) + au, + bu, =0, (1.1)

where a and b are constans unless otherwise stated.
Equation (1.1) is elliptic in the half-plane

R? := {(z,y) € R? : y > 0}

and has the order degeneration on x-axis which we denote by R! (the same symbol
R!' we use for the one-dimensional Euclidean space of real numbers; R? denotes
at the same time a plane and two-dimensional Euclidean space of pairs of real
numbers; analogously is defined R?, p > 3).

By means of the operators

zy:;@—@mey:;@+m¢

where
z=x4+1y and Z=2x—1y

are complex numbers and their conjugates, respectively, equation (1.1) can be
rewritten as
b—1a Dot + b+ia
U
2 2

in the complex form. In the scientific literature equation (1.2) (see G. Darboux
[32]) is called either Euler-Poisson-Darboux or Euler-Poisson, or Euler equation.
The particular case a = 0, i.e., equation

(2 — E)@gzu -

du=0 (1.2

Y(Ugy + Uyy) + buy, =0 (1.3)

is called either Euler-Poisson-Darboux equation or equation of the generalized
theory of axialsymmetric potentials, or Weinstein equation.

7
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(1.3) we may also rewrite as

0 ( ,0u 0/ ,0u

22 i) -0

ox \” Ox oy \” Oy
which indicates the existence of a stream-function v defined by the generized
Stokes-Beltrami equations (see A. Weinstein [187])

yPu, = Uy, ybuy =—v, b>0.

It is easily seen, that axialsymmetric with respect to zi-axis solutions of the
Laplace equation

U$111+"'+urpzpzo’ p237

satisfy equation (1.3), where
ri=x1, Y= o34 x bi=p—2. (1.4)

The case b = 1 (i.e., p = 3) was the object of investigation already in the
Laplace time. Here essential steps was made by Stokes and Beltrami ([3]).
W. Arndt (]2]) pointed out the importance of investigating the case b = 3 (p = 5)
for consideration of the torsion problem for Shafts of revolution. For arbitrary b
the study was started by A. Weinstein ([183]-[187]).

Qualitative and structural properties of solutions of (1.3), their relation to de-
generate first order elliptic systems, and boundary value problems (BVP) are con-
sidered by L. Bers, A. Gelbart ([6]), M.P. Brousse ([16], [17]) A. Huber ([68]-[70]]),
A. Erdélyi ([41]), P. Henrici ([65],[66]), M.A. Hyman ([71]), R.P. Gilbert ([60]-
[62]), A. Vasharin, P.I. Lizorkin ([172]), P.R. Garabedian ([56]), I.P. Krivenkov
([124]-[128]), K.B. Ranger ([158]), S.V. Parter ([155]), B. Brelot-Collin, M. Brelot
([14],[15]) L.E. Vostrova ([180]), M.V. Korshavina ([122]), A.R. Khvoles ([119],
[120]), L.G. Mikhailov, N. Rajabov ([141]), A. Sattarov ([162]), V.I. Evsin ([42],
[43]), A.J. Fryant ([55]), T.V. Chekmariov ([24]]), M.G. Muskhelishvili ([146],
[147]), G.P. Kapoor, A. Nautiyal ([115]), G. Jaiani [99]), J. Simkovi¢ [163],
N. Chinchaladze, A. Sakevarashvili [31], N. Chinchaladze [28], [29], G. Jaiani
[108], [107], [106], [109], and others.

After transformation of variables

where

from (1.1) we obtain

anz “u, = 0. (1.6)
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Such [equation (1.6) when a = 0 is an equation with noncharacteristic degeneracy,
sometimes it is also called the equation with weak degeneracy| and more general
second order equations with variable nonsingular coefficients by

Ug, Uy, U,

and noncharacteristic degeneration is considered by F. Tricomi ([169], [170]),
E. Holmgren ([67]), I. Vekua ([173]), A. Bitsadze ([8], [9], [10], [11]), S. Gellerstedt
([57)-[59]]), F. Frankl ([51], [52]), S.G.Mikhlin ([142]) (s. also [10]], [164], [165],
and references therein), and others.

After transformation of variables

r=E& y=2yn, n>0, (1.7)

from (1.1) we have

a b+1
—Us + —u, = 0. 1.8

2
Such [equation (1.8) when a = 0 is an equation with characteristic degeneracy,
sometimes it is also called the equation with strong degeneracy| and more general
second order equations with variable nonsingular coefficients by

Ugg + 77um7 +

Ug, Uy, U,

and characteristic degeneration is considered by M.V. Keldysh ([117]), O.A. Olei-
nik ([153]), N.D. Vvedenskaya ([182]), M.I. Vishik ([176], [177]), S.G. Mikhlin
([143], [144]), L.L. Karol ([116]), S.A. Tersenov ([167], [168]), Khe Kan Cher
([118]), and others.

All the above-mentioned equations belong to the class of PDEs with non-
negative characteristic form. The unified theory of which belongs to G.Fichera
([44]-[46]). Different problems for this class of PDEs are investigated by E. Ma-
genes ([135]), O.A. Oleinik, E.V. Radkevich ([154]), H. Yamada ([188]), J.J. Kohn,
L. Nierenberg ([121]), V.P. Glushko ([63]) (see also a survey V.P. Glushko, [.B. Sav-
chenko [64]), M.I. Freidlin ([53]), L.I. Kaminin ([113]), V.A. Malovichko ([136],
[137]) V.F. Moss ([145]), H. Okumura ([152]),L.I. Kaminin, B.N. Khimchenko
([114]), G. Jaiani [96], [100], [102], O.I. Marichev [138], [139], A.C. Cavalheiro
[23] and others.

Divergent form second order degenerate PDEs are considered by M. Franciosi
([49], [50]), B. Franchi, E. Lanconelli ([48]), L.D. Kudrjavtsev ([129]), G. Porru
([156]]), I.V. Rybalov ([161]), and others.

K.O. Friedrichs ([54]) has investigated BVPs for symmetric operators inde-
pendent of their type.

Analytical theory of elliptic equations with order degeneration is given in a
monograph of A.I. Yanushauskas ([189]).

For equation (1.1) I. Vekua (see [174], pp.27,28 and [175]) has constructed
the complex Riemann function (see [174], pp.53-54 and also [123], pp.36-45) and
by its mean obtained a representation of all the regular (i.e., of C? class) so-
lutions of equation (1.1) in any domain lying inside the upper half-plane R?.
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V.I. Evsin ([42]) constructed a fundamental solution of equation (1.1) and solved
the Holmgren problem, when

a € RY b €0, 1].

Fuchs’ method developed for ordinary differential equations (ODE) is applied
by N. Rajabov, K. Boltaev ([157]) in order to investigate more general than equa-
tion (1.1) (s. also K. Boltaev, N. Rajabov ([13]). Equation (1.1) is investigated
in works of G. Jaiani ([72], [74]-[76], [77]-[80], [81], [82], [83], [84], [85]-[94], [95],
[97]) (s. also Chap. 3 of the present work).

For a fourth order degenerate PDE in some cases A.Narchaev ([148]) proved a
uniqueness theorem for the Dirichlet BVP, when on the boundary only unknown
function (in contrast to non-degenerate fourth order PDE, when also its deriva-
tive should be given) is prescribed. In certain function classes S.M.Nikol’skii
and P.I.Lizorkin ([150]) proved the existence and uniqueness theorems for the
Dirichlet BVP for a degenerate on the whole boundary 2m order PDE of the
divergent form, when on the boundary £ < m conditions are given. P.Bolley,
J.Camus ([12]) studied the Dirichlet and Neumann problems for a strongly de-
generate higher order PDE. M. Troisi ([171]) investigated a general BVP for an (in
general) non-divergent form higher order PDE with order degeneration on a part
of the boundary. General BVPs for for a strongly degenerate higher order PDE
were studied by J.A. Roitberg, Z.G. Sheftel ([159], [160]). In a paper of M.I. Vi-
shik and V.V. Grushin ([178]) a survey of some other investigations devoted to
higher order degenerate on the boundary PDEs is given. In investigations of
well-posedness [ in the sense that which part of the boundary for which order
derivatives of unknown functions included itself should be freed from boundary
conditions (BC)] of BVPs for degenerate higher order PDEs the crucial part play
theory of weighted spaces. To embedding theorems for weighted spaces and in
some cases to their applications to BVPs are devoted works of V.K. Zakharov
([190]), R.D. Meyer ([140]), O.V. Besov, V.P. II'in, L.D. Kudrjavtsev, P.I. Lizor-
kin, S.M. Nikol’skii (]7]), P.I. Lizorkin, S.M. Nikol’skii ([133]), L.D. Kudrjavtsev
([130]), S.M. Nikol’skii ([149]), S.M. Nikol’skii, P.I. Lizorkin ([150]), A. Kufner
([131]), A. Kufner, B. Opic ([132]), G.Jaiani [101] and others (s. also a sur-
vey paper of S.M. Nikol’skii, P.I. Lizorkin, N.V. Miroshin ([151]). Higher order
elliptic-parabolic equations are studied by A. Canfora ([18]-[22]), M.L. Benevento,
T. Bruno, L.Castelano ([5]), M.L. Benevento ([4]), V.P. Glushko ([63]), A.S. Fokht
([47]), M. Franciosi ([49]), M.A. Malovichko ([137]). M.M. Smirnov ([166]) studied
a model fourth order mixed type equation. To iterated EPD equation are devoted
works of G. Jaiani [72], [73], [74], [77]-[79], [83], [84], [98], [103]. More general,
than the iterated EPD equation, higher order PDEs with order degeneration are
investigated by G. Jaiani [98], [105] and N. Chinchaladze [25]-[27].

A system of second order mixed type equations was investigated by V.P. Di-
denko ([35],[36],[38]), V.N. Vragov [181], and others. A system of PDEs with order
degeneration was investigated by V.P. Didenko ([37]). J.A. Roitberg, Z.G. Shef-
tel ([160]) considered general BVPs (in general) with singular coefficients by less
order derivatives and the right hand side, when elliptic system in the sense of
Douglis-Nierenberg together with BCs satisfy the Lopatinski condition [s. e.g.,
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S. Agmon, A. Douglis, L. Nierenberg ([1]), L.P. Volevich ([179]), and also I.B. Lo-
patinski ([134]). The system of second order degenerate equations, in particular,
with order degeneration considered by J. Dufner ([39], [40]). G. Jaiani ([96],
[104]) proved existence of weak and uniqueness of classical solutions of BVPs
posed in manner of G. Fichera, studying systems of second order PDEs only
with the order degeneration, under less restrictions than in the above-mentioned
works of J. Dufner ([39], [40]). To some systems of second order PDEs with order
degeneration are devoted works of G. Devdariani, G. Jaiani, S. Kharibegashvili,
D. Natroshvili ([34]), G. Devdariani ([33]), G. Jaiani, B.-W. Schulze ([111], [112]),
G. Jaiani, S. Kharibegashvili, D. Natroshvili, W.L. Wendland ([110]), N. Chin-
chaladze, R.P. Gilbert, G. Jaiani, S. Kharibegashvili, D. Natroshvili ([30]).
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Chapter 2

Auxiliary Statements

This chapter contains generalizations of the classical L’hopital rules and Cauchy
integral of principal value in the forms systematically used in Chapters 3. The
properties of a class of special functions in integral form and their relation to
the so-called classical Euler Gamma and Beta functions are studied. Throughout
the work, especially in Part II, such special functions play an essential part in
representing solutions of weighted BVPs as explicit integral expressions.

2.1 Some auxiliary results

Theorem 2.1.1 Let defined in the domain |z — zo| < T, 0 < y < ?j,
xo,}j = const, functions f(xz,y) and g(x,y) satisfy the following conditions:
19 lim g(z,y) = +o0o uniformly when |z — x| < Z;
y—0+
20, for any fized n > 0 functions f(x,n) and g(x,n) be bounded when
|z — x| < ;
39, there exist finite derivatives fy(x,y) and g, (v, y) # 0 when
|z — x| < T, 0<y<§;
49, there exists a finite limit

. fi(z,y)
lim = c.
(2:9)=(0,0+) g1y (4, Y)
Then
lim f(@.y) =c.

()= (z0.04+) g(, Y)

Proof. Since g,(z,y) # 0, according to Darboux theorem (see, e.g., [1]) for

a fixed x it conserves the sign in the interval ]O,Zj[ and the function g¢(z,y) is
monotonic one. From 1° it is clear that for a fixed z the derivative g; (z,y) < 0
and, hence, by decreasing y the function g(z,y), monotonically increasing, tends
to +00. Therefore, we can assume that g(z,y) > 0.

24
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Ve > 0, by virtue of 4°, we can find such 7 (z) > 0 that for |z — x| < 7 (z)
(we can always suppose that 7 (7o) < =) and 0 < y < 7 (zo) we have

/ x’
f?( ) C‘ _€
9,(z,y) 2
Applying to the segment [y, n]| the Cauchy formula

fly) = flan) _ fy(z.&(zy.m)
9(z,y) —g(z,n) g, (x,&(x,y,n))

—~

—~

where y < &(z,y,m) < n(z0), we obtain

< % (2.1)

for |x — x| < n(20), 0 <y < n(x0).
Let us consider the identity

fley) . _ flen) —cg(an) _gn) | [ fley) — flan)
9(z,y) 9(z,y) " [1 g(x,y)] [g(lzy) —g(x,n) }
Hence,
f(xay) - f(iﬁﬂ?)

<

’f(az n) — cg(z,n)
g(z,y)

9(w,y)

According to 1°, 2° the fist summand tends to zero and there exists such
d (xp) [without loss of generality we can assume that 0 (z9) < 7 (x¢)] that for

|z — xo| < 0 (z9) and 0 < y < & (xp) the first summand will be less than g By

virtue of (2.1), the second summand will be less than g for |x — xo| < 0 (20)

0 <y <d(xg) as well.

Thus,
‘f(m,y) —c| for |z — x| <d(xg) and 0 <y <0 (xp).
9(z,y)
So, the theorem is proved. O

Corollary 2.1.2 Theorem 2.1.1 will be valid for ¢ = 400, provided

lim f(z,y) = 400 uniformly for |z — x| < 2.

y—0+
Proof. In this case, obviously, f;(z,y) # 0 at least in some neighborhood of the
point (xg,0). Changing places of f and g, we have

lim =0.

(@)= (z0.04) f1 (2, y)
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Therefore,

lim 9(z,y) =0,

(@)~ (z0.04) (2, y)

and, finally,
fz,y)
(2.)=(0.04) g (,y)
since at least in some neighborhood of the point (xg,0) we have f(x,y) > 0 and
f(z,y) > 0. O

= —‘—OO’

Theorem 2.1.3 Let the functions f(x,y) and g(x,y) are defined in the domain
stated in Theorem 2.1.1 and satisfy the following conditions:

19, 1i =1l = - L

Jim g(z,y) = lim g(z,y) =0 for |z — 0| < z;

20, there exist finite derivatives fo(@,y), g,(x,y) and g(x,y), g,(x,y) # 0 for
|z — x| < I, O<y<?j;

30 there exists a finite or infinite limit

fo(z,y)

lim TN = C.
(@)= (20,04) g1 (2, Y)

Then
R A CY)
(z,y)—(20,0+) g(:v, y)

=c.
Proof. Assuming

f(@,04) = lim f(z,y) =0, |v— x| < 1;

y—0-+
g(x>0+) = lim g(l‘7y) = Oa |$ - :L‘0| < }7
y—04

we get that the functions f(z,y) and g(z,y) are continuous from the right at

point y = 0 with respect to y for fixed x when |z — z¢| < z. This property
together with the properties indicated in Theorem 2.1.3 allows us to apply to the
functions f(z,y) and g(x,y) the Cauchy formula

f(:L‘, ) f(x,y)—f(x,()—l—) o fz’/ (l’,f(l’,y))

y = o *
G5y) gl — 9,01 g, @ ey T

where 0 < {(z,y) <y < Y.
According to 3°, there exists a finite or infinite limit

. fy (@, &(z,y))
(:v,y)—>(xo,0+)ggl/ (-1'7 f(iL‘, y))

and, therefore, a limit

| (z,9)

= C.
(@)~ (z0.04+) g(, y)
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Remark 2.1.4 Theorems 2.1.1 and 2.1.3 are valid for a complex-valued function
f(z,y) as well.

Remark 2.1.5 Theorems 2.1.1 and 2.1.83 are also valid in the case when limits
are considered along a fixed ways.

Definition 2.1.6 Let f(&) be integrable on any finite interval of R' and for a
given in a neighborhood of +oo function ¥(R) the limit

lim ¢(R) = +oo.

R—+00
If the limit
R—+o0

Y(R)
lim [ f(€)de
/

exists it will be called the generalized principal value of the (in general, divergent)

integral
+o00
JRGL

and it will be denoted by

If the integral converges in a usual sense, then its value coincides with the
generalized principal value for any .

If (R) = R, then the principal value and the generalized principal value
coincide.

Theorem 2.1.7 Ifx € [:9:, ﬂ, t €]—o00, +00|, and a function f(z,t) is continuous

with its derivative f, on the strip [g‘, ﬂ x| — 00, +00[; moreover, the integral
+oo
X(x) :=p.v.. / flz,t)dt

0 =
exists for a certain x € [m, x}, while the integral

0 =
is uniformly convergent with respect to x € [x, x}, then the function x is defined

for all x € [2,}} and
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Proof. For R > 0 let

H(R)
X)) = [ flz,t)dt,
/

then

falz, t)dt =: X7 (v), (2.2)

since f and f! are continuous on the rectangle [g, %] X [—R,¥(R)]. According to
the conditions of the theorem for a certain z € [%, %] we have
Y(z) = x(x), R— +oo. (2.3)

Besides, in view of uniform convergence of the integral x;(z) and equality (2.2),
we get

+oo
: dXR(x> _ : R _ / _
dim P — i @) = [ £t = (o) (2.4)

. 0 =x
uniformly on [:L‘, ] .

But if the assertions (2.3), (2.4) are valid, then as it is well known (see e.g., [5],
p.125) the function x%(x) tends uniformly on [:%, 52] to the differentiable function

x(x) as R — 400, and
dx(z)
dz

= xa(z)

0 =
on the segment [x7 x} ) [

2.2 Properties of a special function My(a,b,j,m)

Let us consider (see G. Jaiani [4])

+oo

8m9]’ af ,—b

Mifa,bg,m) =y [ (¢ o S g (2.5
ym

oo 9mpi ead ,—b f oM@ e p=t

_ yb+m/ ik cr_ dt = yb+m/(— cot 0)’“# sin~20de,
8ym E=x+yt 8ym t=—cot 0
s 0

where
ezarg(z_§)7 p= |Z_§’%7 j?kumENU7 z ER?H §€R17
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are polar coordinates with the pole at point (x,y) = (&,0),
a and b are complex constants, R% ia the upper half-plane of the complex plane
of the variable z = x + iy, R! is the axis of the real numbers,

6 €[0,7], N’ := NU {0},

N is the set of natural numbers. N; and Ny denote the sets of the odd and even
natural numbers, respectively, NJ := N U {0}.

Theorem 2.2.1 The function My (a,b,j,m) is defined [i.e.,the integral (2.5) is
convergent/, and is independent of x, y:

when
Reb+m—k—-1>0 (2.6)
and either a # 0, m € N°, ora =10, 740, me N°, ora=j=m=20, or
azij,b#O,—Q,...,—Q(m— [%} —1), m € Na;
or when
Reb+m —k >0 (2.7)
andazij,b7é0,—2,...,—2<m— [%]—1) m € Nj.
If a = 7 = 0 and either b € {0,—2,...,—2(m— [%} —1)}, m € N, or

(2.7) is fulfilled for m,k € Ny, or (2.6) is fulfilled for k € Ny, m € Ny, then
M;u(0,b,0,m) = 0 (2.8)

Proof. Using the method of the mathematical induction, we prove that

Z B, b m;a ZL‘—€> ) aep—b—Q(m—m—&-l)’ (29)

where

By (bym;a(e = €),y) = [ [{(x =€) = b+ 20 - )]y} (2.10)

B (b,m;a(z — &), y)

_ 2_: 1:[2 {ﬂ[b+2(ak—k)](ak—m)

=2xk-3 \j=1a;=2j-1) (k=1
\
m—r41 (2.11)
< I AHale—=&—Db+20-1)y} ¢,
l;éofl 12+1
i=1,2,...,5—1 ]
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11 Z =) Z_ Yy [To=1 (2.12)

The last product in (2.11) we take equal to 1 if none of [ are admissible.

Indeed, it is easily seen that (2.9) is true for m = 1,...,6. Now assuming
that it takes place for m = n — 1 and m = n, we prove its validity for m = n + 1.
Evidently,

an—l—leaep—b on [CL(LU o é) o by] eaep—b—Q

ayn+1 - ayn
an€a9p7b72 anJrleaOpfbe
la(z — &) — by o nbw
[5]+1

= [CL(I - 5) - by] Bn (b —+ 27 n; a(x _ 5)7 y) e(lep—b—Q—Q(n_,.H_l)
1
[252]+1

_ Z nbB, (b+2,n—1;a(x — &), y) e pb=2=2(n=r)

=
Il

3
|

I
M.ﬁ.m
+ |
AN

[a(z — &) — by] B, (b+ 2, n;a(x — €),y) e p~b-272n=r+D)

=
Il
—

+1
_ nbB._1 (b+2,n—1;a(z — &), y) (20 pb=2=2n=r+1)

‘:
it
£

w\:;ﬁ
RS

= D la(z = &) = by By (b+2,n;a(z = £),y)

_an,.C L(b+2,n— Lia(z — €),y) e p b2 2n—r+2)
+ [a(m - 5) - by] B,y (b + 2, n; a(m — 5)7 y) €a0p—b—2(n+1)

E
w

0 for ne N,

n (2.13)
_annT-l—l (b+2,n—1Lia(z —&),y)e?p ="t for neN.

By virtue of (2.10),

la(x — &) — by] By (b+2 n;a(z —§),y)

= [a(z — &) — by] H{am— —[b+2+20—1)y}
=[] la( —(b+20)y) = [J {a(z — &) — [b+ 20 — 1)] y}

=By (byn+ 1;a(x — &), y). (2.14)
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In view of (2.11), (2.12) for n € N; we have

—nbBun 1 (b+2,n—1;a(x —&),y)

n—2 n—d 3 1 il
=-nb ) > >y 1l b+2
O‘QQﬂ,IZn_Q oenTH727n—4 as=3 a2=1 k=1
\
anl
+2 (g = k) —n+1) [ Aale—& —b+20-1)]y}
1=
l;ﬁozi—li-‘rl
i=1,2,..., 248 -1
V,

— (—b)n(—b—2)(n — 2)(—b—4)(n —4)--- (—b—n + 1)

= (-1 an ] b+ 20k - 1)]. (2.15)
On the other hand, because of (2.11) for m =n + 1 € Ny we have

Bnii  (bn+ 1ia(z —€),y)

2

+1
n 5l a2 E

= Z H Z Hb—|—2 ar — k)] (g, = n — 1)

Qptl1=n j=1 a;j=2j-1 k=1

n+1
2
x JI Adal@=&—[+20-1)y}
l;éofz_lerl
i=1,2,.., 2L
Vs
%
= (-1 an [ o+ 2k — 1)], (2.16)
k=1
since
OénTH_lzn—Q,..., &2:3, 051:1.

From the equality of the right hand sides of (2.15) and (2.16) there follows
the equality of the left hand sides
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According to (2.11) we have
la(x — &) —by] Be (b+2,n;a(x — &),y) —nbB,_1 (b+2,n—1;a(z —&),y)

e -6 -ty Y (H T ){H[b+2+2<akk>1<akn>

ax—1=26—3 \ j=1 a;=2j-1 k=1
3\
n—k—1
< JI faz—9—p+2+20- 1)y}
z;éali:—liﬂ
i=1,2,...,k—1 )
n—2 Kk—3 Qjp1—2 K—2
—nb Y 11 > {H[b+2—|—2(ak—k)](ak—n+1)
ag_2=2k—5 \ j=1 a;=2j-1 k=1
n—r+1
x JI Aale=—-p+2+20-1)y}y, (2.18)
l;ﬁCfi:—lZ'-i-l
i=1,2,...,k—2 )
n
—923,... H 1
K 5 +

(we assume that H () = H() for m < k and ) (ﬁ:f()) {}=1{}.

l=p l=p J=l

l;éoéi—i-i-l

It is easily seen that

g[b+2+2(ak—k‘)] (ar —n) :]!;[1[b+2(04C — k)] (), —n—1), (2.19)
af, = o+ 1;
n—r+1
a(z =& —by] J[ {al@—&—-D+2+2(0-1)y}
G
(e -6 byl [ Aate—& 20— 1]y}
l;éofi:—i'ﬂ
= T fale— & - b+ 20— 1)y (2.20)
l#a;i+1

i=1,2,...,5k—1
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K—2

—an[b+2+2(0zk—k:)](ak—n+1)
:—nbh[b+2+2(ak_1—k‘+1)](ak_1—n—|—1)

:—an[b+2(a};—k)] (a};—n—l), Oy = g + 25

n—k+1

I[I {e@-9-Dp+2+20-1)y}
l;éofi:—li—l-l
i=1,2,....k—2

n+l—k+1

= H {a(z =& —[b+2(l - 1]y}

=2
l;ﬁai—’i-i-z
=1,2,...,k—2

n+l—k+1

= JI faz—9-p+20-1)]y}
=2

l#abﬂfl

i=1,2,....k—2

n+1—k+1

_ H {a(z — &) —[b+2(1—1)]y}.

l#aHJ—l

Substituting (2.19)-(2.22) into (2.18), we get

33

(2.21)

(2.22)

[a<x _'5) _'by]lgﬂ<b'+'2 n'a( ——f),y)-—-nbl?nfl(b-+-2,n/—-1;a(x _'€>7y)

n—1 K— QQrH k—1

= > HZ { [b+2(af — k)] (@ —n—1)
of 1 =2k—2 \Jj=1 aﬂf% k=1

3

n+l—k+1

x JI  Afaz—&—b+20- 1)y}
l;écf;:—li—i-l
i=1,2,...,k—1 J

+ z": (ﬁ 'i ){—nbji[b%—?(a};—k)}(a};—n—l)

a;72:2n—3 J 1cx+142]+1
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\

n+l—k+1
< JI faz—9—-p+20-1y} ¢, (2.23)
=2
l;éoz:—i—',-l
=23, —1 )
n
k=23 [5] F1

On the other hand, by virtue of (2.11), if we separate the sum corresponding
to aq = 1, then for m = n + 1 we have

Bn <b7n + 1;G(ZE - 5)7y)

= ) ﬁz {H[b+2(0zk—k‘)](ozk—n—1)

ax—1=26—2 \ j=1 «a;=2j k=1
\
n+l—k+1
< ]I Afa@—=9—pb+20-1)]y}
=1
l#a)—i+1
i=1,2,...,k—1 )

K—2 Qjp1—2

+ Z H Z {—nbl:[[b—l-Q(Oék—k)](Oék—n—l)

ar—1=2k—3 \ j=2 a;=2j—1

\

n+l1—k+1
x J] Aal@—&—-p+20-1)]y};, (2.24)
l;éofi:—2i+1
i=2,3,.... k1 J
1
K=23,.... {n;r } 11,

since in the first group of sums none of equalities
a;=2j—1, j=23,....k—1,

are possible, otherwise we would obtain that «; = 1 but such terms we have
separated in the second group. Let us note that the last products in (2.24)
begins from [ = 2 because of | #a; — 1+ 1=a; = 1.

If we compare (2.23) (where o; and a; we can denote by «;) and (2.24) and
take into account that

k=2 Qj+1—2 k=3 ojy1—2

IS =11 % w24

J=2 a;=2j—-1  j=1oaj11=2j+1
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from the equality of the right-hand sides there follows the equality of the left-hand

sides
[(I([E - f) - by] Bn (b + 27”’; CL(I - £>a y)

—nbB—1 (b+2,n—Lia(zr —¢§),y) (2.25)
:Bn<b7n+17a(x_€)7y)a 522737"'7 |:g:| + L

Substituting (2.14), (2.17), and (2.25) into (2.13), we get

an+1 ab
. P Z B (byn+ 1;a(x —&),y) e‘lep—b—Z(n—n—l—Z).

k=1

So, equality (2.9) is proved.
It is well-known (s. [1], pp. 235-236), that

d™ arct —% !
% =(=1)" ' m—-1)!(1—7%) 2 sin (m arctan —) , T#0. (2.26)
T !

But since,
arecot I | arctan 7 for 7> 0;
7 | arctan 7+ 7 for T <O,

we have
d™arccot % d™ arctan T
= , T#0.

drm drm

Introducing y by the relation

T:Lga y>07 x#fa

where z,& € R! are parameters, in view of (2.26), we get

omo o O™ B _, OMarctan T
ay—m:(f—f) &—mT&—(iﬂ—f) —m -

= (D" m -1l (z—-&™" {1 + (5’3%—25)2} N sin (m arctan — ; {)

= (=1)""(m —1)lp " [sign(x — £)] " sin <m arctan — ; 5) : (2.27)

Using (2.27), by means of the mathematical induction with respect to j we can

prove that
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=l k= 1’43k+1 0

xH(“’W) ko — D (m—k; — 1)!

Rik+1
7j—2
X H (Kgto — Kge1 — 1)lsin (Iig arctan — 5) sin [(m — Kj) arctan * 5}
Yy Yy
k=1
j72 T — é—
X Hsin |:(/€]€+2 — K1) arctan } , J > 2. (2.28)
k=1 Y

According to the Leibnitz formula,

amege(w -b m m 8K9j am—ne(wp—b
D . 2.2
oym HZ; ( K ) gyt Oymr (2.29)

By virtue of (2.9)-(2.11), and (2.28) it is easy to check that for a fixed z
belonging to the closure of an arbitrary bounded domain lying inside R%, we
have

m ab —b
aa% =0 (|m - gl—Reb—m) ) |§| — +00, a 7& Oa (230)
gy [ O(lr— e BED) e e,
= (2.31)
y O,be{O,—2,...,—2(m—[%}—1)}, m €N,
ameﬂ .
G O(lz—¢™™), ¢ = +o0, j€eN. (2.32)

After substitution £ = x+yt formulas (2.30)-(2.32) we may rewrite in the following
forms

oM ed af —b
—m =0 (t[ "™, |t| = 400, a#0; (2.33)
Y™ Nemiryn
am _b m
2 =0 (jt 21Dt oo (2.34)
Y E=x+yt
omd L .
— =0 (|t|™™), |t| = 400, jeEN. (2.35)
ay E=x+yt
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In view of (2.30)-(2.35), in the above mentioned domain from (2.29) we get

3m0j€a9pfb

oy™
O (jo = £|7Reb=m) = O (jt|Reb=m) | [e]jt] — +oc,
when either a#0, m€N°, or a=0, j #0, m e N,
or a=j5=m=0,

ora=j=0,b40-2...,-2(m-|F| 1), meny; (2.36)
“ ) O(le =gty =0 (R L Jel ] = oo,
whena:j:o,b#o,—z,...,—2(m—[%}—1),meN1;
| 0, when a:jzo,be{o,—z,...,—2(m—[%}—1)},meN.

Indeed, the cases a # 0 and a = j = m = 0 are obvious. In the cases a = j =0
m € Nand a =0, j # 0, m € Ny we have to take into account

2(m-5]) = .
Q(m—T) =m+1, mé€ Ny,
and
"0 | | ( i ) USRI P Rebom(m—r_2[m=s
_ . < SO — g Rebm— (2] 252])
aym ; K 8yl€ 8ym—n ; | ’
_ic |z — &|7RO=™ for m — Kk € Ny;
N —~ |l = TR for o m— ko€ Ny,
<Clz - §|_Reb_m, || = 400, C,C, = const,
respectively.
If . m
a=i=0, be {0,—2,...,—2 <m— [3] —1)} m €N,
then
8m9j€a6p_b 8mp—b
= =0 2.37
e == (2.37)
because of m
m>0,2,...,2<m— [ﬂ —1),
since
m | m =2, meNy;
(--)-{nh S e

From (2.38) it is easily seen, that



38 Lecture Notes of TICMI, vol. 24, 2023

be{o,—z,...,—Q(m— [%}—1)} m €N,

may be rewritten as

2
0,1,...,——, meNy,

b=—-2n, n= 2_1
0,1,...,7, m € Nj.

From (2.31) it follows (2.8).
According to (2.9)-(2.11) and (2.27), (2.28), we have

ameaepfb
oy™ E=a+yt
[2]+1 ] .
_ yfbfm B,{(b,m, at)ea-arccot(ft) (1 + t2)—§—m+n—1’ (239)
r=1
where .
Bi(b,m;at) = (—1)" [ [ lat + b +2(1 — 1)]
=1
B, (b,m;at) = (—1)m2r+2
m—1 K—2 0jt1—2 k—1
X Z H Z { b+ 2(cu — k)]
Qp_1=2k—3 Jj=1a;=2j-1 k=1
m—r+1 m
x(m—ar) ] [at+b+2(l—1)]}, k=23, [ﬂ 41
=
l;ﬁoci—li—‘rl
i=1,2,...,k—1
and
omgI
oy™ E=a+yt
' m m —2 Hk+2
(=)™ [sign(=)] "y~ (LH£7) 72 Y H >
j—2 Kkj=0 \k=1kKp41=0
X {( :j )I}_Il( Kitorkr1 ) (k2 — 1)1 (m — kj — 1)!
j—2 (2.40)
_ X H (Kk+2 — Kikg1 — 1)sin [k arctan(—t)] sin [(m — K;)

k=1

j—2
xarctan(—t)] ] sin[(fry2 — Frr1) arctan(—t)]} I >2
k=1

(=)™ Lm = 1)ly=™ (1+¢2) "2

[ X [sign(—t)]" " sin [m - arctan(—t)], j =1,
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respectively.
If (2.7) is fulfilled and m, k € Ny, then

e om —b
Mi(0,0,0,m) =y [ (o e
“+o0o
m ,—b
:beFm/tka Pm dt = 0,
—o0 ay =ty

since the integrand, in view of (2.39), is an odd function with respect to ¢ and
the integral is convergent because of (2.7). So, (2.8) is proved.
After substitution £ = x + yt the expression (2.5) we may rewrite as

—+o00

8m9j af ,—b
Mk(aabLj)m) - yb+m / tk #

dt.
oym

E=z+tyt

Hence, by virtue of (2.29), (2.39), (2.40) it is evident that the right-hand side of
the last equality and therefore, the function My/(a, b, j,m) is independent of z, y.
Thus, Theorem 2.2.1 is proved. O

Remark 2.2.2 In view of (2.36), if condition (2.6) is fulfilled, the function
My (a,b, j,m) is defined. When

a:j:0,b#O,—Z,...,—Z(m—[%}—l),m€N1 (2.41)

it is defined under the weaker restriction (2.7).

Let
My(a,b,m) := My(a,b,0,m), M(a,b,m):= My(a,b,m), (2.42)

™

Ax(a,b) := Mi(a,2 —0,0), A(a,b):= Ao(a,b) = /6“9 sin~"0df, b<1; (2.43)
0

*

Ala,b) :== My(a,2 —b,1,0) = /96“9 sin?6dh, b<1, (2.44)
0

(a,m)=ala+1)---(a+m—1), m>1; (a0 =1.
Theorem 2.2.3 Under restrictions of Theorem 2.2.1
Mi(a,b,j,m+1) = (k—b—m+ 1)My(a,b, j,m). (2.45)
The following equalities are valid:

My (a,b,j,m) = (=1)"(b — k — 1,m)My(a,b, 5,0) (2.46)
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and

Mg(a,b,m) = (=1)"(b—k — 1,m)Ax(a,2 — b) (2.47)
for Reb > 1+k, k,m € N°;

a’ + (b+ 2m)?

A(a,2 —b—2m) = (b+2m)(b+2m+ 1)

Ala, —b —2m), (2.48)

for Reb > 1 —2m;

M(a,b,m) =

(—1)" T] {a® + b+ 2(x — 1)}
n=(1 AMa,2—b—2m),  (2.49)

b+m—1,m)

when either Reb > 1 —m, m € N or if a = 0, when Reb > m, m € Ny (in the
last case in (2.49) b = 1 —m is allowed if the right-hand side we consider as a
corresponding limit which will be equal to zero);

M(a,b,m) = (—=1)""*(b,m — 1)M(a,b,1) for Reb >0, m € N. (2.50)
When a =0, m € Ny (2.50) is valid also for Reb > —1.

Proof. Equality (2.45) we may obtain as follows

My(a,b,j,m+1) = yb+mk+/oo(§ _ x>k%d§
—(b+m— k)yb—i-m—k—l 70@ B x)k%dg

0 , .
= a_y [yMk(a7b7jam)] - (b+ m— k)Mk(a7 bu]am)
= (14+k—=b—m)Mg(a,b,j,m).

Using [-times formula (2.45), when Reb+m — [ —k —1 > 0 (when a = 0,
j =0, m—1€Nj, we may take Reb+m — 1 —k > 0), we get

Mk<a> b7j7 m) = (2 +k—0b— m, l>Mk(a7 baju m— l)
Therefore, in particular, for j = k=0, [ = m — 1, we obtain (2.50), because of

2—b—m,m—1)=(=1)""1(b,m — 1),
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while for [ = m, we have
My(a,b,5,m) = (2+k—b—m,m)My(a,b,j,0) = (=1)"(b—k—1,m)M(a,b, j,0),
i.e., (2.46). Hence, we get (2.47) since

My (a,b,0,0) = Mg(a,b,0) = Ax(a,2 — ).

For Reb > 1, a # 0, bearing in mind (2.43), (2.42), (2.5) and using twice
integration by parts, we get

™

_ 2
A(a, —b) = /e“esiandO = b(ba2 1)A(a, 2—-0) — %A(a, 2-0). (2.51)
0
Thus,
a’+b?
A(a,2 —0b) = Ala —b). 2.52
(@.2-1) = {5 s A=) (2.52)

The last remains valid also in the case a = 0, what immediately follows from the
following equalities

A(0,2—b) = — / sin’@dcott = b/sinb20cos29d6 = b/sinb2€d9 — b/sinbﬁdﬁ.
0 0 0 0

If we replace b by b+ 2m we get (2.48).
When m = 1, because of

a

Ai(a,b) = —bA(a,b) for Reb < 0, (2.53)
evidently,
+Ooaea9p*b +o0 L
M(a,b, 1) _ yb / 5 df _ /(at + b)ewarccot(—t) (1 + t2) 27t
Y

a’ +v?

b
In the case a = 0 we may assume Reb > —1. So, formula (2.49) is true for m = 1.
Now, we assume its validity for m = n and consider M (a,b,n + 1). By virtue of
(2.45), when either j =k =0and Re >1—n,n € Nor a =0 and Reb > —n,
n € Ny, we have

= —ali(a,—b) —bA(a,—b) = —

A(a,—b), Reb> 0.

M(a,b,n+1)=(1—b—n)M(a,b,n)

(—1)" ,ﬁl {a®+ b+ 2(s — V)
:(1—b—n) (b—|—n—1,n) A(a,2—b—2n)
(—1)n+ ﬁl (a2 + b+ 205 — D]}

= Ornn=1 A(a,2 —b—2n).
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Whence, taking into account (2.48) for m = n, we get

ﬁ {CL2 + [b—l— 2(,€ _ 1)]2}
M(a,b,n+1) = (_1)n+1 k=1

(b+n,n+1)

A(a,—b —2n).

But, both the sides of this equality are analytic functions with respect to b when
either Reb > —n or a = 0, Reb > —n — 1, n+ 1 € Ny (in the last case points
b = —n, n € Ny are removable points of singularity for the right-hand side),
which coincide either for Reb > 1 —n, n € N or in case a = 0 for Reb > —n,
n € Nj. Then, according to the uniqueness theorem of analytic function both the
sides coincide in the whole domain of their analyticity. Thus, Theorem 2.2.3 is

proved.

Now, we give some useful formulas.
It is well known that (see e.g., [2], pp. 491 and 386):

—+00

Ak(c% b) — / tkea-arccot(ﬂg)<1 X t2)%71dt

= —1 k ~77/:0 7 Reb < 1 B k’
(—1) I-b-kB(1-£&—-t1+2—t_k)
whence,
Ax(a,b) = " Ay(—a, b);
f 20rcos <
A(e,b) = /cos(c@)sinbede - i S
J =05 (et =)
Reb <1, c € R
f 20 rsin s
B(c,b) = /sin(c&)sinbede - B S
) (=05 (Bt o0y
Reb <1, c e RY;
where

1

B(z,y) := /t””‘l(l —t)¥"1dt, Rex >0, Rey >0,

0

O

(2.54)

(2.55)

(2.56)

is the Euler Beta function (see [6], pp. 962-964). Evidently, when b and ¢ are real

numbers

B 2—|—c—b’2—c—b
2 2

)>0 for b<2+e.

It is easily seen that

b+ 1)(b+2)

Ale2=b) =G e

A(c,=b), b> —1,
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b+ 1)(b+2)
(b+2)? — a?
A(c,b) = A(c,b) cos(em) + B(e, b) sin(em), A(1,0) =0, b< 1,
B(e,b) = A(e,b) sin(er) — B(e,b) cos(em), b < 1.
Taking into account the last one, from (2.55) and (2.56) we conclude that

B(c,2—-b) = B(e,—b), b> —1,

ARk+1,0) =0, A(c,b) #0, c#2k+1, k=0,+1,£2,...;

B(2k,b) =0, B(e,b) #0, c¢#2k, k=0,+1,42,...;
24+c—0b 2—c—b>
> 0.

2 ' 2
Besides, from (2.55) and (2.56) it immediately follows

A%(¢,b) + B2(c,b) = 2%(1 — b) 2x?B 2 (

A(c,b) = cot (%)B(c, b).

43

Theorem 2.2.4 For complex numbers a, b, and k € N°, Reb < 1 — k, the

inequality
Ak(a7 b) 7é 0

is valid if and only if when
b—ia, b+ia+ 2kENy,
k n a
3 (=1)"(=k,n) (5 +3.1)
n=0 (1,71) (1+%_g_k’n)
Fora,be R, b<1—Fk and k € N we have

# 0, +00.

>0, when either ¥ € Ny, or a >0, k € Ny;
Ag(a,b) ¢ <0, when a <0, k€ Ny;
=0, when a =0, k € Ny,

while, for k € N we have
(k+ 1DAg(a,—k — 1) + algi1(a, —k — 1)

> (0, when either k € Ny, or a >0, k € Ny;
<0, when a <0, k£ € Ny;
=0, when a =0, k € Ny,

Proof. Substituting

(i a b a b N _T(-g-Hr(+g-t-k
B(l—z—§>1+z—§—k)— T2 —b— k)

into (2.54) and taking into account that the Euler function

r(z) = %f[l{(wr%) (1+%>1}

(2.57)

(2.58)

(2.59)

(2.60)
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[s. below 2.66)] is not equal to zero in the complex plane but the points z =
0,—1,—2,..., where it has poles (see, e.g., [6], p. 16), the first part of the
theorem becomes clear.
From
“+oo
b_
Ak(a,b) — /tkea-arccot(t) (1 +t2)2 ldt
—00
2.61
< (2:61)
b_
— / [ewarccot(—t) + (_l)kea-arccott} tk <1+t2)2 1dt

0

it is obvious [see (2.43), (2.5)] that if k € N9, then Ap(a,b) > 0; if a =0, k € Ny,
then Ax(0,b) = 0; if a # 0 then (2.59) is valid because of inequalities

arccot(—t) > arccott for ¢ €]0,+o0]; (2.62)

ea-arccot(ft) o ea-arccott { > 07 a > Oa ¢ E]O, +OO[ (263)

<0, a<0,

In view of (2.61), we have

(k+ 1Ag(a, =k — 1) + alg11(a, —k — 1)
e ktl_ g

— (k + 1) / [ea-arccot(*t) + (_1)k€a-arccott} tk (1 + tg)? dt

0
—+00
k+1

+a/ [ea.arccot(—t) + (_1>k+16a.arccott] tk (1 +t2)7 1dt
0
Whence, using inequalities (2.62) and (2.63) and separately considering the cases:

a is arbitrary, k € No; a > 0, k € Ny; a <0, k € Ny; a =0, k € Ny it is easily
seen that (2.60) is valid. O

Corollary 2.2.5 For complex numbers a and b the inequality
M(a,b,m) #0

is valid if and only if when 2 —b —2m +ia€Ny and either Reb > 1 —m, m € N°,
a>+b+2(k—1))?#0,k=1,...m; orif a =0, when Reb > —m, m € Ny,
b#£0,-2, ... —2<m ~[m] - 1).
Ifa,b € R! then
M(a,b,m) #0

when either a # 0, b>1—m, m € N°; ora =0, b7£0,—2,...,—2<m— [%] —1)
and either b >1—m, m € Ny orb > —m, m € Ny.
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Proof. According to formula (2.49) and Theorem 2.2.4 it is not difficult to prove
the corollary 2.9. It should be only mentioned that for a,b € R! the numbers
2 —b—2m*ia can not be even positive ones, since when a # 0 it is pure complex
number, while when a = 0 we have 1 — m < 0 and either 1 — b —m < 0, or

1—b—m < 1,i.e, in both the cases 2 — b —2m < 1.

Theorem 2.2.6 For Reb <1 —k and k > 2 we have
(

b=2
2
(k) ;
Z c gjaQJ —af, ke Ny;
§=0

\

k
where ¢ ; are independent of a.

Proof. Let us prove in advance that
-1
b+k—1

Reb <1 —k, k€ Nj\{1}.

Ak(a, b) =

Indeed,

+o00
Ak(G/7 b) = / tk—lea-arccot(_t)d

—00
+oo

1 b
— _g /(k? . 1)tk—26a~arccot(—t) (1 + 152);7 dt

+oo
_%/tklea-arccot(t) (1_'_t2)%—1 dt

—0o0

(1 +1t2)g
b

k—1
= — b Ak_Q((l,b+2

E—1
=" Ag-2(a,b) —

since, it is easily seen, that

)-%M4mﬁ>
k-1

“+oo
b
Ak_g(a, b 4 2) — / tk—2ea-arccot(—t) (1 + t2) 2 (¢t

—0o0

+oo
_ / tk72€a-arccot(ft) (1 + tQ)%_l dt

—00

+oo

+ / tkewarccot(—t) (1 +t2)371 dt = Ak—2(aa b) _|_Ak(a7b)

—0o0

k=3
2
k .
Z (c)2j+1a2]+1 + ak, k c Nl\{l},
7=0

[(k—1)Ag—2(a,b) + alr_1(a,b)],

Agmm—%m4m¢%

]

(2.64)

(2.65)

(2.66)

(2.67)
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(2.65) immediately follows from (2.66).
Because of (2.65) we have

As(a, b) — —b% [Ao(a, b) + ahy(a,b)

= _% Ao(a,b) — %Ao(a, b)| = —bA(%(i’ 11); (b—a®);  (2:68)
As(a, b) = —b% 241 (a,b) + ads(a,b)]

__Molad) [—a(3b+2) +d”], (2.69)

b(b+1)(b+ 2)

i.e., formula (2.64) is true for £k = 2,3. Assuming that it is valid for 2,3, ...,k let
us prove its validity for k& + 1.
By virtue of (2.64) and (2.65), for Re b < —k we have

1
Api1(a,b) = Tl [kAk—1(a,b) + alg(a, b))
_ ¢ s
(k;ngj) a® — ak_l, k—1¢€ Ny;
_A()(a, b) k J=0

b+k | (bk—1)

k—4
2
(k—1) ; _
Z Coj+1 CL2‘7+1+(1k 1, k—1 GNl,
j=0

\

\
el

|

w T

— ® < _
Z C2j+1 aZJH + Clk, k€ Nl,
a J=0
(b.k) | x2 .
Coj a¥ —ad* keN,,
\ J=0 J
(5
k )
( Jé;; ¥ — " keNy, ie, k+1€eN,;
A()(CL, b) Jj=0
(k1) (k—1) .
Z C2j+1 a¥tt + (lk+1, keNy, ie., k+1¢eNy,
§=0
i.e., formula (2.65) is valid for k + 1. O

Remark 2.2.7 [t is well known that (see (2.44) and [2], p. 460),

*

[ b
A(0,b) = /esinb 0do = 21 7*T(1 — b)I' 2 (1 - 5) : (2.70)
0
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where
o0

['(2) := /e_ttz_ldt, Rez > 0, (2.71)
0

is the Euler Gamma function (see (2.43) and [2], pp. 947-951). From (2.5}) we
get

™

A(0,b) = /sin_b9d9
0

b boP(9
_ 2781<1_g’1_9):(2WF(2 b)

1—b 2 1-0)r2(1-3%)
= 270(1 — b2 (1 - g) : (2.72)
since (see [2], pp. 951 and 964)
_ 2 _@lB) _ =
'2-0=(1-uI'(l->0) and B(a,b) = a1 h) = B(b,a)
From (2.70) and (2.72) it is easy to conclude that
A(0,b) = gA(O, b), b<1. (2.73)

Because of [see (2.43) and [2], p. 490 and also (2.54) for k = 0]

Aa,b) = / e®sin*0d0
0

2 ress

_ (1—b)B<2_m_b 2+m—b)’ Reb<1,  (2.74)
2 ’ 2
whence,
A(—a,b) = e *"A(a,b), Reb< 1. (2.75)
From (2.55), (2.56) we conclude
A(c,b) = cot %B(c, b), B(c,b) =tan %A(c, b), Reb< 1. (2.76)

Further, after some transformations we derive
A(c,b) = A(c,b) cos (em) + B(c,b)sin (em), A(1,0) =0, Reb <1, 277)
2.77
B(c,b) = A(e,b)sin (er) — B(c,b) cos (em), Reb < 1.

From (2.76) it follows that for ¢ # +1,+3,---
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A2(c,b) + B2(c,b) = A%(c,b) + tan? %TAZ(C, b)

(2.78)
— A2(c,b)(1 4 tan2 ) = A%(¢, b)cos 2L, Reb < 1.
2 2
Similarly, for ¢ # 0, +2, +4, - - -
A?(c,b) + B*(c,b) = B*(c,b) sin _Q%T, Reb < 1. (2.79)

2.3 Mathematical moments

Let f(z1,72,73) be a given function in Q C R® having integrable partial deriva-

tives, let w be the projection on x3 = 0 of 2 bounded by the surfaces x5 =
(+) (=
h(x1,22), x3 = h (21,22), (21,72) € w, and the cylindrical surface paralel to

xrs-axis, let f,. be its r-th order moment defined as follows

(+)

h (z1,z2)
[r(@1, 22) = / f(x1, w2, 03) P (aws — b)dws, (71,72) € w,
(;z)($1,$2)
where _
1 h(fL’l,l’Q)
=— b gk it
a($17x2) h(l’l,.ﬁlfg)’ (.%'1,372) h(ﬂfl,xz)’
(+) (=)
2]1(33'1,33'2) = h (ill'l, 372) — h (Z’l, iL'Q) > O,
~ (+) (=)
Qh(l'l,l'g) = h (1’1, .’L'Q) + h (1’1, .’IQ) > 0,
and

1 (r2 —1)"
- 2ryl dr” ’
are the r-th order Legendre polynomials with the orhogonality property

P(7)

r=01,--,

+1

/ P () Py (r)dr

-1

2
- —5mn'
2m +1

From here, substituting
(+) (=)
2 h (z1, ©2) + h (21, T2)

) o) BT H o) )
h(x1, x2) — h (21, x2) h (x1, x2) — h (x1, x2)

T=ax3—b=

we have
)
h (z1,®2)

(m + —)a / P,(axs — b)P,(axs — b)drs = dpmp.
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Using the well-known formulas of integration by parts (with respect to x3) and
differentiation with respect to a parameter of integrals depending on parameters
(z4), taking into account P.(1) =1, P.(—1) = (—1)", we deduce

(+) (+)

h (x1,22) h (z1,22) ) )
/ P.(axs—0b)f,3drs = —a / Pl(axs—0b)fdxs+ f —(=1)" f, (2.80)
(Z)(Il,ifQ) (E)($17$2)
(?(1617332)

()(+) (=)(=)
Pr(ax?) - b)faoz de = fr,a - f h e + (_1)T f h NeY

(=)
h (z1,2z2)

(+)
h (z1,22)

- / Pl(axs — b)(a,q w3 — byo ) fdzs, a=1,2, (2.81)
<E)(CL‘1,$2)
where superscript prime means differentiation with respect to the argument axs —

b, subscripts preceded by a comma mean partial derivatives with respect to the
(£) (£)

corresponding variables, f := flxy,z2, h (21, 22)]. Applying the following rela-

tions from the theory of the Legendre polynomials (see e.g. [3], p. 299 or p.

338-339 of the second edition)

Py =Y s+ 1) ) p

2
s=0
/ / r—1 1 + (_1)r+s )
TP (1) =rP.(1)+ P._(t)=rP.(1)+ ) (2s+ 1)TPS(T) (2.82)
s=0
. . Qo ! hn;v Qo 7 7 o s .
and, in view of — = (Ina)’ = — —=b=ha,,, b= (ha),, it is easily
a a

seen that

Plazs — b)(ay T3 — bia ) = 2% (azs — b)P(azs — b) + (226 — b, )P (azs — b)
a a

= —h,o h ' (axs — b)P'(axs — b) — Do h™ P (az3 — b)

r

= —ay, P, (axs — b) — Z CTIQSPS (axs —b) 3, (2.83)

Yon the top of the symbol 3 both r — 1 and r are true since the last term equals zero.
2on the top of the symbol > both r — 2 and r — 1 are true since the last term equals zero.
3 .

since

r—1 ~ ~
hva +(_1)T+Sh7a hva _(_1)T+Sh7a
E 25+ 1 P, —b
s:o( s+1) oh + 5T (azx3 —b)
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where
b (;;) ( 1)”5(1—1)
oy = TT’O‘, (os = (25 + 1)—2 o 2 s #T
Now, bearing in mind (2.83) and (2.82), from (2.80) and (2.81) we have
<J}g>(961,962)
/ Pr<ax3 - b)faa dl‘g
(E)(3317$2)
¢ (+)(+) ()
= frat Y tafi— fhat (10 [ ha =12 (280)
s=0
(?(961,372)
LA (+) L)
/ P(axs —b)fsdrs =Y as.fo+ f —(=1)" f, (2.85)
s=0
(?(m,m)
respectively. Here
r 1 — (—1)t
= (24 1)—~
as ( S+ ) 2h
Let
= 1
[ a2,m5) = Y a(r+ §>fr(x1,x2)Pr(ax3 ), (2.86)
r=0
then
(£) (£) — 1
= flz, 0, b (71,22)) = ;CL(S + §>fs(:|:1)s
= (£1)%(2s + 1 —
=S %h‘”)fs, i=T13, (2.87)
s=0
whence
(+) ) o o
f=CE0D"f ==Y assfs, i=1,3, (2.88)
s=0
(H)(+) (=)= S _
F (=1 fha=Y af, i=13 a=12 (289
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where

T r T hyo
Uy = Qos, 8 FT, g, = (21 + 1)—];
Substituting (2.89) and (2.88) into (2.84) and (2.85), respectively, we get
(Z)(Il,m) r 00
/ Pr(a$3_b)faadx3 = fr,a+zglasfs_za23fs
- s=0 s=0
h (z1,z2)
Frat Y basts, (2.90)
where . .
bjs == —5]-5, s>r1; bis=0,s<r;
i (;) (g)
ar::Tar_ Zr:_ 1M7 TIO,
bar = Qar — G, (r+1) o7 bsr
and
<Z)($17$2) . oo
Pr(aws —b)fades = Y asfo— Y asfs
) s=0 s=0
h (z1,z2)
= = ) asf. (2.91)
s=r+1
respectively.

(+) (=)
If f and f are known (prescribed), then from (2.84) and (2.85), correspond-
ingly, we obtain

(+)
h (z1,22)

PT(CL'T?) - b)facx dl‘g = fr,a + Z aasfs
s=0

and

(+)
h (z1,z2) -
P.(ax3 —b)f,3drs = Z (ss
s=0

(=)
h (x1,22)

) (+) +) ) ) (=)
+ f ns\/1+(h,1)2+(h,2)2+(—1)rf s\ 1+ (h 1)+ (h2)? (2.93)
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Chapter 3

Weighted Boundary Value
Problems for Second Order
Degenerate Partial Differential
Equations

This chapter is, mainly, devoted to the elliptic Euler-Poisson-Darboux (EPD)
equation. This equation has an order degeneration on the straight line y = 0. We
thoroughly study weighted, in general, BVPs for the half-plane and in a finite
domain, containing an interval of line y = 0 as a part of the boundary of the
domain, when on the line of degeneration the m-th order derivative of the regular
solution of EPD equation with the corresponding weight is prescribed. These
weights are dependent on m and on both the constant coefficients ¢ and b of
EPD equation. The explicit integral representation of solutions of the Dirichlet
(m =0,—00 < b < +00) and Neumann (m = 1,0 < b < +00) problems were
obtained by G. Jaiani [9], [15]. Later, actually, the same representations were
obtained by O. Marichev [27], where G. Jaiani [9] is cited (see also O.I. Ma-
richev, A. A. Kilbas, O. A. Repin [28]]), using the another method. He addi-
tionally investigated the Neumann problem for —oco < b < 0. The general case
(m >0,—00 < b < +00) was studied by G. Jaiani [12], [13], [15], [16]. EPD equa-
tion can be considered as a model equation for PDEs of general form with order
degeneration from the point of view of well-posedness of weighted BVPs when the
fixed order of the derivative of the solution assigned on the boundary with the cor-
responding weight is larger, in general, than the order of the degenerate equation
under consideration. Moreover, we investigate the behavior of solutions of BVPs
at the points of discontinuity of the boundary data by approaching them along
different ways. It turns out that the behavior depends on the angle between tan-
gents to the above ways at these points and the z-axis. in the case of the half-plane
we express solutions of the above-mentioned weighted BVPs in explicit integral
forms. In the particular case a = 0,b = 0 these formulas contain the well-known
Poisson integral, representing the regular solution of the Dirichlet problem of
the L’aplace equation for the half-plane. We apply the above-mentioned integral
representation of solutions of BVPs for the half-plane to approximate solving cor-

23
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responding BVPs in a finite domain when on the curvilinear part of the boundary
of the domain the the homogeneous Dirichlet data are prescribed. Moreover, we
state some results, following immediately from the previous results for a degen-
erate equation that is more general than the EPD equation in two-dimensional
domain and for a degenerate equation in a p-dimensional domain for p > 2. In the
final part of this chapter we study the canonocal form of degenerate equations of
second order in two independent variables. Those contain , in particular, elliptic
equations which may have non-characteristic, characteristic (Keldysh equation),
order and/or type degeneration. We prove a theorem for the above-mentioned
equation, which gives us criteria when the Dirichlet and when the Keldysh prob-
lems are well-posed in the classical sense. From this theorem we obtain Keldysh’
theorem in the case of the Keldysh equation.

3.1 Green’s formula. The correspondence, maximum, and
weighted Zaremba-Giraud principles. Fundamental
solutions depending only on the polar angle

From Green’s general formula if u,v € C*(G)(C*(GJAIG)! for an arbitrary
bounded domain G C R? with a piecewise smooth boundary I' := 9G, entirely
contained in R?, in the case of the operator

Ly = ybilE(a’b)u = (ybum)m + (ybuy)y + ay’ g,

we obtain
0 0
//(UL(“’b)u — uL)dG = —/ {yb (V—u - u—v> + ay’ v cos(v, x) | dT,
v v
a oG
(3.1)
where v is the inward normal to dG, the operator L(=®% is conjugate to the
operator L(®® and let double integral be convergent, in general, as an improper
one.
Let
Ks :={(z,y) € Kr:y > d},
and

Kp:={(z,y) e R2 : 2* + y* < R*}.

For arbitrarily small 6 > 0 the (3.1) is valid for Kj. In particular, for v =
and L@y = 0 (we denote a solution of the last equation by u(*®)(z,v)) if we
substitute into (3.1) u? instead of u we get

ou a
// P (u? + uZ)dKs = — / ybuad(?Kg + 3 / y* Lt dy, (3.2)
Ks

0K Crn{y=6}

1C? and C* are the classes of twice and once continuously differentiable functions in G' and
G 0G, respectively.
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where
Cr:={(z,y) € R2 : 2* + y* = R*}.

From the identity
yl—bE(a,Q—b)(yb—lu) = E(a,b)u (33)

we have the following correspondence principle

(@b — gy1=by (@2-), (3.4)

According to correspondence principle (3.4) each solution u(®?) generates a
solution u(®27% and vice-versa. This principle was proved by A. Weinstein [37]
for the case when a = 0. Where the following second principle is proved as well.

uZ(JO,b) — yu(0,2+b)7 (35)

is proved as well. (3.5) immediately follows from the identity

O E00)y, 10u
— = EO2+Y) (--) .y #0. 3.6
oy y y Oy 7 (3.6)

According to the principle (3.5) each solution u(®?) generates a solution u(®2+?

and vice-versa. The validity of the correspondence principles
ul®) = 170y (270) (3.7)

and

ul? = yu ) (3.8)

was shown by Weinstein [38] also for solutions u(*) of the equation
b
Lyu = uy, + ;uy + X(u) =0,

where X (u) is an arbitrary linear operator independent of the variable y (clearly,
in particular, X (u) maybe u,, + au, while the last equation is not covered by
equation (1.1)). It is easily seen that from (3.7) it follows (3.4) but from (3.8) it
does not follow (3.5) for a # 0. Evidently,

10u 10
X ') ="' X (u) and X (——) = ——X(u).
(v u) =y X(u) e (u)

Hence,

y Oy
Now summing, the last identities with the identities (3.3) and (3.6), respec-
tively, we obtain two new identities:

y X (") = X(u) and (%X(u) =yX (1 8u> :

Yt (B@2D 4 X) (1) = (@Y + X) (u)
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and 5 5
1 10u
E(O b) + X) _ E(U 2+b) + X ( ) )
Ay ( (w=( vX) y 9y

which prove that the correspondence principles (3.4) and (3.5) remain true for
solutions of equations
(B + X)u=0

and
(E(0,2+b) + yX) u = 07

respectively.
In the polar coordinate system with the pole at the point (z,y) = (§,0)

p=pei=+(x =8+ Q—argZ—arcctg - &
Yy

(z:=x+iy = (z,y)) € RZ,afixed £ € R")
EPD equation (1.1) has the form

8210 ow 0w ow ow
5 tP—+ 55+ apctg&—

ow ow
8 oy o o a%—i-bpa +bctgfd + — = 0.

00

From here it is clear that solutions depending only on 6 satisfy the equation

0%w(0) dw(6)
502 + (betgf — a) p7] =0,
ie.
o dw(0) w(®) [
w
%l —y = — betgd, In 7 :/(a—bctge)d9+ln03,

)
0
— exp / a — betgh)dd + In 03} Cs exp [a(Q — §y) — blnsin 9]
0o

= (C1e® gin? 0, C;:= C’ge_aeo,

and have the form

C19Q(0; 0y, a,b) + Cy, Cy,Cy = const, (3.9)
where 6, €]0, 7[ and
0
Q(0,60y,a,b) = /e‘” sin~? rdr.
)

We can immediately verify that the expression



George V. Jaiani. Even Order Sngular Elliptic Equations

d e sin' =
Q(0: 0 b) = — o 1=bab b—2 2
dé- ( Vo, @, ) 0 Yy e p

o7

(3.10)

is a solution of equation (1.1) in R? for a fixed { € R'. If we replace in (3.10)
"b” by "2 — b” then, clearly, we get solution u(®?=) = y*~1e% =t Therefore, the
first correspondence principle (3.4) gives another solution of equation (1.1)

ea@ 7b.

p

If b €] — 00, 1], in the particular case

Ci=10Cy=0,60=0
(3.9) has the form

0
Qz—&y) :=Q0;0,a,b) = /e‘” sin~? rdr.
0

Whence,

0, when x > &,

A(a,b) == [ sin"’7dr, when z < €,
0

Q<97 07 a, b)'y:0 -

since

y—0+ y—0+

x—E& {O,whenx>§,

lim § = lim arcctg —— = 7, when z < ¢

It is easily seen that

Q(0;0p,a,b) =0(1), 0 — 0+, 71—,
when
0o € [0,7], z€R%, E€R', be]— o0, 1];
( O(In@), 6 — 0+,
O(In(w —0)), 0 — 7—,

(
Q(6; 0, a,b) = (
U o)), Jel = 4o,
(

( O(Inft]), [t] = +oo,

. . oy
sinaw =sinf = =

p
9% _y
oE  p?
90  x—¢

oy P

(3.11)

(3.12)

(3.13)

(3.14)
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when
0o €]0,7[, 2 €R%, (¢ €R, b=1;
(O(0'7Y), 0 — 0+,
O((m—0)'"), 0 = 7—,
Q(0;6y,a,b) = . (3.15)
o1&, [€] = +o0,
L O([t"1)), [t] — +o0,
when
0o €]0,7[, z€R%, £ € R, b€l +o0f.
Indeed, if b €] — 00, 1], then, keeping in mind (2.43), (2.42), (2.5),
Q(0p;0,a,b) < Aa,b) = const ;
if b= 1, then
_ Q0;00,a,1) e sin~t 4 B
91—1>%l+ Iné eligﬁr 61 L
Q(0;6p,a,1) . ePsinTto e sin~t (1 — 0)
lim lim = lim = e
0—m— — ln(ﬂ' — 9) O—m— (7T — 9)_1 0—m— (71' — 6)_1
if b €]1, 400, then
. Q0;00,a,0) e sin™’ 6 B
91—1>0+ g1-° 913& 0-b L
1-0
i Q(0; 600, a,b) lim esin"f lim esin(r —0) Jan
0—m— (7r — 9)1_6 0—m— (7‘(‘ - «9)_b O0—m— (71' — (9)_b .
b—1
Further, taking into account
O|e=ptye = arcctg R =arcctg (1), z€ R, & teR', (3.16)
E=x+yt
- _ ) — 2
£Enaoo@ =0, 5£Tm(ﬂ 9) =0, zeRY, (3.17)
60— —oco 6—+oc0
we have
Y
— )2 442 1
lim = lim (z—¢+y lim =1,

oo —pETt evie yET e (2 a)’ 4 (1)
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1
lim — fim 1E2 g
t—o—o00 —t—1 ty—o00 172
-y
)2 4 2
im 70— oy Y
Eotoo Y&l fotoe —yE?
—1
lim ~ lim 18
E—+oo T 1 {—+o0 —t—2
using these equalities, we obtain
1 y —1 y
V2 1 o2 -1 — 2 12
lim i: lim 0 (z—&P+y = lim S (x =& +y =1,
{—+—00 — hl(—g) {——o0 —5_1 £——00 —5_1
1 1
| .
lim no = lim 0 1+t _ 1,
to—oo —In(—t) t——o0 —t~1
1 —Y
— _ 2 42
o ME=0) T8 @t
g¢oto0  —Iné E—+00 —¢-1
1 -1
i In(m — 6) (m—0) (1+1t?) 1
totoo —Int  totoo —¢4+-1
From the above assertions there follow (3.14),(3.15).
Let
u(z) = u(z,y).

Maximum Principle 3.1.1 If u € C*(R%) N C(R3 UR?) is a solution of (1.1)

and

O(1), r — 400, whenora € R!, b €] — 00,0, or a = 0,b = 0;
u =
o(1), 7 — 400, when or a € R!, b €]0,1[, or a # 0,0 =0,

then
sup |u(z)| = sup |u(zx,0)]. (3.18)
z€R3 UR! zeR?
Proof. Let b € [0,1] and € > 0 is less than the value of |u| at a certain point

(20,0). Let us choose so large R that the half-circle K contain the above point
and |u(z)| < € in RZ\Kg. Then

e u(z)| = max [u(2)] = maxfu(2)] = ax, [u(z, 0)| = max |u(z, 0)]. (3.19)
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Let now, b €] — 00, 0],

M :=supu(z,0).
Rl

Let us fix € > 0 and consider

0 0
U(z) = M +ee*?r7",  §:=arcctg L
)

By virtue of (3.11), U(z) satisfies equation (1.1) in R3. Evidently,

lim U(z) = +oo.

r——+00

Let us choose R so large that on the boundary of the half-circle K the difference
U(z) —u(z)
be nonnegative. We can it always achieve on the segment [— R, R| since

m, x <0,

— af),.|~b N
U(x,0) = M +ee®®|z|™” > M > u(zx,0), 9—{0’ v >0,

while on the half-circle Cr, in view of boundedness of u, by means of appropriate
choice of R we will have

U(z) > u(z).

Therefore, according to the strong extremum principle for the elliptic equations
(see e.g. [7], p.74) we conclude that at any point of Kg the function U(z) — u(z)
is nonnegative. Hence, since by fixed z and ¢ — 0 function U(z) — M, at any
point of the half-circle Kr we have

u(z) < M.

By virtue of the strong extremum principle, nonconstant function u(z) at
points of domain Kp cannot take its maximal value M. Therefore, we have
strong inequality

u(z) <M in Kpg. (3.20)
Since for any point z € R% we can choose a half-circle Kg containing z, the
equality (3.20) is valid in R?.
If

:= inf 0
m = inf u(zx,0),

then

—m = sﬂglp[—u(x, 0)]

and, according to the above proved, we get

2
—u(z) < —m when z € R%,

ie.,
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m < u(z) when z € R%. (3.21)
From (3.20), (3.21) we conclude

lu(2)] < max{|m|,|M|}, when z € R?.
But the last relation and relation (3.18) are equivalent. 0]

The case a = b = 0 is classical one (see, e.g., [24], p.83).

Let S be simply connected domain with the boundary 95 = ¢|J I, where ¢
is the Jordan open arc lying in R? with the ends ¢ := (£1,0), ¢, := (&,,0) and
I :=[£1,&,] is the segment of the axis R!.

Generalized Weighted Zaremba-Giraud Principle 3.1.2 Let function u €
C?*(S)N C(S) satisfy the inequality

By > 0(<0), b€]o,1],
and attains maximal positive (minimal negative) value at an inner point xq € I,

i.e.,
ue < (>) u(o,0).

Then
_ , - 00u(z) ,
_ 1yl b+j—-17 "\~) 2 o
xlgglo( 1)y By <0(>0), zeR%, j=1,...,1, leN,
provided,
ol
M-l e C(SU).
v € (SUI)

Proof. Let first, | = 1. Without loss of generality we assume that

u(zo,0) =1
is a maximal value. Evidently,
ou
lim y*— > 0. 3.22
T y'5 (3.22)
is excluded. Let
Ju
lim y*— = 0. 3.23
Jm 5, (3.23)

By change of variables

m—+2
n oz 2b m

the operator E(®" takes the form

2 ~ o~
E(a,b) _ 1-m/2 U
E—Y B,
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where
Eu:=n"tg +umy+ 5 (17777171&’ u(én) :==u <§a E) . (3.24)
2
O
According to the conditions of Principle 3.1.2 and (3.18), we obtain
~ N ou
Eu>0, u(zo,0) =1, lim  2- =0. (3.25)

€ —>(o0t) O
Let us consider the function (compare with [32], p.34)
eu(&,n)

~ )
eA — gell

v(&mn) =

where ;1 is the maximum of ordinates of points of the image ( of the arc (. Since

the point (9, 0) does not coincide with the ends of the arc ¢, by our assumption,

maxﬂﬁl—&, 0 <e=const < 1.

¢
Therefore,
1 —
P R A
¢ ed—ged eA  eA—c¢ (3.26)
eu(z,0) € € '
Ungeo) = —= < , v(x0,0) =

eA —¢
By virtue of the first relation of (3.25), taking into account (3.24),

eA —¢ edA —¢

+2 m 2eel cel
an’z tve — — Vp — —= > 0.
ed — gel eA — el

m m
n I/gg +V7777+

whence, bearing in mind the weak maximum principle for elliptic equations (see
[7], p.75) v attains a positive maximum on the boundary 05, i.e. by (3.26), at
point (zo,0).

On the other hand, in view of (3.25),

_ ov ) e ou g2el ~ g2
lim —_— = lim —— (Tt /= Uu :—2>0.
Em)—(20,0+) O (€m—(@0.0+) | g4 _ cen ON <6 i 56") <€ i 5)

But it contradicts with the fact that v attains its positive maximum at point
(20,0). Thus, along with (3.22) also (3.23) is excluded and remains only

3by deriving this inequality b = 0 is also admissible.
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The case of a negative minimum can be reduced to the previous case consid-
ering the function —u(z,y). So, the principle is proved in the case [ = 1.

Using Theorem 2.1.1, the validity of the principle for the arbitrary [ follows
from the following equalities

2u

0 -1 —1)7-1 O
lim yb—u = lim % = ( ) lim ybﬂ*l—q
z=z0 " QY b z—mo y b1 (b7 — 1) 2= oy’
U
(b,1 — 1) z=a0 oy’

since the last limit exists according to the corresponding condition of the principle
and (b,j —1):=b(b+1)---(b+j—2)>0for j=2,..,1.

Maximum Principle 3.1.3 Let b €]0,1[. If u € C*(S)NC (SU@S\;) (I* C

I, _7 is a finite set of first kind discontinuity points &; of function u((), ¢ € 99),
then
sup  [u(z)[ = sup |u(C)]. (3.27)
2€ SUOS\ T CedS\T

This equality is also valid for S = R2 under additional condition

lim u(z) =0, z€R?. (3.28)

|z]—o0

Proof. Let
M := sup u(().
ceas\I

Fix arbitrary positive € and consider the function

n ot
U(z)=M +¢ Z ea'arCthjpj*b’

j=1

where .
eI, ==& j=1n

U(z), by virtue of (3.11), satisfies equation (1.1), is greater than M and continuous
in SUOS\ I'; moreover, when z approaches £;, U(z) tends to +00. Circumscribe at
all the points &; semi-circles in R? with sufficiently small radius 6. Denote by $ 5
a domain which we obtain as an intersection of all the corresponding semi-discs
with the domain S. The difference U(z) — u(z) is nonnegative on the common
boundary of S and S 5. It is also nonnegative on the above semi-circles with the
radius ¢ for sufficiently small §4, since u(z) is bounded and values of U(z) are

unboundedly increasing on semi-circles by 6 — 0. Therefore, bearing in mind
the strong maximum principle (see, Maximum Principle 3.1.1), we conclude that

“If we had for points ¢; difference §; then we took = § := min{d,} the last minimum exists
J

since we have a finite number of points &;.
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at any point of § s and, hence, of S (since any point of S belongs to § s for
sufficiently small 0) the function U(z) — u(z) is nonnegative. But for a fixed z
and € — 0, U(z) — M. Then

u(z) <M

and according to the weak maximum principle,

u(z) < M.
If
m:= inf wu((),
¢ceas\I
then

—m = sup [~u(()]
CeAS\T

and accordng to the above-proved,

—u(z) < —m when z€S.

Hence,
u(z) >m when 2z € S.
Thus,
m<u(z) <M when z€S.
Finally,

lu(z)| < max{|m|,|M|}, when z € S,

which is equivalent to (3.27). So, we have proved Maximum Principle 3.1.3 for
the finite domain S.
Let us now consider the case of the half-plane R%. For arbitrary

g€ |0, sup |u(Q)],
CERWNT

in view of (3.28), we can find such a large R, that all

¢ € Kn,
where
Kp:={(z,y) : R : 2° +y* < R?}
and -
lu(z)| <& when z€R:\ Kg. (3.29)

On the other hand, using Maximum Principle 3.1.3 for the finite domain, we have

sup [u(z)| = sup [u(C)]. (3.30)
2€ Kp\I CEOKR\T
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From (3.29) and (3.30) there follows

sup  |u(z)| = sup |u(z)|= sup |u(()[= sup [u(()]
zeRiuRl\I* € Kp\I CEOKR\T CERNT

O
Maximum Principle 3.1.4 Let a = b = 0. If bounded u € C?*(S) () C(SU@S\;)

is a solution of equation (1.1) (which in this case becomes Laplace equation for
y # 0), then the relation (3.27) holds. The case S =R? is admissible as well.

Proof. For a finite S the proof of this principle there follows from the extremum
principle proved in M.A. Lavrentyev and B.V. Shabat [26] (see p.211, Theorem 5):

If in S bounded harmonic function u(z) on the boundary 9(.5) takes the piece-
wise continues values u(¢) with a finite number of the first kind discontinuity
points (i, k = 1, n, then inside S the values of u(z) are confined between minimal
and maximal values of u({) (one-sided values of u(() at points of discontinuity
(x, k = 1,n, are not considered).

In the case of R? it can be proved by means of the function

v=»M+¢cln [:E2+(y+1)2}é,

using the method developed by proof of Maximum Pinciple 3.1.3. ]

3.2 The weighted Dirichlet problem in the half-plane

Let in this section a and b be complex numbers. By y — 0+ as functions of y
solutions of equation (1.1), which have not isolated singularities on the straight
line y = 0, principally behave as solutions of the ordinary differential equation
(ODE)

g (y) + bl (y) = 0 (3.31)

It is easily seen that general solution of equation (3.31) has the form

( Ciy' ™+ Cy, when b#1;
u(y) =
Cilny+ Csy, when b=1,

where C; and (5 arbitrary complex constans. Therefore, the solutions for y — 0+
behave as follows:

(i) for Reb €] — o0, 1] all the solutions are modulo bounded;

(ii) for b = 1 among them there exist unbounded solutions, while all the
solutions multiplied by (Iny)~! are bounded:;

(iii) for Reb €]1, 400[ among them there exist unbounded solutions, while all
the solutions multiplied by 3°~! are bounded.

Bearing in mind the above assertions, set the following weighted Dirichlet
problem:
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Problem 3.2.1. InR?% find u € C*(R2), satisfying equation (1.1) and one from
the following boundary conditions:

lim u(z) = f(xy) when Reb €] —o0,1]; (3.32)
Z—rx0
lim (—Iny) ' u(z) = —f(zo) when b=1, (3.33)
lim y* " u(z) = f(zo) when Reb €]1, +oo], (3.34)

*
where z € ]Ri, rg € RY\ I, f is piecewise continuous, bounded, in general

complex-valued function defined on R!, ]* is a set of points of discontinuity of
function f.

Remark 3.2.2 Evidently, the corresponding to Problem 3.2.1 BVPs for ODE
(8.31) are explicitly solvable except for Reb = 1, Imb # 0. Also in the last case
the general solution

Cly—ilmb + 02 — Cl(elny)—ilmb + 02 _ Ole—ilmblny + 02
= Cylcos(Imblny) —isin(Imblny)] + Cy

is bounded, while its limit does not exist by y — 0+, since it is oscillating solution.
Therefore, it does not exist a solution taking prescribed value for y = 0. More
precisely, if we take Cy = 0, we arrive at the trivial, i.e., insignificant solution of
BVP, when the prescribed constant value at y — 0+ dtself will be solution.

Theorem 3.2.3 A solution of Problem 3.2.1 has the form

yl_b i ab b—2 ‘
A(a,b)_/ f(€)e"p2de, Reb €] =00, 1], Ala,b) #0 fsee(259));  (335)

1
1+em

[ et b1, (3.36)

A(a,;__b) / F(E)epbde, Reb €]1,00], Ala,2—b) #0 [see(2.59)], (3.37)

where for b =1 the function f should satisfy a condition ensuring convergence of
the integral (3.36), e.g., the condition

f(&) =0(&7°), & — oo, &=const >0.
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Proof. Function [see (3.10)]

yl b aepb 2 (338)

is a solution of equation (1.1) for complex constants a and b too.

Let us consider the integral (3.35). Since Reb < 1, it can be shown that the
integral (3.35), its derivatives of any order with respect to z and y are absolutely
and uniformly convergent in any bounded closed domain lying in R?.

Hence, the integral (3.35) represents a solution of equation (1.1) since the inte-

f(§)
A(a,b)

grand coincides with the solution (3.38) multiplied by After substitution

[see (3.16)] & = = + yt from (3.35) we obtain

1 -arc ctg (— z—
U(.%,y) = m / f(l' + yt)ea t8 t)<1 + tz)g 1dt

Whence,
M _ b MA(Rea,Reb)
)| < g [ @SN ) e = ,
|A(a, b)] [A(a,b)]
where
M = sup |£(6)] (3.39)
¢eR!
Evidently,

u(m,y)—f(xo)zﬁ / |f(z + yt) — f(x0)]e™ =801 4 #2)21a¢, (3.40)

here z( is a point of continuity of the function f.
Because of (3.39), we have

|f(z+yt) — flxo)| < 2M when z € RJ, z(,t € R.

Assume ¢ > 0 arbitrary small. Then, by virtue of uniform convergence of the
integral (3.40), with respect to z € R%, xy € R', there exists sufficiently large
R(e) > 1 such that

Reaarcctg( t) 1 t2 —71dt < <
|Aa b |/ L+ 3

(3.41)

Reaarcctg( t) 1 t2 Reb 1dt < <
|Aab |/ L+ 3
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Since the function f is continuous at the point xg, we can find such a d;(g, xg)
that

e |Aa,b)]
3 |A(Rea, Reb)|
Now if [t| < R, |z — xo| < d and 0 < y < J, where

|f(z+yt) — f(zo)] < = , when |r 4+ yt — xo| < 01.

01 0
"=~
we have
01 0
|z + yt — x| < |x—x0|+y|ty<5+5R<—+2RR o1,
i.e.,
5 |A(a,b)]|

[f(z +yt) — f(z0)] <

when [t| <R, |xt — x| <6, 0 <y <.

(3.42)
If we present the integral (3.35) as a sum of three integrals with integration limits
—00,—R; —R,+R; +R,+00, according to the inequalities (3.41) and (3.42),
we get

3 |A(Rea,Rebd)|

400
2e € ea-arcctg (— Reb_
e, y)=f (o)l <§+m/ efeaarects(-0(11.2) 5" “1gt = ¢, (3.43)

when |z —xo| < (e, 20), 0 <y <d(e, xp), i.e., the expression (3.35) satisfies BC
(3.32). O

Remark 3.2.4 If function f is uniformly continuous on R, then inequality (3.43)
will be fulfilled uniformly. Therefore, by z — xq the integral (3.35) tends to f(xq)
uniformly.

Remark 3.2.5 For a = 0, b = %5, m = const > 0 from (3.35) we obtain
the well-known result of 1. Vekua [34] for the Gellerstadt equation, i.e. for
homogeneous equation with the operator (3.24) with a = 0 on the left-hand side.

Remark 3.2.6 If f is a piecewise constant function with complex values ¢y, ca, ...,
cn correspondingly on intervals (—oo, 1), (T1,%2), ..., (Tn, +00), (7; < Tip1,1 =
1,....,n —1), then in view of (3.10),(3.12), from (3.35) we obtain (compare with
L. Vekua [34])

1 rd [d
wew) = g 1 [ e Eud+er [ ol -
+00

+...+cn+1/%ﬁ(m—f,y)d§ :{ﬁ{cﬁl(x—xl,y)

Tn

+eni1[A(a,b) — Qz — 20, y) +ch (z — 2k, y) — Q(x—xk_l,y)]}-
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Here we have taken into account (3.12) and (3.17), i.e

0

lim Q(z—¢&y) = /e Tsin~Prdr = 0,
E——o0
0

and

lim Q(zr —¢&,y) = /e‘”sin_deT = A(a,b).
E—+4o0
0

Let us now consider the integral (3.36). Evidently, it satisfies equation (1.1) and,
bearing in mind Remark 2.1.4, BC (3.33). Indeed,

1 ] 1 —+00 B —+00
Jim (hl ;) 15 oo / f(&)ep~"dg :ﬁgﬁo / F(©)[a(z—&)—yle® p~>de

_ 1 /f a:+yt)(at+1) a-arcctg (— t)(1+t2) th f(‘%.o),

C 14eom z—mo

since according to (2.54) and (2.53),
+o0o

/ er@ec® (0 (gt 4+ 1)(1 4 2)"2dt = ahy(a, —1) + A(a, —1)

—0o0
™

= (a* + DA(a,—1) = (a* + 1) /6“9 sinfdf = 1+ €™,

0

n aT 1
/6“9 sin 6df = €+
0

because of

a?+1"’

which is easily seen®
Finally, let Reb > 1. Introduce a new unknown function

U(z) =" u(2). (3.44)
5Indeed,
I = /6“0 sinf = é/sin Ode®® = sin fe™ ;r — é/eae cos 0db

0 0
Z + /6“9 sin 0d0]
0

aﬂ'l 1
e + I

a? a?’

:——/cosﬂdeae - 2[(:0596

- —iQ [(—ef”r 1)+ I} —

a
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By virtue of the correspondence principle (3.4) and (3.39), we see that the function
U(z) satisfies equation

E@) =0, b* =Re(2-b) < 1, (3.45)
and BC
lim U(z) = f(zg), z€R%, xg€ Rl\;.

Z—x0

After representation of a solution of the last BVP by means of the formula
(3.35), where ”b” should be replaced by "2 — b” and returning via equality (3.44)
to u(z) we get (3.37).

Remark 3.2.7 Let a,b € R'. Then
Ala,b) #0 (b < 1), A(a,2—0) #0(b>1)

If a,bER!, i.e., they are complex numbers, the expressions (3.35) and (3.37)
will have sense if and only if b + ia€Ny (see Theorem 2.2.4). If a € R', then
1+ € # 0 and the expression (3.36) has a sense. If a€R!, then the expression
(3.36) will have sense if and only if

a # (2k + 1)1,

when £ is an arbitrary integer.

3.3 The weighted Neumann type problem in the half-
plane

The limit as y — 0+ of the m-th order derivative of the general solution of
equation (3.31)

d"uly) _
dy™
(=1)™Cy(b—1,m)y*>"™ for b#1,0,—1,,2—m, whenm >1; (3.46)
(=)™ 1Cy(b—1,m)y™™ for b=1, whenm > 1;
0 for b=0,—1,,2 —m, whenm > 2,

does not give so complete information about the behaviour by y — 0+ of the
m-th order derivative

0™ u(z,y)
oy™
of the solution of equation (1.1) as we it had in the case of the behaviour by
y — 0+ of the solution u(zx,y) of equation (1.1).
As it will be shown below the behaviour of %(f;y) as y — 0+ depends not
only on values of b but also on the coefficient a and oddness and evenness of
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m. Therefore, in this sense (1.1) becomes a model equation for PDEs with order
degeneration. Nevertheless, some preliminary conclusions we are able to make
according to (3.46), all the m-th order derivatives for y — 0+ behave as follows:

(i) if b €] — 00,1 —m[, all become zero (under assumption of boundedness of
solutions at infinity all the derivatives are identically zero for 0 < y < +o0);

(ii) if b = 1 — m, all are constants (under assumption of boundedness of
solutions at infinity all the derivatives are identically zero for 0 <y < 400);

(iii) if b €]1 — m,+oo[ , b # 0,—1,...,2 — m, all are unbounded (under as-
sumption of boundedness of solutions at infinity all the derivatives are identically
zero for 0 < y < +00), provided b €] — oo, 1].

On the other hand all the m-th order derivatives multiplied by y remain
bounded, while for b= 0,—1,...,2 —m, m > 2 they are identically zero. Thus, if
b €]1 —m,+oo[ N |1,4+00[ = ]1, +o0o[ only one thing is clear that as the weight
of the m-th order derivative of the solution of equation (1.1) will serve y™ =1,
when y — 04.

In this section, by means of solutions of the form (3.10) and (3.11) we construct
solutions of equation (1.1) in RS, when on the boundary m-th order derivative of
the solution with the corresponding weight is prescribed. More general problems
for non-degenerate PDEs of the canonical form are studied by I. Vekua (see [35],
p. 113 and pp. 138-149, and also analogues problems in works of I. Vekua [33]
and N. Muskhelishvili [31], p. 260).

Let us consider the n-th order antiderivative of the function f(&)

3

_ ~\m—1 m—1
FmE) = / %f(T)dT+ch€k7 &.6 € R,
&o ' k=0

b+m—1

where

cr = const, m e N, fO&):= f(¢),
f is an integrable on &y, &[ function. We denote by ™ bounded functions

among functions fC™ and by f™ vanishing as |€] — 400 functions.
0

Let us introduce the following function classes:

C™(G) is a set of functions with continuous partial derivatives of order < m
in GCRP?;

C™(G) € C™(G) is a subset of bounded functions with bounded partial

derivatives;
C%@G) := C(G) is a set of continuous in G functions; .
C~™, m € N, is a set of continuous and bounded functions in R with f (_J),

j=1,...,m;
C~™ c ™, m €N, is a set of functions f with f=™;
0 * 0
C =D (Y is a set of continuous and bounded functions.

* * 0

T (Ym(y), G, ;), GCR?%, m € N, is a class of functions

u € C2G\C(G\TNR2),
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satisfying equation (1.1) in G and the following condition: bounded in neighbor-
hoods of points of a set Ic JG\R! of finite number of isolated points function

oy >§% € C((G\]) NRY)

where

R? ={(z,y): z € R}, 0 <y <e=const < 1},
(1 when (a,b) € iy m Uigm,
y~' when (a,b) € is,p,

Ym(y) = ¢ (yIn )Y when (a,b) € iy

(In i)(*l) when (a,b) € is,

[ ¢*™ ! when (a,b) € 192,m;

z‘Lm::{(a,b):be]—oo,l—m[/\a#o,mGNO\/a:QmGNg};

iom :={(a,b) : b€l —m,1 —m[,a=0, meN; V
bell—m,+ool, meNANa#0Va=0,b#—-2n>1-—m, neN

(e b#0,-2 0 =2(m = [T] = 1) for meN\{1})};
i37m:{(a,b):b:1—m/\a%O,mGNOVon,mENg};
w={(ab):a=0, b=—m, meN}
{( b):a=0, be]—-oo,—m[, me N}

{( b):a=0,b=-2n>1-m, neN’ meN

(z’.e., b=0,-2,...—2(m — [%] —1) for meN\{1}))};

N:={1,2,..}, NN:=NU{0}, Ny :={1,3,..}, Ny :={2,4,...}, N} := N, U {0},

A is conjunction, V is disjunction. [ may be an empty set as well.
We introduce the following classes of functions as well:

" (vm(y), G) =T" (vm(y), G, D) ;

T (Ym(y)) == T™ (v (y), RY) ;

T (Ym(y)) € T (vm(y)), m € Ng, n € N, be a class of functions u(z, y) with
properties u € C' (R2 |JR!) and u(z,0) € " (RY);

T (Ym(v)) C T (vm(y)), n € N, be a class of functions u(z,y) with

0



George V. Jaiani. Even Order Sngular Elliptic Equations 73

lim u(x,0) = 0;

|| =400

{6" (Ym(v)) CT5" (Vm(y)) CT™ (Vm(y)) -

Let

C~™ when (a,b) € iy, V (igm, m > 0);

*

C~™ ! when (a,b) € igm V ism;
C~! when (a,b) € i3;

f(§) e go and f(€) = O(J€]7*), |€] = 400, a>1—0b,

for b €] — o0, 1] when (a,b) € igm;

C7,0<j<m, and g’f"”(é) = O(|¢[7),

\ |§| — +OO? fOI' 073 > k? O S k S m When (a,b) & /Llﬁﬂm,

Let
0 when (a,b) € iy m V izm,
am(a,b) ;=< 1 when (a,b) € igm Vism,
—m when (a,b) € g, V igm.

Main Proposition. The BVP for elliptic EPD equation (1.1) with the boundary
condition (BC)

) o™u
Jim () 5 g

f(z)

is always solvable in T)7, . (v (y)). If (a,b) € 410 Visg Vizg Viem, it is uniquely
solvable and if (a,b) € i1 V igm V ism Vism, m > 0, it is solvable up to an
additive constant under some restrictions at infinity [e.g., boundedness if (a,b) €
i5.m VigmVitm, b<0,andu=O0(y'"?), 2?+y? = +oo,if (a,b) € igm, b> 2]

In 77" . (¥m(y)) the solution is unique. The solutions have been constructed in
0

the explicit form (see G. Jaiani [14], [15], [16], [20] and below).
In order to prove the main proposition we consider particular BVPs composing
the general BVP formulated in Main Proposition.

Problem 3.3.1. Let (a,b) € i1,,. Findu € T7(1) satisfying BC

lim O"u(z)

Z—T0o aym

= f(w0), 2€RZ, x5 €R, (3.47)
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where f € C™™ and the condition at infinity

u =

{ O(1),r — +o00, when either a € R', b €] —00,0[, ora =0, b= 0;

(3.48)
o(1),r — +o00, when either a € R', b €]0,1[, ora # 0, b = 0.

Problem 3.3.2. Let a = 0, b €] —co,—m[, m € Ny. Findu € T/, (y ')
satisfying BC

.1 0™u(z)
ZILI?O ! o f(zo), z € RY, (x0) € R, (3.49)
where f € C~™ 1 and the condition at infinity.
u=0(1), r — 40 (3.50)
-1
Problem 3.3.3. Let a = 0, b = —m, m € N;. Find v € 1)}, <<y1ni> )
satisfying BC
1\ ‘o
Zlij;lo (yln;) 8;”(1Z> = —f(m), z € R, (z0) € R, (3.51)
where f € O™ ! and the condition at infinity (3.50).
Problem 3.3.4. Let (a,b) € ia,,. Find u € T (y**™1) satisfying BC
, 1 0MU(z
Zli>11x1()yl’+ ITi) = f(w0), 2 €RZ, 29 € R, (3.52)

where f € C° [when b €] — 0o, 1|, we assume

f(&) =0(¢[™), &l = +oo, a>1-b,

or when b €]0,1[, we assume f € C~'] and the corresponding condition from the
following ones:

u=0 (y""), r— +oo, (3.53)
when either a € RY, b €2, +oo[, ora =10, b=2;

u=o(y""), r— +oo, (3.54)
when either a € RY, b €|1,2[, ora #0, b=2;

u=0 (r_l), Uy, Uy = O (7“_2), r — +00,

(3.55)
and
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+o0
lim / U - uydr =0
y—0+
if
. —1 - 1
ylg& (Iny) " u=0, zeR, (3.56)
when a € RY, b=1;
u=0 (RIUR"), u=o(1), r = +oo, (3.57)

when a € RY, b €0, 1[;

u = (}) +O0(r ), u, = (})x +0(r ), u, = (})y +0(r?), r— 400, (3.58)

where
) +o0
I = Mo_l(a,b,O,m)/f(f)e“ep_bdﬁ,
and
+oo
. b ) _
ylg(r)ler / u - uydr =0
if
"
: b+m—1 — 1
y£%1+y oy 0, z € R, (3.59)

when a € R, b €] — o0, 0].

1
Problem 3.3.5. Let (a,b) € i3,,. Findu e T € ((hl%) ) satisfying BC

_ 1\ ! omu(z) 9 1
lim ln; o —f(xo), z € RY, (29) € R, (3.60)

where f € C~™ for m > 0, while for m = 0 either f € C~' or f is a continuous

function,

FE©=0(E). lg] = +o0, a >0, (3.61)

and the conditions (3.48) and (3.55), (3.56) correspondingly for m > 0 and
m = 0.

Problem 3.3.6. Leta =0, b=0, m € N. Findu e T™(1) with the bounded
m-th order derivative with respect to y, satisfying BC (3.47), where

FE©)=0(lg™), &l = +o0, a>m,

is a continuous function.
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Problem 3.3.7. Leta = 0, b = —2n > 1 —m, where n € N°, m € N\{1,2}
(i.e. b €]l —m,+oo[N{=2,—4,...,=2(m—[2] = 1)}, m € N\{1,2,3}) or
a=0,b=1—m, meN\1. Find u € T"(1) satisfying BC (3.47), where

feg”, j=0m  fEEME) = O(|€]7), € = 400, ap >k, k=0,m. (3.62)
0

Theorem 3.3.8 The solutions of Problems 3.3.1-3.3.6 have, correspondingly, the
following forms

+0o0
ui(z,y) = A a,b)y'™° / {(_m)(f)eaapb_Qdf, An(a,b) # 0 [see (2.59)]; (3.63)

us(z,y) = AL, (0,0)y" " / FETRE)P S, A (0,8) # 0 [see (2.59)]5(3.64)

us(@,y) = (m+2) 7 AL (0, —m — 2)y™ " / FEm©pTm g, (3.65)

Ay 1(0,—m — 2) #£ 0 [see (2.59)];

+oo
us(z,y) = M~ (a,b,m) / F(€)e® p b, (3.66)

M (a,b,m) # 0 [see the second part of Corollary 2.2.5];

+o0
us(2,y) = d,;' (a)y™ / FEm©e oS, di #0 [see (260)], (3.67)

where

d,(a) = (m+ DA, (a,—m — 1)+ aly1(a,—m — 1), m >0,
TSl 14+ e, m =0,

dm(a) #0 [see (2.60)];

1 o 3] m—1
u6<x,y>=m_/ £(){ Z <2l+ +(=1) )

2

()P g ggR([E1 )



George V. Jaiani. Even Order Sngular Elliptic Equations 77

y [%]*1 m— 1
+arctg—2— 1+ (—1)™
arch_§ 2 (21+ +(—1) )

m—1
1—(—1)™

w(—1)[E] e =G 5)2([%]—0—1} A+ Qulx)y', (3.68)

=0

where

1 1

OQm_i1(z) = Cra+ Cy,

—2 2

Qm-s(z) = CLa+ Cy,

Qo) = ~(1+ D(I+2) [ = OQualtide + o+ Ca 1= 0,..om =3

o

I
Co=const, a=1,2,1=0,...,m—1; (3.69)

() = e Chats, )

k=0m a_,=0,a,=0(<j), 4;=1,l=0,n—1, j =0,n.

Solutions of the problems 3.3.1, 3.3.5 for m = 0, and Problem 2.3.4 are unique.
Solutions of the problems 3.3.1, 3.3.5 for m > 0, and 3.3.2, 3.3.3 are deter-
mined up to an additive constant.
A solution of Problem 3.3.6 is determined up to the additive

Z Ql(x)yla

1=0
which contains 2m arbitrary constants

l
Ccu l:(),m—l, O42172'
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If f € C~™ in the cases of the problems 3.3.1, 3.3.5 for m > 0 and if f € ™!
0 0

in the cases of the problems 3.3.2, 3.3.3, then solutions of the above-mentioned
problems are unique in the classes

T0) Tﬁf(@i)) T (1) 7). fmw((ylng)_l),

respectively. In this cases in the expressions (3.63)-(3.65) and (3.67) the stars
should be replaced by the zeroes.

Bounded and vanishing at infinity solutions of Problem 3.3.6 do not exist, in
general. In the cases of their existence bounded solutions are determined up to an
additive constant, while vanishing at infinity solutions are determined uniquely.

The solution of Problem 3.3.7 is unique under the condition

U = O(T_l), Uy, Uy = O(T_2), r — 400,

and
+oo
. b .
ylirorﬁry / uydr =0
if om
lim 22 —0, zeR.
y—0+ 8ym

It is easily seen by means of Green’s formula.

Remark 3.3.9 The cases m =0, a,b € R, and m = 1, a € R, b €]0, +oo| are
contained in the works of G. Jaiani [9], [10], [11]. Later the cases m = 0,1 were
considered by O. Marichev [27], [28] in an another way, where the question of
uniqueness of solutions are not considered for all the values of coefficients. The
case of arbitrary m € N° was studied by G. Jaiani [14], [15], [16].

Remark 3.3.10 If f is a bounded piece-wise continuous function, omitting the
stars in formulas (3.63)-(3.65), (3.67) and in the cases of the problems 3.3.3 and
3.83.5 assuming

FEmE) = 0 (It lel = +oo, a >0, fCY e ”

*

and

FEmE) =0 (I ) €l = +oo, a>0, 7V e C”,

respectively, then the expressions (3.63)-(3.67), (3.70) satisfy equation (1.1) in RS
and, correspondingly, BCs (3.47), (3.49), (3.51), (3.52), (3.60), (3.47), (3.47)
at points of continuity of f even if a and b are complex numbers and Re b meet
conditions demanded from the real constant b7 (except of the problems 3.3.3,
3.8.5 where the constant b we always assume real). Of course we exclude those
complex values of a and b when the denominators of (3.63), (5.64), (3.66), (3.67)
become zero (see Section 2.2, the first parts of Theorem 2.2.4 and Corollary 2.2.5).

Remark 3.3.11 Because of (3.3), (3.4) we may reduce the following problem
3.8.12 to the problems 2.5.1-2.5.6.
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Problem 3.3.12. Find u(z,y) € C*(R%) satisfying equation (1.1) in R% and
one of the following BCs:

) om b—lu . .
Jlar?o(’)yy—m = f(xo) if (a,2—0) € i1m;
m, b—1
lim y_lﬁy—mu = f(xg) if a=0,0b€]2+m,+o0], me Ny;
y—To 83/
1 -1 om m—+1
lim (yln—) M:—f(llf()) if a=0,b=24+m, me Ny;
y—zo Yy oym
] B om b—lu ‘ -
ylggoyum bayy—m = f(zo) if (a,2—0b) € ippm;
‘ 1\ ' omymu , .
Jgg)(mg) L ) i (0.2 0) € s
.0yl ,
lim oy =f(xg) if a=0,b=2+m, meN,
Y—xo

where f is a piecewise continuous function bounded on R, zo € R,

Additional conditions on f along with the conditions for uniqueness of solu-
tions may be easily reformulated.

According to the correspondence principle (3.3), (3.4), from the solutions
(3.63)-(3.67) of the problems 3.3.1-3.3.7, respectively, we immediatly get repre-
sentation of the solution of Problem 3.3.12 under the corresponding BC stated
in Problem 3.3.12. To this end in the expressions (3.63)-(3.67) ”"b” should be
replaced by 72 — b” and the expressions obtained should be multiplied by y*~°.

Let us modify the problems 3.3.3 and 3.3.5 (see G. Jaiani [15], pp. 48-53):
Problem 3.3.3* Let a =0, b = —m, m € N;. Find

wer ((ymi)‘j

satisfying BC (3.51), where f is a continuous function

FE&) =0(¢[7), ] = +o0, @ >m+1, (3.711)

and
2 » 2 » 2) ,
u= [—i—O(r ), Uy = ]x+0(r ), Uy = Iy+O(r ), r — +00,

where

@ +o00

P20 —mm+2) [ p(@mae

and

+oo
. o . L,_,0Mmu 1
ylg&y / u-uydr =0 if ylg&(yln;) - 0, z € R".

—00
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Problem 3.3.5% Let (a,b) € i3,,. Find

()

satisfying BC (3.60), where f is a continuous function,

&) =0(¢™), [§] = +oo, a>m, (3.72)
and
(3) (3) (3)
u= 7 +O(r‘1), Uy = [z—l—O(r_Q), Uy = Iy+0(r_2), r — +00,
here
+oo
3) 1 9 m—1
= M0, 1= m14+m) [ f(€)epmde,
and
“+o0o
lim y*™ / u-uy,der =0, if lim (lny)_lﬂ =0, z € R
y—0+ Y ’ y—0+ Oym ’ '

Theorem 3.3.13 Unique solutions of the problems 3.3.3% and 3.3.5* have the
forms

*

+o0o
o= M0, o+ 2) [ f©mdE (373)

M(0,—m,m+2) # 0, [see second part of Corollary 2.2.5]

and

“+oo
us = M Y(a,1 —m,1+m) / f(&)e pmtde, (3.74)

M(a,1 —m,1+m)#0, [see second part of Corollary 2.2.5],

respectively.

Remark 3.3.14 Pairs of solutions (3.65) and (3.73), (3.67) and (3.74) of equa-
tion (1.1) satisfy the same BCs (3.51) and (3.60). But if m > 0, at infinity and
by y — 0+ they (but not their m-th order derivatives with respect to y) behave
differently. The analogues remark should also be made with respect to solutions

(3.68) and (5.69) by a =0, b=0.

Remark 3.3.15 If in the solution (3.73) (or (3.74)) the function f is piece-wise
smooth, then (3.73) ((3.74)) satisfies equation (1.1) in R and BC (3.51) ((5.60))
at points of continuity of f even if a is a complex number.
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Remark 3.3.16 The solutions (3.66), (3.68), (3.73), (3.74) are unbounded, in
general, at infinity. E.g., if f(§) > 0 is a finite function and b < 0, then because
of (3.176) (see below),

+
ws = MY (a, b, m) / F(€)e ptde

o

> r "M a,bym)(1 —&)”

r—+00

+

/f(g)ea9d§ — 4+ oo0.
—

If m =1, then (5.68) is bounded, provided

+/Oof(f)df =0.

k
Remark 3.3.17 Denote by (u) a solution of Problem 3.3.4, when the k-th order
derivative is prescribed in BC.

Wie,y) = (10 +k—1,) " (@,y), kjeN,

if Reb>1—k, since

oku (—1) Oy
lim "1 —— = lim y"H*H77 o 2 € RY, 29 € R
ZLIIley 8yk (b + k _ 1’ J) Zi)rfb’loy 8yk+] bl z +7 1'0

Let b=1 and u be a solution in the case of BC (8.33), then

(=D

ma(l‘,y) = u(z,y), m €N,

since .
. 1\ (=)™ .. 0" 2 1
zli{?() (&) u = mzll)ﬂxloy ay—m, A R+, X € R".
Solution of Problem 3.3.1 Let u be a solution of Problem 3.3.1, then since
b<1l—m<1andue C(RYUR), u will also be a solution of Problem 3.2.1
which takes values u(z,0) at the boundary. According to Theorem 3.2.3 it can
be represented as

+o0o
1-b
) = ps [ ute ety ie (3.75)

Because of u(z,0) € C™(R!) after substitution £ = z + yt in (3.75) we may

differentiate the obtained integral m-times with respect to y under the integral
sign and

J"u(x, Ay (a,b) 0™ ,0

0u(ry)  Aw(a,) 0"u(ro,0)

1
ivzo Oy Ala,b) Oz %0 € R
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Whence, by virtue of (3.47), we have

Ay (a, b) 0™u(xo, 0)

= f(l‘o), o € ]Rl,

A(a,b)  Oxm™
ie.,
0™u(z,0)  A(a,b) 1
dm . Ay T ER
Finally,

u(z,0) = %{(_m)@).

Substituting the last into (3.75) we arrive at (3.63).

Now, it is directly easily seen that (3.63) belongs to the class 77(1) and
satisfies BC (3.47).
Solution of Problem 3.3.2 According to the conditions of Problem 3.3.2,

b<—-m=1-—(m+1).

Under this condition Problem 3.3.1 is solvable for m + 1 instead of m, i.e., there

exists u € T/ (1) satisfying BC

8m+1 ) L
ZILI?OW:JC(I‘()), ZERJr, IQGR .
Therefore,
amu ) am-i—l ) )
le}rgoy oy ZHBOW’ zeRL, o € R, (3.76)
provided
lim &% 0, 2 € R2, 2o € R, (3.77)
Jim e = 0 = € B 7o -

But u as the solution of Problem 3.3.1 admits the representation (3.64) which it
follows from (3.63), replacing there m by m + 1. Because of oddness of m (3.64)
meets the condition (3.77). Indeed®,

i amuQ - (-1 m b _q
zl—mo oy™ Zl_> Am+1 O7b)/>J: (x—i—yt)t (1 +t )2 dt

6Since, after substituting & = x + yt,

om

1-b (=m—1) b 2
zlLrgO oy™ m+1 (0,b)y /f df}

_ lim 2~ —— AL o,b)/f“m*l)(x+yt)(1+t2)%fldt

zZ—xo a *



George V. Jaiani. Even Order Sngular Elliptic Equations 83

“+o00
= A;14(0,0)f ) (a) / (14 2)5 e = 0.
So, by virtue of (3.76), up € T, (1) satisfies BC (3.49).

Solution of Problem 3.3.4 Let first b > 1 and u be a solution of Problem 3.3.4.
Then, in view of Theorem 2.1.1, taking into account (3.52), we have

. D™ ppma9Mu (1)
1 — 1 +m =
Jimy™ e = lim b—1,m)”  oym  (b—1,m)

f (o) - (3.78)

Hence, u as a solution of Problem 3.2.1 in the case of BC (3.34), where f(zo)
should be replaced by f={= f (o), which by virtue of (2.47) for k = 0 and (3.37),

where (&)

(1(7:?:1) f (&), admits the representation

uz(b—lT(n_)j\aQ—b /f (©)e?p~tde = M (a,b,m) /f (€)e?? p0de,

i.e., the representation (3.66). Now, if we take into account the integral represen-
tation of M(a,b,m) and (2.36), (2.39), we directly verify, that under the condi-
tions of Problem 3.3.4 with respect to f, a, and b, (3.66) belongs to 7™ (y™ 1)
and satisfies BC (3.52).

Solution of Problem 3.3.5* Since according to the conditions of Problem 3.3.5*
b =1—m, evidently,

b>-m=1—(m+1)

and Problem 3.3.4, where b = 1 —m is solvable for m + 1, instead of m i.e., exists
u € T™ ! (y) such that

am—l—l

— 2 1
zlinzlo W—f(xo), Z€R+, .I'OGR

By virtue of (3.66), where "m” and ”b” should be replaced by "m+1” and "1—m”,
respectively, it as a solution of Problem 3.3.4, allows the representation

o) = M a1 —m ) [ p(©ep e

where f should fulfill the condition (3.72).
On the other hand

m —1 Am m+1
lim (ln ) O lim[—lny} M:—ylim(9 u:—f(xo).
Y

zZ—x0 &y z—x0 oy™ z— 8ym+1

Thus, (3.74) belongs to Tm((lni)’l) and meets BC (3.60).
Solution of Problem 3.3.5 Let u be a solution of Problem 3.3.5. Then, since
b=1-—m <1 when m € Nand u € C(R% UR'), the function u will also be a
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solution of Problem 3.2.1 with the boundary values u(z,0). Therefore, according
to Theorem 3.2.3, it admits the representation (3.35), where b = 1 — m. Since
u(z,0) € C"™(RY) (i.e.,

amu(l',()) 1
ox™ < g
and the integral
+008 0
m _m+1
/ u(§, 0) prerarets(-0 (1 4 ¢2) 75 gy (3.79)
oEm
—00 E=x+yt

is uniformly convergent in G C R2), substituting £ = = + yt in (3.75) with
b = 1 — m, differentiating m-times with respect to y and making stated below
transformations, bearing in mind (2.54) we obtain

. 1\ o
lim | In— _—
2= Y oy™

+0o0
N\ [ omul(E,0) _mtl
=A"Y(a,1 —m)lim (ln —) / — tmerarcte(—t) (1 4 42)7 2 gt
( >z%x0 Y agm ( )
> E=ax+tyt
N\ o, 0)
= A—l(a’l — m)ZILH;O (ln ;) / Tﬂ;(é_ — x)meaep_m_ldé
Foru(e.)
— . mu’ Y m al —m—
= A7 a =) tim (<) [ T )"l — ) = (m o+ ]
+;°a° .
m _m+3
= —A"Ya,1—m)lim % (m+ 1+ at)tme ™8 (1 4 2)7 2 dt
> E=ax+tyt
_ (m+1)A,(a,—m — 1) + aNpia(a, —m — 1) 0™u (20,0) .
B Ala,1—m) orm 0
since, as we assumed u is the solution of the problem under consideration. Whence,
0"Mu (10,0) A(a,1—m) £ (z0)
dz™  (m+ DAn(a,—m — 1) 4+ alpyi(a, —m —1)7 7
i.e.,
A(a,1—
u(z,0) = @1 —m) Fm (@)

(m+ DA, (a,—m — 1) + al,11(a, —m — 1)

Substituting the last expression into (3.75), we get (3.67) for m > 0. Now, it is

easily seen that (3.67) for m > 0 belongs to 77 ((In i)_l) and fulfills BC (3.60).
The case m = 0 we have considered in Section 3.2.

Solution of Problem 3.3.3* Since according to the conditions of Problem 3.3.3*

b= —m, evidently, b = —m = 1—(m+1) and Problem 3.3.5* is solvable when the

order of the derivative in BC (3.60) is m+ 1. Hence, exists u € T ((y In i)_1>

which fulfills BC
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1 am—H

lim (y In — )

2 1
= R".
Jim (yin )" o = Fla), € R, e

By virtue of (3.74), it as solution of Problem 3.3.5* admits the representation

+00
%@MZM*&—mm+%/f@W%,

where
f(&) =0(E™), €] = 400, a>m+1.
But on the other hand”

) 1 8m . 8m+1
jgg)(lny) oy ,kg;(lny) oy
provided
am
ZIE?OWU_O zE]Ri, zo € RL.

The constructed solution, in view of (2.39), satisfies the last condition. Indeed,

oM
lim
Z—T0 ay
m+1
=M" (0 —m,m + 2) lim yZBk —m, m;0) /f:c+yt)(1+t2> Bk—1 gy
Z—rxo —

— 00

zZ—T0

= —M~Y0,—m, m + 2)Bna —m,m;0) hmy fx+yt 1+ zdt
2

IM”@—mm+®3umme@y/f®pl
2 2—T0

400
i —y [ f(&)pd¢
= M71(07 —m,m + 2)BmT+1(—m, m;0) lim =

Z—T0 —y_2

:M_I(O,—m,m—l—Q)Bm;( m,m;0) 11my/fx+yt)(1+t2) 2dt = 0,

zZ—XT0

since

142 5+-1q| < | o2y Bke
y/f(“yt)( +) 72T _ygé%ﬁf(ﬁ)!/( +13)7E dt — 0,

7(y1n%)/ =—Iny—1~—Inyasy— 0+.
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when 1 < k < 21 and analogously for k = 1

v [ Fas ey Sl < madr©) [0y Fa o

y—0-+

Thus, U3 € T,Zl((y In i)_1> and satisfies BC (3.51). Note that 8

1
% [%}qu for m € Nj.

Solution of Problem 3.3.3 Let u be a solution of Problem 3.3.3. Since b =
—m < 1 and v € C(RZ JR'), u will also be a solution of Problem 2.2.1 which
takes values u(x,0) on the boundary y = 0. Therefore, according to Theorem

3.2.3 and formula (3.35), where b = —m, it admits the representation
+o0
yr 0)p~"%d 3.80
U(%y)—m/U@, )p £ (3.80)

Because of u(z,0) € ¢™T(R!), taking into account the assertions (3.79) for

m + 1, we have

o0 m—+1
. / %Tﬁo)k ™ (L 12) T dt
li | =—A"Y0 lim -
lim (y ny) oy (0,m) Jim I

m-+2 9 ooam+1u(§,0) il
A(0,m) Zli{?o / ogm+1 (E—x)"p d¢

—00

B A1(0, —=m — 2) 0™ u(z,0)
—(m+2) A0, —m) prTE e —f(z0), (3.81)

since we assumed that u is a solution of the problem under consideration. By
calculations (3.81) we took into account

9"a 9"u(€,0) m
3:%%‘3;%/ T "0

—0o0

“+o00

8mu(x0,0) 9y _m+2
s [y "=
since
+o00o
/tm(1+t2)_mz+2dt:0

8Indeed, m = 2j+1 for j € N, then 252 = 2282 — j 1, [m] 41 = [ZH] 41 = [j+1]+1 =
j+1
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because of oddness of m. Thus,

o™ u(z,0) A0, —m)
G A0 —m =2y @)
u(z,0) = AQ, —m) ).

(m +2)Apn1(0, —m — 2)%
Substituting the last expression into (3.80) we get (3.65). Now, it is easily seen
that (3.65) belongs to T, ((y In zl/)_1> and satisfies BC (3.51).

Solution of Problem 3.3.6 Let

o™ u
V= 8@;_’”
then
Av=0, z€RZ,
and

v(x,0) = f(z), v €R.
According to (3.35) for a = b = 0 we obtain

+oo
o) =2 [ f@pe 2 e R,

ie.,
+oo
OMu(z,y) Y dg
oym ﬂ/ F) (z =& +y*
Whence,

m—1

=t [s@ [ T e Y st 5

(m—-1)! (x =82+ —

2(k—j) 12j 2k 0

/ﬂ—Z(—l)’”ja—Jr(—l)ka—ln( P+77), 0 ke N D ()
2+ 2 g T ’

j=1

0,

9In particular cases, for k = 0, 1,2, 3 this formula is correct (see Dwight [4] Formulas 121.1,
123.1, 125.1, 127.1). Assuming correctness for k, we prove correctness for k + 1, indeed,

/72k+3d7' B / T2k+1(7'2 +a?)dr /72’“+1a2d7'

a2 + 72 - a2+ 12 a2 4+ 72
72k+2 ) k . _a2(k—=35) 725 a2k
= _ _ J- -1 kil 2 2
2% + 2 [Jz_:l( ) 2 ) 5 e+ 7)
k+1 2(k+1—5) 1 2j N 2(k+1)

+ (=1)* 1aT In(a? + 7).
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2k dr
/ a? + 2

2(k—j—1) 2j+1

27 +1

k+g+1a (—1)k+1g%—27

M»

]21
-

+(=1)*a* ' arctan —,1° k € N,
a

and choosing the functions Q(z) in such a way that (3.82) be a harmonic function
in R%, after some transformations and simplifications we get (3.68).
Solution of Problem 3.3.7 First of all let us note that the representation (3.70)
is true for

a=0,b=-2n>1-m,ne N meN\{1}.

From (3.62) for k = m it follows that

FA)=FO =0 (IEm), €] = 400, am >m > 1,

e., function f(€) is absolutely integrable on R!. Assume that for all y > 0

functions 5
Ju(x S
Fur) j—tm,
0yJ

are absolutely integrable with respect to x on the interval | — oo, +00[, uniformly
with respect to y, moreover,

u,u, — 0 as |x| — 400,

and u € C? (Ri) ; in order to apply the Fourier transformation after multiplying

ixt

b and then integrating with respect to x, from
Y NeT g g p
Y (Ugy + Uyy) — 20Uy, =0 (3.83)
and ()
Tu(x,y
|, (z) (3.84)
we get

FUty) ., oU(LY) s _

10Tn particular cases, for k = 1,2, 3, 4 this formula is correct (see Dwaight [4] Formulas 122.1,
124.1, 126.1, 128.1). Assuming correctness for k, we prove correctness for k + 1, indeed,

/T2k+2d’7' B / 7'%(7'2 + a?)dr /T%a2d7’
a2+7-2 - &2+72 a2+72

72k+1 k-1 2(k—1— g)ngﬂ

B I L S
j=1
k 2(k—5) 72 +1 0
Z 1)kt a T (—1)*+2a% 7 4 (- 1)k+1a2k+1arctan£, Z()EO

j=1 !
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and amiy
mU(t
(G| py, (3.56)
dy y=0
respectively, where
+o00o
1 .
Ult,y) = — | u(x,y)e™dz, 3.87
() = = [ uta) (387
1
F(t) = — r)e™dx. 3.88
0=—= [ 1@ (389
It is well-known that the solution of (3.85) has the form
L ON" (V(ty)
Ult,y) =y <y 1—) (— , 3.89
(t.9) =) (=5 (3.59)
where V(t,y) is a solution of
PV (t,y) 2
— 2 —tV(t =0.
Iy (t,y)
The general solution of the last equation looks like
| Cu(t)erth + Cy(t)e v ¢ £ 0;
Let
Ol(t) = 0, Cl = 0, CQ = 02(0) (391)

It is easily seen that

"/ o=yl
(ylag) (e ) —@nt) e y“‘zak —ylt|)" (3.92)
y

Taking into account (3.90)-(3.92), from (3.89) we get

Ult,y) = Cyt ey”Zak —|t])* (3.93)

which is a solution of (3.85). Now, we choose Cy(t) in order to satisfy BC (3.86)
as follows:

i U Y)
y—0+  Qy™

k
=Y S () D i ey
= Co(t) Yy ( ’Z ) kK (—|)™ = F(t).
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Therefore, if ¢t # 0, then

ey - FO ™ 500
11— 2) 1)

since easily can be verified, that

Z&k(f)k!:Zkamf!k)!:H[m—@j—m%o.

From the condition (3.62) it follows that

—0o0

/xkf(x)dxzo, kE=0,m-—1.

+oo

Hence, after differentiation of (3.88) k-times, k& = 0,m — 1, with respect to t
under integral sign and substituting t = 0, we obtain

F®(0 ¥ f(z)de =0, k=0,m — 1.
r/

Now, assuming ™ f(z) absolutely integrable on R!, we arrive at

C5(0) = kiid0) 7 (3.95)

(~1ymmt [T fm = (2 = 1)

since after applying the L’hopital rool m-times, we have
F(t Fm)
lim ( )m = (0) .
t—0 (—|t) (—1)™m!

Substituting (3.94) (where for t = 0 as the value of Cy(t) we take the limit of
(3.93) as t — 0, i.e., (3.95)) into (3.93), we get

Ult,y) = — F@) ()™ e Z (—ylt])*
H [m —(2j —1)]

Jj=

Whence, assuming that u(x,y) and f(z) meet the Dirichlet conditions with re-
spect to x, by virtue of (3.87) and (3.88), we obtain

u(z,y) it
1 ,
=—= F(©)ertag | (—[t)™ e~
2 11 [m—<2j—1>]_£ l (3.96)

n

Y ay, (—ylt)" e at.

i
o



George V. Jaiani. Even Order Sngular Elliptic Equations 91

Since, because of (3.62),

+oo +oo
/ F(E)etde = (—ity™ / FomE) e e,
— 00 —0o0 ‘

(3.96) we can rewrite in the form (3.70).

Now, we can directly verify that (3.70) satisfies equation (3.83) and BC (3.47),
provided (3.62) is fulfilled.

Since for y > 0 we can differentiate (3.70) under integral sign with respect to
x and y as much as desired, it is easily seen that (3.70) satisfies (3.83). To this
and we need to use the following equalities

2n — k)ag + (k+1)(2n — k)ay, =0, n €N, k=0,n— 1,

which are easy to prove.

In order to prove that (3.70) satisfies equation (3.83) we need to make sub-
stitution ¢ = x + yt in the integral, then for y > 0 differentiate with respect
to y under integral sign which is allowed, by virtue of (3.62). Then come back
to the variable £ and by the calculation of the limit use m-times the L’hopital
rule. Finally, we get f(z) as the limit. In this connection we apply the following
equalitieS‘

k41
k+1 Re | ._
Zak k—i—l)Z( 5 ){Im}lk O+l

mln{m k+0} o=
Y ( 77 > (=) (—k — 6,1)

[T”{’l}:fl
X Z B, (2(k+1),m—1,0,1) Apiiss1 (0, =2k +m —1 — k+1))
:{ ((_1?,31 }m!ﬂH[m—(Qj—l)], m>2n—1,neN me { gg },

- 2 o 1
+oo Jn_l
i, [ @€ a7 (1T

=0

k+1 Re min{vy,k+d} N
k—6+1 k—o+1 l k+0—1
;{In} -y Y (] ) k- ay
+

0
X Y Bo(2(k+1),7—1,0,y) p 2 *dg = 0, m € { 11:% }
1

The constructed solution is unique under the conditions
u=0 (r’l) , Uy, Uy = O (7"’2) , 7 — 400,

and
—+o00

lim y / uuydr = 0,

y—0+

—0o0
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provided
im &% 0, 7 e R
y—0+ 8ym

It can be proved by applying Green’s formula.

In order to finish the proof of the Theorems 3.3.8 and 3.3.13 let us investigate
the question of uniqueness of solutions.

According to Maximum Principle 3.1.1, Problem 3.3.1 is uniquely solvable
in the case m = 0, provided the conditions (3.48) are fulfilled. Therefore, as
it follows from the method of construction of the solution of Problem 3.3.1 in
the case m € N, under the conditions (3.48) it is uniquely determined by means
of f(_m). But f(_m) itself is determined up to an additive constant, i.e., uq is

determined up to an additive constant

—+00

Y al b—2 o A(CLJ)) .
— / Ce”p’2d¢ = —Am(a,b)c = const .

If we are looking for solutions in 7" (1), then it is uniquely determined by
0
éfm). But féfm) itself is uniquely determined. Whence, the constructed solution
is unique.
In the same manner we study the question of uniqueness for Problem 3.3.5,
with m € N, Problem 3.3.2, and Problem 3.3.3.
In the case of Problem 3.3.5 by m = 0, we use the formula (3.2) by b =1 for
the difference of two possible solutions. Taking into account (3.55) and tending

R to +00, we obtain

+o0
//y(ui + ul)dxdy = =0 / wuydz, (3.97)
y>d —0o0

0 0
< CRR'R™2Rdp = CR™'dp,

ou
yu—dg
v r=R

?||_. < CRRdg = CR™dp,

0
where ¢ € [0, 7], C' = const. Now, tending J to 0, by virtue of (3.56) and (3.97),
we get

//y(ui + ul)dzdy = 0. (3.98)
R

Hence u = const = 0, since u is vanishing at infinity. In order to show uniquely
solvability of Problem 3.3.4 we consider separately the cases b €|1,+o0[, b = 1,
b €]0,1[, b €] — o0, 0].

In the first case (b > 1) if m = 0, according to the correspondence principle
(3.7), the uniqueness conditions (3.53) and (3.54) follow from the uniqueness
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conditions of Problem 3.3.1 by m = 0. If m € N, then since, by virtue of (3.78),

each solution of Problem 3.3.4, when m € N, at the same time is a solution of

Problem 3.3.1, by m = 0, it is unique under conditions (3.53) and (3.54) as well.
If b=1, in view of

. AN, . m—1 1m0 2 1
Zlg]grclo <ln§> u_—zli}rgo(—l) (IL,m—1)"y oy zeR:, 2R,
a solution of problem under consideration will be a solution of Problem 3.3.5 by
m = 0. Therefore, it will be unique under conditions (3.55), (3.56).
Let b €]0,1[. For the difference v of two possible solutions, vanishing at
infinity, on a semicircle Cr of a sufficiently big radius R(e) we have

lv(z,y)| <e, (3.99)

where € > 0 is small as much as desired.
According to Generalized Weighted Zaremba-Giraud Principle, since

zli_}rgo yb+m1% =0, z€R2, zy€]— R, +R|,
the function v cannot attain maximal positive and minimal negative values on the
interval | — R, +R[€ R!. On the other hand, according to the strong extremum
principle, the function v cannot attain extremal values in a half-disk K. So,
(3.99) holds on Kp. But v is independent of £, hence, v(z,y) =0 when z € R2.

Let b €)oo, 0[. Like of the case of Problem 3.3.5, when m = 0, since for the

difference v of two possible we have the following estimates (see (3.58), (3.59))

0 0
< C10°R™'R2Rdp < CSR2dp,

ov
b
—d
y Uav N

|yb_1v2dg‘ < Cl5b_1R_2Rdg < CSR_ldg, Ch, 03 = const ,

first we receive (3.97) and then (3.98), where y and ¢ should be to the power b.
Therefore, we conclude v = 0 when z € Ri.

The solution of Problem 3.3.6 under assumption of boundedness of % is
determined up to the additive

with (3.69) containing 2m arbitrary constants. Considering the difference of two
possible solutions it will have the form (3.100) satisfying the conditions

Qr(r) =0, k=1,m—1,
and Qo(z) will be bounded function. But it is possible only if

l 0
Co=0, a=12 I=Tm—1, ¢, =0.

0
Hence, it remains only an arbitrary constant C's and the solution will be deter-
mined up to this additive constant.
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3.4 Behavior of the solution (and of its derivatives) of the
general boundary value problem on the boundary

The behavior of the solutions and their derivatives of the arbitrary order of the
problems 3.3.1-3.3.6 is characterized by the following limits (see [20]):
lim apul - = Ay(a.b)
z—wo QY= A, (a,b)

fOTM (o), fecr™, zeR2, xR (3.101)

when (a,b) € i1, b €] — 00,1 —j[, j,p € N°. Moreover, if a = 0 and j € Ny,
then

. _ 87’u1 A 1 1(0 b)
1 1 4 — 7+ 3
wowe? Oyidzr=i A (0,D)

fem ) (z0), f e P (3.102)

when b < —j, and

N o +2)A (0, =2 —
lim (y In —) o (7 + 2)A541(0, j>f(pfm+1)<x0)’ feopmtt
Z—I0 y -

ayjaxpij Am(07 _j) *
(3.103)
when b = —j.
oPuy 0 if 57 >0,
1 - = a —m : .
Hmy Oyl Qap— { A/tn((&l,)z)y)f #=) (o) if j =0, (3.104)
when (a,b) € iy, b€ [1 — j,+o0], j,p € N0, fe P ™.
) OPus A;(0,0) . .
1 ‘ — I\ (p—m—1) p—m—1 1
#m30 0y 0zP=7 Ay (0, b){ (z0), [ € g ’ (3.105)

when b €] — oo, —m[N] — 00,1 — j[. j,p € N°, a = 0, m € Ny,j € N;. Moreover,
if 7 € Ny, then

1 8pu2 Aj+1(0, b)

lim y ' ———— = (p=m) p-m 3.106

zi)I:rEloy 8y38$p*3 Am+1(0, b){ ($0)a f € g ) ( )
when b < —j,

. 1\=1 0Puy (U +2)A41(0, =2 = j) -

e YY) Dgidar Am1(0, =) ! el (3.107)

when b = —j.
- OPuy 0 if 5 >0,
] g = = —m— e .
Hm y Oy Oap—i { Aﬁf?’fi)),w{ ®=m=D () i j =0, (3.108)

when b e [1—j,—m], j,peN, a=0, meN,, fecr ™"
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OPus A;(0,—m) o o
1 g J ’ (P m 1) p—m—1 1
zimo Oy 0xP=i  Apyi(0,—2 — m)‘f (w0), f€ g , (3.109)

when j <1+4+m, j,p € N’ a =0, b= —m, m € N;. Moreover, if j € Ny, then

: — apui’) A 1(0 —m) - _
! = i+ (p—m) P=m (3110
Y 0w = A A0, 2=yl b ST (B110)

when j < m, and

1\ 8pu3 . .
; - — _ ¢=J) p—Jj
ZILI?O (yln y) ayjaxp_j N {‘ (:L‘O), f < g ’ (3111)
when j =m
P
hmya—u—o fecrm Y (3.112)

2o " Oyl QaxP~I

when y > 1+m, 5,p € N\{1}, a=0,b=—m, m € Ny.

. i 3pu4 M((lb]) . .
lim " = L ) P 3.113
Zl’rgoy 8y38x?’_1 M(a, b, m)‘f (:CO)a f € g ) ( )

when (a,b) € iz, Niaj, p € NO

g
lim _Ous A7 a)Aj(a, 1 —m) fP™) (x), fecP™, (3.114)

z—wo QY QxP~I mn *

when (a,b) € i3m, m >0, j < m, p € N°. Moreover, if a =0 and j € Ny, then

oP
lim g~ 2 = 1 (0)A;(0,1 — m) fP D (o), fe P, (3.115)

z—10 Oyl Qxr—I m "

when j <m — 1, and

. 1\ -1 8”u5
lim (7)o
—(m + 1)d,, (0) A (0, =1 —m) fP7" V) (ag), f € cP™H, (3.116)

*

when j =m — 1.

lim 3’

OPus 0 if m>0, j>m,
2—x0 8yjaxp—j o

%ﬁ%#?](@ifm=0j>& (3.117)

when (a,b) € izm, p €N, f e CP
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—1 )P
lim (1n 1) PUs _ _ 0 (), fe O, (3.118)

Z2—x0 Yy &’L’P *

when m = 0 (in this case us = u3), p € NO.

, 8pu6 ,
N i S p—j
ZILI?O R 0, fe g : (3.119)
when j,p € N\{1}, m € N, j > m.
; g — flp—m) p—m
S Sy (@), fECTT (8-120)
when m,p € N.
. o ap?*ig M(O —m ]) o o
lim o/ = 2 (p=5) ccr 3.121
v Qi D= M(0,—m, 2 —I—m)‘f (%), f g o )

when j, p € N\{1}, m € Ny, 2j — 2[%] >1+m.

. . OPug M(a,1 —m,j) B B
1 J=m - - = — ’ ? (p—J) p—7 3.122
Zg?o Y 0yl OxP=I M(O,1—m,1+ m){ (o), f € g ) ( )

when j,p € N and either a # 0, m € N°, j > mor a =0, m € N3, 2j —2[1] > m.

The equalities (3.101) - (3.103), (3.105) - (3.107), (3.109) - (3.111), (3.113) -
(3.116), (3.118), (3.121), (3.122) we prove by means of the technique used in the
sections 3.2 and 3.3. The proof of the equalities (3.104), (3.108), (3.112), (3.117)
is somewhat different. E.g., we prove (3.104) when j > 0:

lim ¢/ 0y
o Dyidar—i
+o0
A iyl bead p—2
= A;l(a,b) lim f(p_]_m)(x+yt)yj+1 Y 6" P dt
z2—x0 « @yj E=a+yt
oo

- o . i\ —bead p—2

= A Y(a, b) FP=I7™ () / %df — 0,
since
+oo
o koad p=2] 4
8mp—8yq[y (& — x)*e™p"?] de¢

+o0
_ ot 1—b—k k_ab b—2 _ OPTaA(a,b) _
= 9urdy [?/ /(f —x)"e”p dﬁ] = T oway 0, (3.123)

—0o0
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by z € R2, Reb<1—k, p,q,k € N°, p* +¢* #0.

Let us prove (3.119) and (3.120). (3.68) we can rewrite in the form (3.82),
where Qg (z) will be certain functions, taking into account the conditions (3.69).
After differentiation of (3.82) m-times with respect to y we get

lim yj_m—apu6 = lim ¢/™™ O us
z—0 Oyl OxP=I 2=z QyI—mQzP—Ii Jy™

) or—3  Hi—-m
= Jim O / f(&)p2de

2= OxP=I Qyi—m v

j—m
:limyj mo /fp ]) 8 yp T_IP e

2—T0 8y3 m

I VRN oy
{ (o) T Qyi—m

—00

dg

0, if j > m, because of (3.123)
_ fora=0,b=0,p=0,qg=45—m, k=0,
fO (), i G =m

*

Thus, we have proved (3.119) and (3.120).

3.5 Boundary value problems in the finite domain

Let S be simply connected domain with the boundary S = ¢ U I consisting of
the open smooth arcs lying in RZ with the ends ¢ = (&,0), ¢, = (£,0) and
the segment I (I :=]¢1,&,[). Throughout the section ¢ := (&,7) = € +1in € IS,
z:=(r,y) =x+1iy € S. A denotes the maximal ordinate of { € <.

Let f be a continuous function on 0S. We consider the following BVPs (see
[16], pp.25-30 and [22]).

Problem 3.5.1. Let b €] — oo, 1[. Find the function u € T°(1,S) satisfying BC

u(¢) = f(¢), ¢€0s.

Problem 3.5.2. Let b= 1. The arc s is orthogonally rest on the x-axis with its
small linear ends. The function f(§) := f(&,0) satisfies the Holder condition at
the left & and the right &, ends of the segment I and finite limits

lim (mf)f(g), %#1, (=¢+ines (3.124)

n—0+ n

exist along <. Find the function u € TO((ln %)*1, S) satisfying BC

lim (m %) u(z) = £(0), % £1,2€8, ¢€dS. (3.125)
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Problem 3.5.3. Let b €]1,+0o[. Find the function u € T°(y*~1,S) satisfying
BC
lim y*'u(z) = f(¢), z€ S, ¢€aS.

z—(
Problem 3.5.4. Let b =1 and the arc ¢ meet the hypotheses of Problem 3.5.2.
Find the function u € T0<((In %)_1>,S> satisfying BCs

u(¢) = f(¢), ¢€x,

Aey -1 _
lim (m —) u(z) = p(€), z€8, (£,0)el,
z—E Yy
where the function f is continuous on ¢; the function ¢ is continuous on I,
vanishes at the ends &, &, of the segment I and meets the Hélder condition at

these points.

Problem 3.5.5. Let b €]0,1[. The arc s has the continuous curvature and meets
the hypotheses of Problem 3.5.2,

la T2(3) { T(b) _(1_b)§F(b+2k+1)r2(k;+%)} L

2r  T(b) | I'2(b+3) —~ T2k +1)T2(5 + k)

Find the function u € T°(1,S) N T™(y**™~1,S) satisfying BCs

u(C) = f(¢), C€q, (3.126)

hr%yb-i-m—l%iz) —0(6), 2€8, (£,0)el meN, (3.127)
z—

where the function f is continuous on S, while the function ¢ is continuous on I,

moreover ¢ may have at the ends of the segment I singularities of the order less
than 1 —b.

Theorem 3.5.6 The problems 3.5.1-3.5.5 are uniquely solvable.

Proof. In the case of Problem 3.5.1 Theorem 3.5.6 follows from the theorem
proved for the more general equation in G. Jaiani [23] (see also Section 3.9).

According to the correspondence principle (3.4), we reduce Problem 3.5.3 to
Problem 3.5.1.

In the cases of the problems 3.5.2 and 3.5.4 we prove Theorem 3.5.6 in much
the same way. More precisely, these two BVPs, actually, coincide. Therefore, we
restrict ourselves to examination of Problem 3.5.2.

By virtue of (3.124) and (3.125), we extend continuously the function f on
the entire x-axis, assuming f equal to zero outside the segment 1.

In view of Theorem 3.3.8 (see the formula (3.67) for m = 0, i.e., (3.36)), the
function

én
(z) = (14 ™) / F(€)e ptde
&1
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is a solution of Problem 3.3.5 for m = 0.
Consider the following difference

0(z) = u(z) —w(2). (3.128)

Let u(z) be a solution of Problem 3.5.2, then o(z) will be a solution of (1.1)
satisfying BCs

5(¢) = In %f@) — @) =), Cex (3.120)
iigé(lﬂ %) 5(2) =0, (£0)€l. (3.130)

Now, we prove existence of finite limits along ¢

lim w(¢), (€¢, i=1,n.

(=&
Let for clearness ( — &;. Then, because of orthogonality of the linear ends of ¢
to the z-axis,

1i ~ 1 1 a7r 11 aarg(C T) ld
i 0(Q) =l @(6n) = (1) i / fr ¢~ 7| dr
§=¢€1 §=¢€1 &

én
+(1+ e”)_lem/f(T)Kl —7|7Yr|, ¢(eg, &< £ <&,

In the last expression the first integral is uniformly convergent with respect to
n € [0,4] if § is as much small that the point ¢ belongs to the linear ends of ¢
orthogonal to z-axis (i.e. £ = &) and ¢ belongs to such a neighborhood of the
point &1, where f(£) meets the Holder condition. Indeed, in this case, because of
f(&) =0 [see (3.130)], the integrand

Fr)er Dl = )2 7 < e (7)) o - 7l
= e If(r) = f@l 6 — 717 < Colr =&, 7 €ledl, me 0.0]

where Cy = const and p €]0,1] is the Holder exponent. Therefore, exists inte-
grable majorant. Thus,

lim @(¢) = (14 ™) e’

)& — 7|7 < +o0, (€.
(=G

@\m,
Py

Similarly, we prove

&n

tim @(Q) = (1+ ) e [ frl, — 7l ldr < 40, G
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If we assume these limit values as the values of the function w at points & and
€., and take into account (3.124), then defined by the equality (3.128) function 1
we can consider as the continuous on ¢ function. Consequently, we can extend ¢
continuously on S. After that, using the Wiener method (see, e.g., [1], p. 189),
we construct the bounded solution of ¥ satisfying equation (1.1) and BC (3.127).
Because of boundedness of © BC (3.129) will be fulfilled as well. Now, evidently,
from the equality (3.128) we find the solution u of Problem 3.5.2. So, we have
proved the existence of the solution of Problem 3.5.2.

Let u be the difference of two possible solutions of Problem 3.5.2, then the
function

= (ln %)Z (3.131)

will be the solution of the equation

2
YAl + ail, + (1 - ln—A_e)ay —0 (3.132)

Yy
satisfying BC
u(¢)=0, ¢€0S

But the weak extremum principle is valid for equation (3.132), hence
i(z) =0, z€5,

i.e., by virtue of (3.131),
u(z) =0, ze€S8,

which proves uniqueness of the solution of Problem 3.5.2 and, therefore, of The-
orem 3.5.6 in the case of Problem 3.5.2 is proved.

In the case of Problem 3.5.5, when m = 1, unique solvability is shown in
V. Evsin [5]. For m > 1 the uniqueness of the solution immidiatly follows from the
generalized Zaremba-Giraud principle proved in Section 3.1, while the existence
of the solution we prove just as in [5] (for the case a = 0 see also G. Jaiani
[22]) for the case m = 1, taking into account that the existence of the m-th order

derivative gZ—q}f inside of RZ. It follows from the Picard theorem (see, e.g., I. Vekua
[35], p. 39, and also I. Vekua [36]). O

Remark 3.5.7 If there exist solutions of equation (1.1) satisfying BCs of the
Problems 3.5.2 and 3.5.4, respectively, when < is the Jordan arc, f and o are the
continuous functions, then these solutions are unique.

Proof. Proof is based on consideration of equation (3.132) similarly to the above
mentioned proof of uniqueness of the solution of Problem 3.5.2. 0

Remark 3.5.8 Let b € [1,4+00], < be the Jordan arc, f and ¢ be the continuous
functions. If there ezists a solution of equation (1.1) satisfying BCs of Problem
3.5.5, then it is unique.
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Proof. If b > 1, for the difference u of two possible solutions we have

1" 0™u
1- b—1 —_ l ( _ptm—1=2_ 7 = 0
oo T (b—1,m) Y ay™

On the other hand, u(¢) =0, ¢ €, i.e.,

Thus
lim y*tu(z) = 0,
z—(

and the question we have reduced to the uniqueness of the solution of Problem
3.5.3.
If b=1, then

) Ae\ 1 _ (-nm™ L 0mu
yli}(r]l+ <1n?> v ylg(l)lJr (I,m — 1)y oym 0

and the question we have reduced to the uniqueness of the solution of Problem
3.5.2. ]

3.6 Boundary value problems with discontinuous data.
Behaviour of the solutions at points of discontinuity
of boundary data

Let f be piece-wise continuous function on 95, 7= U{&) & eI, k=1,n, be
k=1

(+) =)
a set of its points of discontinuity of the first kind, f (&) and f (&) be limits
of f when ( € 85’\; tends to &, in the negative and positive, correspondingly,
(+) =)
directions of the circuit of the domain S. Let ¥ (&,) €]0,7] and ¥ (§,) €]0, 7]

be the angles between the z-axis and the smooth Jordan arc ¢, correspondingly,
at the endpoints &, and & of the segment I (see [17], [19] and [16], pp. 31-35).

Problem 3.6.1. Let b €] — oo, 1[. Find the function u € T°(1, S, }), satisfying
BC

limu(z) = f(C), z€ S, ¢e€dS\I.

z—(
Problem 3.6.2. Letb = 1. Find the function u € T° <(1n %)71, S, }) , satisfying
BC

o (In %y>_1u(z) — Q) z€S, Ceas\]. (3.133)

z—(
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Problem 3.6.3. ! Let b €]1,+oo[. Find the function u € T°(y*~1, S, }), satis-
fying BC

limy" (=) = (), €5, Ce AS\I.

Theorem 3.6.4 There exists such a solution of Problem 3.6.1 which permits the
representation

)
(llt)(z) =Ui(2) + i / T sin~’ T dr (3.134)
0

(_
") T
ap(b) = — /a‘” sin~’rdr, a,(b) = — /a‘” sin™’ 7 dr,
0 (+)
)

Ui(z) € T°(1,8) is the solution of Problem 3.5.1 in the case of the following
considered on the boundary continuous function

arg(¢—&x)
~ h o
FO=Y aké“b) / e sin"’ 7 dr, ¢ € 98S. (3.135)
k=1 0

By approaching the point z € S to the point of discontinuity ({x,0) of the func-

1
tion f along the different ways lying in S, the solution (u)(z) tends to any values

- +
between (f)(fk) and (f)(fk), depending on the way of approaching characterised by
the angle between the tangent to the way (curve) at this point and z-axis.
If either a € R', b €]0,1[ or a = 0, b = 0, the solution of Problem 3.6.1 i.e.,
the representation (3.134) is unique.
If either a € RY, b €] — 00,0[ or a # 0 b = 0, the solution of Problem 3.6.1
is unique in the class of functions having the same limits of indeterminacy as

z— & € 7’ (compare with K. Miranda [29], p. 108, Chapter 1V, Section 29).

Theorem 3.6.5 Under the hypotheses of Problem 3.5.2 concerning the arc ¢'2
and considered on the boundary continuous function (3.137) (see below), there
exists the solution of Problem 3.6.2 which permits the representation

arg(z—&k)

" h
(Z)(z) = Uy(z) + Z 5_]1: e sin~! 7 dr, (3.136)
k=1

WP

"' The problems 3.6.1-3.6.3 when the boundary data have the first type discontinuity points
on ¢ is to be investigated.

(£) (%)
12Theorem 3.6.5 when ¢ # 5 remains valid, provided Problem 2.5.2 is solvable for ¢ # 7.
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where
By = —(1+e™), k=20 =1,

<) )
= (e*? " cos ¢ (&) — 1)‘(—) = -1
v (&1)=%

a(+) ) am
) = (—e*” (&) cos (€n) — ™)
¥ (gn):%

_ am
(+) = —€,
P =

Bn

WP

~1
Usy(z) € T° ((ln %) ,S) is the solution of Problem 3.5.2 in the case of the

prescribed on the boundary continuous function

arg(z—¢)

- hk 3 A@ -t ar . —1
f<<>—;@$§§&<lng) / ¢sin"'rdr, (€8S, (3.137)

[NE]

By approaching the point z € S to the points of discontinuity (§,0) of the
12
function f along the different ways lying in S, the function (ln %) l(u)(z) tends

- +
to any value between (f (&) and (f)(gk), depending on the way of approaching
characterised by the angle between the tangent to the way (curve) at this point
and x-axis.
The solution of Problem 3.6.2 is unique in the class of functions having the

same limits of indeterminacy with the weight <ln %) as z — & € ;

Theorem 3.6.6 There exists the solution of Problem 3.6.3 which permits the
representation

arg(z—Cx)
3 a h
(u)(z) =y U (2) + 0 Wk_b) / " sin®? 7 dr, (3.138)
k=1 )

where y*~*Us(z) € T°(y*~1,S) is the solution of Problem 3.5.3 in the case of
prescribed on the boundary continuous function

arg(z—Cx)
- hk ar _:. . b—2
() ;ak(Z—b) 0/ e sin” “rdr, (€0S.

By approaching the point z € S to the points of discontinuity (§,0) of the
3
function [ along the different ways lying in S, the function yb_l(u)(z) tends to

—~ +
any value between (f)(gk) and (f)(fk), depending on the way of approaching char-
acterised by the angle between the tangent to the way (curve) at this point and
T-ATLS.
If either a € RY, b €]1,2] or a =0, b = 2, the solution of Problem 3.6.3, i.e.,
the representation (3.138), is unique.



104 Lecture Notes of TICMI, vol. 24, 2023

If either a € R, b €]2, +o00[ or a # 0 b = 2, the solution of Problem 3.6.3 is
unique in the class of functions having the same limits of indeterminacy with the

weight y'=° as 2 — &, € .
Proof of Theorem 3.6.4 In view of (3.9) the function

arg(z—£)

W(z) = ) / T sin b 7 dr, (3.139)

is a solution of (1.1). It is bounded and continuous in S\{(&,0)}. Moreover,

(2, 0) = (3.140)

™

hy, / .y D, —
e’TsinT Tdr = A(a,b) = —hy, =€ (&,&), k=2,n,
Oék<b) / O{k(b) ( ) k (51 gk)

Oa xe(glwfn% k:]-an_]-

If z — & along the way whose tangent at the point & makes with the z-axis an
angle ¢ (Clearly, at the points &, k = 2,n — 1, the angle ¢ € [0, 7], at the point

=) (+)
&1 the angle p € [0, 90}, and the point &, the angle ¢ € [90 ,71'[), then (3.139)

tends to the limit .

h
y / e" sin"® 7 dr,
a(b)

0
By crossing the point & in negative direction along the curve 95, the function

1(};1((), by virtue of (3.140), has the jump

0— (—hg) =hg, when k=2n—1;

-)
®

0— i /e‘” sin’7dr = hy, when k=1,
a(b)
0
and
+)
h ®w s
= [/e‘” sin =’ 7 dr — /e“T sin®rdr| = h,, when k=n.
an(b)
0 0

Hence, the function (3.135) remains continuous by crossing each point & since
from the function f(¢) which has the jump hy, by crossing & we subtract the sum
of the continuous function

S0 (3.141)



George V. Jaiani. Even Order Sngular Elliptic Equations 105

and the function %)k(g) having the same jump hy which has f({) at point &.
Thus, the function U;(2) as the solution of Problem 3.5.1, when on the boundary
the continuous function (3.135) is prescribed, exists and is unique. Consequently,
(3.134) tends to f(¢) as z — ¢ # &, is bounded and satisfies equation (1.1)

in S. Let us analyse its behaviour as z — & € j’ Let z — & along the way
whose tangent at the point £ makes with the x-axis the angle ¢. Then from the

1
expression (3.134) it follows that along the above-mentioned way (u)(C ) tends to

%)w@k) = U1(&) + a,il(kb) /e‘” sin’ 7 dr, (3.142)
0

where Uy (&) is the limit of the sum Uy (z) and (3.141) which does not depend on
the way of approaching z to &.. In particular, by approaching & along the curve
0S5 in the negative direction of going around the domain we get

n ~ (
Fleo) = Tilge) + Wule, (3.143)

where

(+)

(1) 03
uk(gk)z h‘” / at ;. —b d k
e sin""rdr, k=n.
0
d

an(b)

Substituting the expression of U;(&) determined from (3.143) into (3.142) we

obtain

e sinlrdr, k=1,n—1;

(+)
Wa6) = &)+

e sinlrdr, k=n.

(+)
\ ¥

The right-hand part of the last equality is the continuous function of ¢ on the
(=), ()

JN

(+) (-
and is taking at their ends values f (&) and f (& ). Therefore, according to the
second Bolzano-Cauchy theorem (see [6], p. 171), it takes all the values between

segments [0, 7], [O, ,7r] for k =2,n—1, k =1, and k = n, respectively,

" _
(f)(fk) and (f)(/fk) on the above segments, depending on the angle .

If a € R' and b €]0, 1], the uniqueness of the representation (3.134) follows
from the maximum principle 3.1.3.

If a = b = 0 the uniqueness of the representation (3.134) is proved in [26] (see
p. 212).

Let either a € R! and b €] —o00,0[ or a # 0, b = 0. If we consider the difference
of two possible solutions of Problem 3.6.1 with the same limits of indeterminacy
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as z — & € [, it is easily seen that this difference on the entire boundary except
the points & € I, where the limits along any way are zero, since both the possible
solutions have the same limits for the same ¢. Taking zero as values of the above

*
difference at the points & € I, we get the solution of equation (1.1) which vanishes
on the boundary and is continuous on .S. Then, according to the weak extremum
principle, the above difference of two possible solutions equals 0. 0

Proof of Theorem 3.6.5 The function

arg(z—¢)

h
=k " sin~' 7 dr, (3.144)

ug(z) = E

INIE]

represents the solution of equation (1.1) in S.
The function

(1n %)1(121)k(z) (3.145)

is bounded and continuous everywhere in S\{(&,0)}. Indeed, its continuity on
SJgs is clear. On the set I\{&} (3.145) will become continuous, assuming for
its values there the limits

" A ) arg (z—&x)
5_k ligﬁlg (ln _e) / e sin ! rdr
ke 2> k Yy
2
hy, . are(s— hi [ eo™, €< &
_ a-arg(s—&) ey , K
5, Z_l)lgr;léke cos arg(z — &) B { 1 e 4 (3.146)

Using Theorem 2.1.1, it is easy to check (3.146).
If 2 — &, along the way whose tangent at the point & makes with the z-axis
an angle ¢, then according to Remark 2.1.5 the function (3.145) tends to

h
— £ cos g, (3.147)
B
which is bounded with respect to ¢ (hence, (3.145) is bounded). By crossing the
points & along 05 in the negative direction of going around the domain S, by
virtue of (3.146), the function (3.145) has the jump

h -
ﬁ—k(—l—e‘”) = hy if k=2,n—1;
k

h (5% (=) (=)
6—1(—1+e“wc0890):h1 if k=1, because of 4,0:%;
1

hn (+) (+) ) (+)
5_(_ e’ ¥ cos ¢ —e““) =h, if k=mn, becauseof ¢ = g
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Hence, the function (3.137) remains continuous by crossing each point &, since
from the function f(¢) which has the jump hy, by crossing the point & we subtract
the sum of the continuous function

(1n %)1 zn: W0 (3.148)

j=1
Gk

and the function (3.145) having the same jump hy. Thus, by virtue of the hy-
potheses of the theorem 3.6.5 concerning ¢ and the function (3.137), there ex-
ists the function Us(z). So, taking into account the properties of the functions

(3.144), (3.145), we conclude that the expression (3.136) meets the BC (3.133)
as z — £ # & and belongs to the class TO((ln %)_1, S,}). Let us analyse the
behaviour of the function (3.145) as z — &, € } Let z — &, along the way whose

tangent at the point &, makes with the z-axis an angle ¢. According to (3.136),
(3.147), the function

(ln %>_1%)(z)

will tend to the limit

ol = Dalee) + e cosee (3.149)
k

where Uy(&) is the limit of the sum of the function (In %)71U2(z) and (3.148)
which is independent of the way of approaching of z to the point &. In particular,
approaching to the point &, along the curve 95 in the negative direction, we obtain

(+)

() - (2)
f (&) = Ua(&k) + (&),
where
” he T
@) X
u (&) = h, & ()
——e?% cos p =0, k=n.
B
So, (3.149) we rewrite in the form
h a
(2) (+) E(l—e¢cos<p), k=1,,n—1;
u (&) = f (&) + I
——e"% cos p, k=n.
ko

]

Next, we argue similarly to the proof of Theorem 3.6.4. Going over to the proof
of the uniqueness, we consider the difference u of two possible solutions and verify
that on the entire boundary 05 the function
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v = (ln%>_lu

vanishes. But it satisfies equation (3.132) in S. So that, by virtue of the well-
known weak extremum principle for the second order elliptic equations v = 0 in
S, whence u =01in S.

Proof of Theorem 3.6.6 after introducing the knew unknown function v =

y*~'u, we reduce to Theorem 3.6.5, according to the correspondence principle

(3.7). O

Remark 3.6.7 The theorems 3.6.4-5.6.6 remain valid for R2 if for the uniqueness
of the solutions, we assume in addition at infinity either (3.48); or

v =0(1), r— 4o,
when either a € RY, b €]2, 400 ora =0, b = 2;
b1, _
vy u=o(l), r— 400,

when either a € RY, b €]1,2[, ora # 0, b= 2; and fulfilment of (3.55) with (3.56)
when a € RY, b =1, respectively.

In these cases (3.134), (3.136), (3.138) coincide with (3.35)-(3.87), respec-
tively.

let us prove the following lemma in advance.

Lemma 3.6.8 The following equalities hold:

+oo arg(§—&x)

A (a, b)y'™? / [ / e sin~t 7 dr|e® pt2de

—00 0
arg(§—&x)
= / eTsint rdr, be]—oo,1]; (3.150)
0
+00 arg(z—¢k)
(1+e) ' pv. R. / [ lim (Iny )™ / e sintrdr|e®ptde
Z=E#Ek
00 z
arg(z—¢x)
= e sin ! 7 dr, (3.151)

(ME]

where k = 2,n — 1 and the generalized principle value of the integral is defined by
the equality
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*

+o0 R(R)
Y
—o0 -R
here R
R =z +ycot§(d), 5:arccotw+ : (3.152)
Y

and the function 3(5) is given implicitly by the equality

us Jus

/ e sin~! rdr = / e sin~! 7 dr (3.153)
5 5
Proof. As ] |
_ _ , 6 €] — 0, gk )
arg(€ gk) - { 0, §€]£k,+00[7
then
+oo  arg(§—E&k) £
A a, b)yl_b / [ / e sin~? TdT] e pP72de = 170 / e P2
e 2 J

whence, after substitution £ = x — y cot 7 in the right-hand side, we get (3.150).
It will be observed that the equality (3.150) immediately follows from there,
that
arg(z—£k)
e sinbrdr, b<1,
0

is such a solution of equation (1.1) which on the boundary y = 0 takes piece-wise

constant values
arg(§—Ex

)
at o5 —b
/ e’ sin”rdr.
0

But such a solution we can respresent by the formula (3.35) which in our case
coincides with the right-hand side of the equality (3.150).
Before passing to derivation of the equality (3.151), let us clarify nature of the

functions § = 3(5) and R = ]*%(R) defined by the equalities (3.153) and (3.152),
respectively.

From the second equality of (3.152) it is obvious that 6 = 0 by R = +o00. If
we consider sufficiently big values of R, namely, R > —x, for the fixed x,y, then
d € [0, 3]. Theright-hand side of (3.153) continuously and strongly monotonically
increases (since the integrand is strongly positive) assuming all the values from
0 to 400, when 0 varies from 7 to 0. The left-hand side of (3.153) behaves
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s
72

(3.153), corresponds one 5 € [0, 7] and conversely. Thus, the equality (3.153)

analogously with respect to 3 Consequently, to each § € [0, %], according to

defines the strongly monotonic function 5= (0), in addition 5 (0) = 0. But from
the first equality of (3.152), we have

*
lim R = +o0.
50+

So,
lim ;%(R) = +o00.

R—+00

According to the definition of p.v. ;%, after successive application of (3.146),
substitution £ = x — ycot 7, and (3.152), (3.153), the left-hand side of (3.151)
takes the form

&k R

(1 + 6a7r)—1 lim 6a7r eaep—1d§ . e“ep_ldf
R—+o00
—-R &k
arg(=—6) arccot =51
=(1+e™) " lim |e™ e sin ' T dr — e sin ! 7 dr
R—+o00
arccot XtB arg(z—&)

y
arg(z—£x)

e sin~! T dr

I
S

\m\ﬂ
\w\:

+(1+e )" lim | e e sin ' Tdr + “Tsin ! 7 dr
R—+o00
z+R *
arccot y arccotz;R
arg(z—Ex)
= e sin~! T dr

(VB

Tsin!rdr

%
+(1 et 51i%1 e / e sin~t T dr +
—0+
5

erz* \w\:\
a

arg(z—£x)

= e sin~! T dr

Wl



George V. Jaiani. Even Order Sngular Elliptic Equations 111

+(1 et 6lim e / e sin~t T dr — €7 / e sin~! 7 dr
—0+

arg(z—¢&)
= / e sin~! 7 dr.
s
3

So, (3.151) is proved as well, and the proof of Lemma 3.6.8 is complete.
O

Proof of the Remark 3.6.7. By the proof of theorems 3.6.4-3.6.6 we have not
used finiteness of the domain except of the existence and uniqueness theorems in
the case of the continuous boundary function. Therefore, assuming the function
f bounded and applying the existence and uniqueness theorems in the case of the
continuous boundary function for R? the theorems 3.6.4-3.6.6 remain valid also
for RZ, if the sums in the corresponding expressions we consider from 2 to n — 1
since in the case under consideration the points & and & are absent.
Thus, the formulas (3.135) and (3.136) get the forms

N L, t ot G
1 y [ k ar i —b af b2
— — d d
i) = [ [ > e sin~ 7 d7 | e b2
e = 0
o arg(:—61)
hk at i —b
+ e’ sin’ Tdr (3.154)
ak(b)
k=2 9
and
+o0
@) ary— .
() = e tond [ [1©)
-t arg(:—61)
- % im (Iny H)! e sin~rdr|e¥plde
o Lk 2—EFEk
= 0
et
hk? at ;. —1
-+ — e sin” " T dT, (3.155)
= P
= 0
respectively.

Let us note that we have replaced BC (3.133) by BC (3.33) and applied the

*

formula (3.36) interpretting it in the sense p.v.R (relying on Theorem 2.1.7, it
can be directly verified that expression (3.36) with the density (3.137), where
Ae =1, ( =&, and the sum is taken from 2 to n — 1, solves Problem 3.2.1 with
BC (3.33) when | = @ and the boundary function has the form (3.137), Ae = 1,
¢ =8).
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By virtue of (3.149), (3.151), it is easily seen that (111)11(2) coincides with (3.35),

while (12211(2) coincides with (3.36). Of course, we could arrive at this conclusion
also in reverse order.

Uniqueness follows from the maximum principles 3.1.1, 3.1.3, 3.1.4.

The case b > 1, as it was done many times earlier, we reduce to the case
b<1. O

3.7 Approximate solutions of boundary value problems

Below we analyse a question of application of the constructed in Section 3.2
solutions in quadratures of BVPs in the half-plane to solving approximately the
corresponding BVPs in the finite domains. The conditions on the domain S, the
coefficients of equation (1.1), and the boundary data which guarantee finding of
approximate solutions with the preassigned accuracy are established (see [18] and
[16], pp. 36-42).

Let I contain the segment [—v, +4], ¥ > 0, and S contain a half-disk Kz with
the radius R.

Let us consider the following BCs:

lirréu(z) =0, z€8, (€g; (3.156)
z—

lim u(2) = f(zo), w0 € I\I, be]—oo,1[; (3.157)
Z—x0

. Aey 1 _ %

lim (m ?) w(z) = flzo), €8, zo€ NI, b=1; (3.158)
le v ru(z) = f(zo), 2€ 8, x0 € f\;, b €)1, +o0]; (3.159)
2Z—x0

brm—10"u(2) _ F(zo), 2 €8, w0 € I\, b €]0, +o0[, m € N; (3.160)

Jim o
where
R L € I\[-7,+);
0) = *
f(o), @0 € [=7,+7\I.

Let

M:= sup |f(z)] < +oc.

JJE[—"/HF'Y}\}

Theorem 3.7.1 Let b €] — 0o, 1 and

2fyeaaM 2y

< et (3.161)
e(1—¢)2A(a,b) €

R > max
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where € > 0 is a preassigned exactness of the approximate solution and £ €]0, 1]
is a fized arbitrary number,

p_lmoa > 0;
10, a<0,
then
+y
w = A a0 [ et g (3.162)
-

represents a solution of the class T°(1, S, }) which satisfies BC' (3.157) and the
condition

lui(Q)] <e, (€ (3.163)
instead of BC' (3.156).

If} = & and vl € T°(1,S) is the exact solution of BVP (1.1), (3.156),
(3.157) (i.e., of a particular case of Problem 3.5.1), then the estimate

max|u(z) —uj (2)] < e (3.164)
zes

holds.
Theorem 3.7.2 Let b=1 and

aaM 1
R > 2ymax {——— = (3.165)
e(l—e) "(1+ew) €
then
+v
Uy = (1+e‘”)_1/f(§)e"“9,0_1d§ (3.166)
-

represents a solution of the class T0<(ln %)71, S, ;) which satisfies BC' (3.158)
and the condition (3.163) instead of BC (3.156).
[f} = & and ul € T0<(ln %)_I,S) is the exact solution of BVP (1.1),

(3.156), (3.158) (i.e., of particular cases of Problem 3.5.2 and Problem 3.5.4),
then the estimate

-1
max (ln é) lug(2) —ud (2)] < e (3.167)
ze8 Yy

holds.
Theorem 3.7.3 Let b €]1, 400 and

1

. 2yeriM |7 2
R>max{ (1—2)" [L] et (3.168)

eN(a,2 —b) z
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then

+y
us = A (a,2 —b) / f(&)e?pde (3.169)
-

represents a solution of the class T° <yb_1, S, j*') which satisfies the BC' (3.159)
and the condition (3.163) instead of BC' (3.156) and the condition

Y Hus(2)] < MA™!, 2 € S,

FI=0 and ui € TO(y*1,S) is the exact solution of BVP (1.1), (5.156),
(8.159) (i.e., of a particular case of Problem 3.5.3), then the estimate

max(%)“yug(z) _dT(2) <= (3.170)

z2€S

holds.
Theorem 3.7.4 Let b €]0,4+o00[ and

* _1/2 2,yb€aaM % 27
R > max (1 - 5) (a? + b2)(b,m — 1)A(a, —b)] ) ? (3.171)
then
(=1)™b 7
- ad —b
T @) (b, m — DA(a, ) /f@e pdg (3.172)

~
represents a solution of the classes

To(l,S, 7’) ﬂTm(yb+m_1,S, }) and Tm(yb+m_1,5, 7’),

when b €]0, 1] and b €]1, +00[, respectively, meeting BC (3.160) and the condition
(3.163).
If; =9 and

o e T°(1,8) NnT™(y**™=1,8), be€lo,1];
4 Tm(ylﬁmfl’s)7 b 6]1,+oo[,

is the exact solution of BVP (1.1), (3.156), (3.160) (i.e., of a particular case of
Problem 3.5.5 when b €]0,1]) and the following estimates

ma§><\u4(z) —ui(2)| <e, b€]o,1]; (3.173)
ze
Ae\ 1
rileag(ln ?> lug(2) —ud (2)] < e, b=1; (3.174)
Y\t _ T
Teaé((A) lug(z) —uz (2)] <e, b€l 400, (3.175)

hold.
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Proof of the Theorem 3.7.1 We extend continuously the function f outside
the segment I assuming it equal to zero there. Then the exact solution of the
Dirichlet problem in R2, according to Theorem 3.2.3, will have the form (3.162)
(see the formula (3.35)). Hence, u; will satisfy BC (3.157). Now, we choose R in
such a way that the solution u; be less than preasigned arbitrarily small € > 0
on the half-circle Cy. Taking into account

(1—8)r<p 0<e<l. (3.176)
when 9
r> 77, z GRiURl, €] <7,
£
from (3.162), because of
yl—b pl_bSinl_be 1
52 - 2 < 0
we obtain
in T de e 1
eaa e(ZCL
un(2)] < T /— < = (3.177)
(@,0) ) p = (1-5)3A(a,b)"

in R\ K2 . If we choose R in such a way that (3.161) be fulfilled, then since

*
€

r > R, by virtue of (3.177),

2ver M 1
ur (2)] < —21° — <e, z€ R2\Kg
(1—¢2)zA(a,b) 1

In particular,

[un(Q) <&, ¢ €Ck,

as far as ¢ lies in R2\Kp. So, we may assume that u; satisfies up to ¢ the
homogeneous BC on .

If;ZQ, then B
ul(fa 0) - ur{(ga 0) = 07 f € [a

and, in view of (3.163), according to the extremum principle,
lui(z) —ul(2)| <e, z€8,

since the last is true on 0S. The obtained inequality is equally matched to
(3.164). O

We prove the theorems 3.7.2-3.7.4 analogously.

Proof of Theorem 3.7.2. The formula (3.166) follows from the formula (3.36).
Similarly to the proof of Theorem 3.7.1 we conclude that if R meets the condition

(3.165), when | = @, then
lus(¢) —u3 Q)] <&, Cex,
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-1
lim <ln &) [ug(2) —ui (2)] =0, 2€ 8, o€l

zZ—T0 y

where uy(z) has the form (3.166).

Let ) .
va(2) 1= (m %) us(2), vl(z) = (m %) ul(2).

The functions vs and v will satisfy equation (1.1) and the inequality

[02(¢) — vz (Q)] <&, C €S,

because of

-1
0a(¢) — ()] < € (m%) <s Ceo

2(€,0) — 03 (£,0) =0, £l

Therefore, according to the weak extremum principle for equation (3.132), we
have the inequality
lvg(2) —vi (2)] <&, z€S,

since the last is true on 0S. The obtained inequality is equally matched to
(3.167). O

Proof of the Theorem 3.7.3. The formula (3.169) follows from the formula
(3.37). It is easily seen that if R meets the condition (3.168), when = &, then

[us(C) —us (Q) <&, CEx,

lim y* uz(2) —ui (2)] =0, 2€ 8, x € 1,

Z—X0

where u3(z) has the form (3.169).
Let

v3(2) == (%)b_lu;;(z), vs (2) 1= (%)b_lugT(z)

By the correspondence principle (3.4) the functions vz and vl will satisfy the
equation
BN = .

According to the weak extremum principle
lvug(2) — vg(z)| <eg z€S8,
because of

(O~ 2§ Ol <=(1) " <<, ces

U3(€70)_U§<£70):O7 fej,
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i.e., holds
y\b-1 . _
(%) ) -l << 28,
which is equally matched to (3.170). O

Proof of the Theorem 3.7.4. The formula (3.172) follows from the formula
(3.66). It is easily seen that if R meets the condition (3.171), when | = &, then

ua(Q) —ui (Q)l <. Cex,

i e @[30 — Q)]
z—xo aym
where u4(2) has the form (3.172).
Let b €]0,1]. According to the weak extremum and the Zaremba-Giraud

principles (see Section 3.1) the function uy — ul may attain its extremal values

=0, z€8, zo€el,

only on ¢, i.e.,
lug(2) —ui (2)| <e, z€8,

which equally matches to (3.173).
Let b = 1. Then

O™ uy(2)
Aey -1 m
lim (ln _e) uy(z) = lim 9y _ (o) 7
) y ==z (=1)™(L,m—1)y=™ (=1)™(1,m —1)
z€S8, xg € I.
Whence,
. Aen—1 _
Zli)rgo <ln 7) (—1)™(1,m — Dug(z) = f(xg), 2€ 85, zo€l.
Because of
lua(Q)] <e, CEx, (3.178)
we have
[va(Q)] < (I,m —1)e, C€g, (3.179)
. Aey —1 _
zlig:lo <ln ?> vy(z) = f(zo), 2€S, xp€l, (3.180)
where
vg(2) = (—=1)™(1,m — 1)uy(2). (3.181)

By virtue of (3.180), (3.181), and Theorem 3.7.2, evidently,

Ae\ 1 T
ma (m ?) 0a(2) — 0T (2)] < (1,m — 1)e, (3.182)
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where
vi (2) = (—=1)™(1,m — 1)ul (2). (3.183)

In view of (3.181), (3.183), from (3.182) it follows (3.174).
The case b > 1 we consider analogously.

lim " tua(2) = li o f(@o)
= lim -
T CR - Lmy ()b - Lm)’
ze€S, xy€el.
Hence,
lim y"'04(2) = flzo), 2 €S, o€, (3.184)
zZ—rT0
where
v4(2) = (=)™ — 1, m)uy(z). (3.185)
By (3.178), we get
04(C) < (b—1,m)e, €. (3.186)

By virtue of (3.184), (3.186), and Theorem 3.7.3, evidently,

YN 5 b—1 3.187
max(5)" Ja(z) = 04 (2)] < (b~ Lm)e, (3.187)
where .
v, (2) = (=1)™(b— 1, m)ul (). (3.188)
In view of (3.185) and (3.188), from (3.187) it follows (3.175). O

Remark 3.7.5 Substituting

E=ux—yctgl
into the formulas (3.85)-(3.37), (3.66), (5.162), (3.166), (5.169), (3.172), and
taking into account

0 = arcctgx—_f, pP=(r =&+
y

xr—E&=pcosh, y=psind,
dé = ysin~20dh = psin~' 0db,

we obtain more suitable for the numerical computation formulas:

§)ep " dg =

/ (z — yctgh)e®sin~0dh, b < 1;
0

§epldg =

1+ eam /f(:v — yctg@)e“e sin~t0dh, b=1,
0
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where

f=0(sin*0), 0 —0+; f=O0(in*(r—40)), 0 —>7—, «a>0,

because of
€] = (x — yetgh) ™ = (xsinf — y cos )~ sin® 0;

(e o]

1 af —b
m/f(€)€ pdg

1-b
Y ab o b2
A(a,2—b)/f($ yctgh)e® sin”~ < 0df, b > 1;
0

+o0
M~ (a,b,m) / F(6)e pte

K

= M~*(a,b,m)y' " / f(z —yctgh)e®sin®20d0, (a,b) € iom;
0

+y
w = A a, by / (€ 2dg
-

arcctgz;—A’
1
= Aa,b) / f(x — yctgh)e™sin"0do, b < 1;
arcctg%
+y
uy = (1+ e‘”r)_I/f(f)eaap_ldf
-
arcctg%
1
=1 / f(z —yctgh)e®sin~' 6df, b= 1;
arcctg“T'y
+y
= Ail 92— b ab 7bd
us (a,2=b) [ f(§)e™p~"dE
-
arcctg%
yl—b
= AMa,2—b) / f(z — yctgh)e® sin®=20dh, b > 1;
arcctg%

+

_ (1" N
Uy = (a2—|—b2)(b,m—1)A(a,—b)/f(g)e ep bdg

o




120 Lecture Notes of TICMI, vol. 24, 2023

arcctg%
-1 mbyl—b b
- <a2+b2§(b - 1)A(a, ~0) / f(e — yetgh)e™ sin®*6d6, b €]0, 1,
7 7 arcctg%

respectively.

3.8 Applications to other degenerate partial
differential equations

This section is devoted to application of the previous results on the one hand to
the axially symmetric solutions of the equation (see G. Jaiani [16], pp. 43-45,
and [21], pp. 56-59)

(333 + -+ 1,12))5 (ux11’1 +--t uﬂ“p“*’?) + AUy = 0 (3189)
and on the other hand to solutions to the equation (see [16], p. 24)
Flabe)y, . — ygAu + ayu, + byu, + cu = 0, (3.190)

where a, b, and c are, in general, complex numbers.
In RP, p > 3, axially symmetric with respect to x; solutions

ue 02<Rp\(R1 x {0} x - x {oD)

(p—1)—times

of equation (3.189) will be solutions to equation (1.1) with (1.4).
From Theorem 3.3.8 it follows the following assertions:
1. the expression (3.66) with (1.4) and p € N\{1, 2},

N° p>3,
mE{N’ D=3 m>3—p

represents a unique solution of
Problem 3.8.1. Find in
RP\ (Rl % {0} x ---{0})
the axially symmetric with respect to xy solution
ue 02(RP\(R1 x {0} x ..-{0}))

of equation (3.189) satisfying the following conditions:
(i) on the axis of symmetry x,

lim (;p2+...+w2)%’”*3 O"u(xy, ... )

(@34 ta2) /250 P O )22 2"
D xQ + e _|_ ajp

= f(z1), x1 € R,
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where f is a continuous function;
if p =3 we additionally demand

f(z1) = O(|z1|7%), |21] = 400, a >0, (3.191)
and
+oo P
lim /(:L‘% + x%)%u(ajl, T, %)de1 =0, (3.192)
(13 +23) 20 O/ a3 + a3
when
1 -1
lim {— In(z3 + x%)] u(z1, 79, 73) =0, 71 € RY; (3.193)
(w§+x§)%~>0

(ii) at infinity for p > 4 we assume

P
u(z r,) = when either a € R', p € N\{1,2,3,4}, or a =0, p=4;
17...7 —_ _
p 0((1'%4_..._'_:%2?)437?)’ x%++x§—>+oo,

when a #£ 0, p =4,

O((:c§+-~+x2)3%p>, 23+ 2 = Foo,

while for p = 3 we demand
u(z, 29, 23) = O((x] + 23 +23) ), 2]+ 25 + 15 = +00, (3.194)

8u(w1,x2,x3) 8”(901,%,173)

O N

=O0((2? + 25+ 23)7%), 23+ 25 + 25 — +oo,
(3.195)

2. The expression (3.67) with (1.4) and p = 3, m = 0 represents a unique
solution of

Problem 3.8.2. Find in
R\ (R x {0} x {0})

the azially symmetric with respect to axis x1 solution u € C?*(R3\(R! x {0} x {0}))
to the equation

(l’g + 37:2’,)%(“961961 + Uppzy + Usgzy) + AUy, = 0,
satisfying the following conditions:
(i) on the axis of symmetry x,
: 1 2 N 1
lim [— In(x; + x3)] u(xy, x0,x3) = f(x1), 1 € R,
(e3+23) T -0

where f is a continuous function, satisfying (3.191), besides (3.192) is fulfilled
for (3.193);
(ii) at infinity (3.194) and (3.195) are fulfilled.
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From the identity

where

it follows that

where u(@09) e 2

ybfzbi 71F(a,b,c) <ybi2bu> = E(a’bi)u,

b =1+ /(1 —0)—4c,

a,b¥)

is a solution to equation (3.190).

(3.196)

(3.197)

Equality (3.197) associates to each u(®*¢) a pair of solutions u(@¥) to equation

and vice versa.

E@P )y =0

The equality (3.197) makes possible all the results obtained concerning (1.1)
to reformulate for the case of equation (3.190). E.g., excluding the case of the
negative (1 —b)? — 4c, we reduce the following problem 3.8.3 to the problem 3.2.1

Problem 3.8.3. In R% find u € C*(RY) satisfying equation (5.190) and one of

the following BCs

b—bt

lim y 2 wu(z) = f(xy), when Reb™ €] — oo, 1];

Z—X0

zZ—I0

1 _
lim (111 —>y%u(z) = f(x0), when b* = 1;
)

+
b+bE g

lim y 2 ‘u(z) = f(x0), when Reb™ €]1,+o0],

Z—IQ

where z € RY, xg € Rl\}, and f meets conditions of the problem 3.2.1.

So, from the Theorem 3.2.3 we get

Theorem 3.8.4 A solution of Problem 3.8.3 has the form

(

\

yl_ﬁ +oo
2 a +
m f(&)e P2, Reb* €] — 00, 1];
e N
'z (14 em) / f(Qe®pde, bE=1;
ey doo

M/ﬂﬁ)e“eﬂ_bidé, Reb* €]1, 00],

where when b = 1 the function f meets conditions of the Theorem 8.2.8 and

setting BV Ps along with "b” depends on

)
Cc

as well.

Remark 3.8.5 From (3.196) we have b* = 2 —b~. Therefore, Reb~ > 1 for
Rebt < 1 and vice versa.
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Remark 3.8.6 For ¢ =0 equation (3.190) coincides with (1.1). For ¢ # 0, as it
follows from Theorem 3.8.4, only the weighted boundary value problems may be
well-posed. It means that in the last case all the solutions of equation (3.190) are
unbounded as y — 0+ .

3.9 The canonical form equation with order and type
degenerations

In the present section using the barrier method (see e.g. [1], pp. 187-194, [32], pp.
15-20, and also [2], [3]) the Keldysh [25] theorem for the second-order elliptic in R%
equation of the canonical form with the characteristic parabolic degeneration'?
is generalized for the case of the elliptic equation of the second-order canonical
form with order and type degeneration see G. Jaiani [23]. The criteria under
which the Dirichlet or Keldysh problems are well-posed are given in a one-sided
neighborhood of the degeneration segment, enabling one to write the criteria in a
single form. Moreover , some cases are pointed out in which it is even necessary
to give a criterion in the neighborhood because it is impossible to establish it on
the segment of degeneracy of the equation. In this section we follow the above
Paper of G. Jaiani [23].
Let us consider the equation

0%u 0%u ou
L(u) =y Y 4 p &Y gu
(w):=y" 55 +y 07 +alz,y) 5
ou
+b(z, y)a— +c(z,y)u =0, m,n=const >0, (3.198)
Y

in a domain €2 bounded by a sufficiently smooth are ¢ lying in the upper half-plane
y > 0 and by a segment AB of the x-axis;

a,bc,e A(Q), ¢<0in Q" (3.199)

where A(Q) is the class of functions analytic on Q with respect to x, .
Let us examine two boundary value problems:

Problem 3.9.1. (Dirichlet Problem) Find u € C*(Q) N C(Q) in Q from
prescribed continuous values of L(u) in Q and of u on the boundary OS2.

Problem 3.9.2. (Keldysh Problem) Find bounded u € C?(Q) N C(QU¢) in
Q from prescribed continuous values of L(u) in  and of u only on the part s of
the boundary Of).

Bywhich we obtain from (3.198) for m = 0.

4Theorem 3.9.3 remains true when analyticity in (3.199) is replaced by Lipschitz continuity
(see footnotes of the present section and take into account that integral representation by means
of Green’s function of a solution of the Dirichlet problem for the non-degenerate elliptic equation
is valid also in the case of Lipschitz continuous coefficients).
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C(Q) is a set of functions continuous on closure of Q. C?*(Q) is a set of
functions with continuous derivatives of orders < 2 in ().
Let
I ={(x,y) €Q: 0<y<d, 0=const >0}

Theorem 3.9.3 If eithern <1 orn > 11 and
b(x,y) <y" " on I5,1 (3.200)

the Dirichlet problem s well-posed while the Keldysh problem has an infinite
number of solutions.
Ifn>1 and

b(x,y) >y" "t in 15,7 (3.201)

furthermore
a(x,y) =0wW"), y— 0+ (3.202)

(O is the Landau symbol), the Keldysh problem is well-posed while the Dirichlet
problem, in general, has no solutions.

Proof. We look for desired solutions as follows (see, e.g. Bitsadze [1], p. 189;
Smirnov [32], p. 16).

A solution of the Keldysh problem with continuous data on ¢ we construct as
follows. Let f(x,y) € CQ). We construct a sequence of increasing domains such
that Q,, € 2, n € N with a smooth boundary. For all the points of €2}, where
h,, is sufficiently small and of boundary Sy, of €, we have y > h, > 0. The
boundary S, of the domain €, coincides with ¢ for y > h,, denote it ¢, and
outside of some neighborhood of the endpoints {P;} € ¢, go along the straight
lines y = h,, parallel to the z-axis (h, — 0 as n — o). Let uy,, (z,y) be a
solution of the Dirichlet problem for equation (3.198) obtaining values f(x,y)
on the boundary Sy, . Such solutions exist since in Q,, equation (3.198) is not
degenerate one. In view of ¢ < 0 in ﬁh* we have

Uniformly |up,| < M, where M = max |f(x,y)]|. (3.203)

(z,y)EQ
Let h, be an arbitrary small fixed value of h,, starting from the value h; < h,
for all the values h, 1 < h,, < h, the family {uy, } is fully definite.
Let G.(x,y,&,n) be the Green function of the Dirichlet problem for equation
(3.198) in €,,. Then,

up, (r,y) = /uhn(s)W(l& hy, < By, (3.204)

Shy

where v is a normal to S,,. Therefore, taking into account (3.203), it follows
equicontinuity and uniform boundedness of the set of functions {uy, } on Q..

151f 1 < n < 2, b(z,0) < 0 then the Dirichlet problem is well-posed (see Remark 3.9.5).

16Closure is essential, since we need b(z,y) — y™~! < 0 on closing of the neighorhood, con-
taining a part of the line y = 0.

"There does not exist such (z,0) that b(xg,0) = 0 (see Remark 3.9.10).
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According to the Arzeld Theorem {uy, } will be compact inside 2, i.e., we may
select subsequence up,, (z,y) uniformly converging to some function

u(z,y) = nh—I>Icl>o Uup, (7,9), (3.205)
which, by virtue of (3.199), will be a unique solution of (3.198) in © which will
take the value f(z,y) on <.

The above-constructed solution (3.205) of equation (3.198) will serve as a
unique solution of the Keldish problem, provided we find the function W (see
bellow), while it will serve as a unique solution of the Dirichlet problem, provided
we find the s.c. barrier function (see bellow).

In Bitsadze [1] it is shown for equation (3.198) that

— if for any point (z9,0), zo € AB, there exists barrier v € C?(w] ), where

wl ={(z,y) €Q: y >0, (x—x)*+y*> <6, §=-const >0},

such that L
veCwl),

v(zg,0) =0,

v>0 in wl \{(z,0)},

)

L(v) <n=const <0 in w),
then the Dirichlet problem is well-posed, since constructed by the above way
solution tends to prescribed values of the function f of the segment AB.

— if there exists W € C*(Q2) such that:

W >0 in QUo,

Jim Wz, y) = +o0

uniformly with respect to =z,
L(W) <0 inside €,

then the Keldysh problem is well-posed,

Indeed, let u(z,y) be a solution of equation (3.198) which vanishes on ¢, by
virtue of L(eW +u) < 0 inside of €, the function e +u may not have a negative
minimum in €) and, since its limits on the boundary 9€) are positive, inside of {2
we have eW +u > 0, i.e.,|lu| < W, whence, because of arbitrariness of ¢ > 0,
uw=0in Q.

Let us show that by (3.200) the function

v(z,y) = (—Iny) ™t + (z — 20)?

may serve as a barrier function.
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Indeed, taking into account (3.198), we have

L(v) = 2y" +2y" (= Iny)~ —y" (= Iny) ™ + 2a - (z — xo)
+ by H(=Iny) P +ev=[blz.y) —y" Ny (—Iny)
+ 29" 2 (=Iny) P+ 29" + 2a - (v — x0) + cv
< np=const <0 in w’ (3.206)

xo?

since the sign of L(v) when y — 0+ is defined by the first term of (3.206)

b(z,y) —y" 'y (—Iny) 1 (3.207)

and for n > 1, in view of (3.200), there does not exist such (g, 0) that b(z¢,0) =0
(see Remark 3.9.9) and, therefore,

lim L(v) = —o0. (3.208)

y—0+

If 0 <n < 1, we rewrite the first term of (3.206) as
[y "b(z,y) — 1y" 7 (~Iny) % (3.209)

Because of (3.199)

: 1-n _ — _119
Jim [y"b(z,y) — 1] = ~1.

Therefore, (3.208) holds in this case too.
It is easily seen that the other properties of the barrier are also fulfilled.
To prove the second part of the theorem, let us consider the function

W(r,y) = —lny— (@ — ) +k,

where x — a > 1, a, k = const, [ > 2 is an integer.
Obviously,

181f n > 2, only (3.207) tends to infinity (namly to —oo), since

: n—2(_ -3 _
ylir(r)lJr 2y" 7% (— Iny) 0.

If 1 <n <2, then

. [b(l‘, y) - yn—l]y—l(_ In y>_2 . 1 n—17, 1—n
ylg(l)lJr 2yn=2(—Iny)~3 B yg%ﬂ 2 (b y) ="y (= )
—00 for 1<n<2
— . 1 —n _
ylg&r so(z,y)y' ™" —1](=Iny) = =00 for 0<n <1

YEvidently, for negativeness of the limit it will be sufficient if

lim y'™"b(x,y) = v = const < 1.
y—0+

it is true, because of v = 0 for continuous b(z,y) in  and all the more for Lipschitz continuous
and analytic function b(x,y) in €. So, in our case v = 0.
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b
LW) = —l(l-1)(z—a) 2y +y" 2 ~la-(z—a)' - ; +cW

- M Ly 1)+ 30 (- )l — o)
2

2 (1 —1)(z — ) 72y™ + cW. (3.210)

In view of (3.202), [ can be chosen so that

lal _ 3lal(z — @)

[—1>3max(z —a)sup— > ————= in ). 3.211
(o = a)sup 10 > HE @211
On the other hand, by virtue of (3.201),
y = b(z,y)

Yy

<0; in Iy

-2

Hence, taking into account that 1 < (x — «)'~* and

2 2
—gl(l - Dy™ > —gl(l —1)(z—a)%y™ in Q,

from (3.210) we have

2
L(W) < —gl(l — 1)z — )y + W
2
< _§l(l —1Dy™ <0; in Iy, (3.212)

since W > 0 in QU0 for suitably chosen k. It is clear that there exist A, [ = const
such that

n—1 —} A
y—(I’y)<A; and l(l—1)>3—; in Q\ Is.
y v

Further,

L) < A %z(z )y el < —éz(z Sy <0 i QT (3.213)
from (3.212) and (3.213) there follows
L(W)<0 in Q.
The fulfillment of the other properties of the function W is obvious. [

The following remarks should be considered as tasks for subsequent discussion
on the topic.
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Remark 3.9.4 Condition (3.202) is not necessary. If a(x,y) > 0 in I5 then
LW) < =1l —1)(z — ) 2y™ < —l(l - 1)y™ < 0; in Is,

and, by virtue of (3.213), which is valid since (3.211) holds for Q) \ I, the theorem
remains true without restriction (3.202). On the other hand, if (5.201) is fulfilled
in Q and c <0 in Q orb(z,y) >y" ! in Q and ¢ <0 in Q, then

W*=—Iny+k
can serve as the Keldysh function, since

y ! —b(z,y)

L(W*) = -

+cWW* <0 in Q,

and condition (3.202) is again unnecessary.

Remark 3.9.5 When 1 < n < 2, b(x,0) <0, the sign of L(v) (see (5.206)) is
defined by (3.207). Since b € A(S2),

ob(z,0
( )y

(b y) ="y Iy = b, 0) + =5

+ 0@y (Iny)

—y" Iy < [—abgy’ 0_ O(y)} "%y —y"In"?y,

where the first term tends to zero and the second one tends to - co. Therefore,
(8.208) is fulfilled and the Dirichlet problem is well-posed. The same remains true
if b(x,y) is not analytic but it is Lipschitz continuous i.e., b(x,y)—b(z,0) < const y

in §2, since in some neighborhood of y = 0 we will have
b(z,y)y ™ In~2y = |b(z,y) — bz, 0)] y Ity +b(x, 0)y Iy

< const In"?y + b(z,0)y'in"%y < const In"?y,
by virtue of

b(x,y) — b(z,0) < consty in €,
and
lim b(z,y)y ' In"?y < const lim In"%y = 0.

y—04 y—04

So, in this case the Keldysh criterion of well-posedness of the Dirichlet problem
is valid also for equation (3.198).

Remark 3.9.6 Because of the continuity on Q of both sides of (3.201) forn > 1,
(3.201) holds also in I;.

Remark 3.9.7 Because of (3.199) b(z,y) # y" ' in Q when {n} # 0 ({n} is
a fractional part of n) since y" 1. {n} # 0, is neither analytic nor Lipschitz
continuous on €.
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Remark 3.9.8 For 0 < n < 1, because of the boundedness (see (3.199)) of b(x,y)
and lim y"' = +o0. (8.200) is always fulfilled in Is and (3.201) cannot take

y—0+
place in I5. In that case from (3.200) in 15 there follows

y' "b(z,y) —1 <0 in I,

and the well-posedness of the Dirichlet problem is clear (see the proof of the
Theorem 3.9.3). Hence, we can embrace the case 0 < n < 1 with condition

(3.200). But because of the clearness of the question (for 0 < n <1 the Dirichlet
problem is always well-posed), this case is considered separately.

Remark 3.9.9 When (3.200) holds we have either n = 1, b(z,0) < 1 or n >
1, b(z,0) < 0 and vice versa. Indeed, when n = 1, (3.200) obviously implies
b(x,0) < 1,2 € AB, and from the latter there follows (3.200) since [1 —b(z,y)] €
C(Q) (see (3.199)) and has to preserve its sign in closure of some Is= C I5, 6* < 6.
If n > 1 from (3.200) there follows b(x,0) < 0 and from the latter as above
b(x,y) < 0 in some Is- and, therefore, there obviously follows (3.200), since
b(x,y) <0<yt in I,

Remark 3.9.10 When (3.201) holds we have either n = 1,b(x,0) > 1 or 1 <
n < 2, b(x,0) > 0 (see here also the next paragraph) or n > 2, b(x,0) > 0 for
x € AB. The reverse motion is not true, in general, but if n = 1, b(x,0) > 1 or
n>1, b(z,0) >0, x € AB, then

b(x,y) >y" in Is. (3.214)

In the latter case, there exist by and & such that b(z,y) > by = const > 0 in Is.
1

Hence, (3.214) will be fulfilled if § = by~". The arguments of the proof of the second
part of Theorem 3.9.8 concerning W, are correct also forn =1, b(x,0) > 1; and
for1 <n <2 b(x,0) >0, since in both the cases we can choose § in such a way
that b(z,y) — 1 > 0 in I5 respectively, where § := min{d*, oY, 0% =Byt by =
minb(z,y) > 0 on I5 (such a & exists since b(x,0) > 0 preserves positive sign in
some right neighbourhood of the segment AB), b(z,y) > by = (6*)" 1 > "1 >
n—1
y"
F£1 < n < 2 condition (3.201) does not exclude the existence of such
zo € AB where b(xy,0) = 0. But in that case, because of (3.199),

ab(l‘g, 0) 102b(x0, O) 2

b — b 0 CC R —
(x(b y) (1;07 ) + ay y+ 2 ayQ U
ob(z0,0)  19%b(x0,0) 20
_ 1 = <<
oy 2 oap YT pAr )OSy <0

20The same is true if b(x,y) is Lipschitz continuous in 2 since from
|b(x,y) — b(z,0)| < consty in Q

it follows that
|b(x0,y)| < consty,



130 Lecture Notes of TICMI, vol. 24, 2023

with »(xg,y) bounded for 0 <y < and, in view of (3.201), we have
yr(wo,y) 2y, 0<y <y,

i.e.,

2

%(l’o,y) Zyn_ ) 0<y<57

which means the unboundedness of s. This is a contradiction. Therefore, if
1 <n <2, then b(xo,0) # 0 and b(z,0) > 0 for all x € AB. The other cases are

obvious.

Example 3.9.11 Consider the following four exercises
n=1 and b(z,y)==+1xy.

Remark 3.9.12 For m = 0 from Theorem 3.9.3 there follows the Keldysh The-
orem [25].

For reader’s convenience we state the Keldysh Theorem for equation (3.198)
with m = 0 here

Theorem 3.9.13 If
either 1) n < 1,
or 2)n=1, and b(z,0) < 1,
or3)1<n <2, and b(z,0) <0,
or 4)n > 2, and b(x,0) <0,
then the Dirichlet problem is uniquely solvable, while the Keldysh problem has an
infinite number of bounded solutions.
If
either 1) n =1, and b(z,0)
or 2) 1 <n <2, and b(z,0)
or 8)n>2, and b(z,0) > 0,
the Dirichlet problem is not solvable, in general, while the Keldysh problem is
uniquely solvable.

1.

= 1;
> 0;

Remark 3.9.14 Let us consider in  two equations: one with order and type
degeneration

0*u 0?u ou
Moty o b, y) - =0 3.215
v e Y 0 + (w,y)ay ( )
and an other one with characteristic type degeneration
0*u 0*u ou
S Ty 55 +0 — =0 3.216
gz TV g T ylg =0, (3.216)
where
b(z,y) = boy!™ !, by =const, m>n]—1, n>2, (3.217)

and [n] is the integral part of n.

ie.,
b(IOa y)

%(x()ay) = y
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In both cases b(x,0) = 0. Hence, in view of the Keldysh Theorem 3.9.13 [25],
the Keldysh problem is well-posed for (3.216) by any by. Similarly, it is expected
the well-posedness of the Keldysh problem for (3.215). Now, let us apply the
Theorem 3.9.3 and check the fulfillment of (3.201). The condition (3.214) will be
fulfilled for (3.201) iff

bo >y™ in I (3.218)

The latter will be fulfilled iff
bo > 1 when {n} =0, (3.219)
bp > 0 when {n} > 0. (3.220)

(Indeed, if n is an integer, (3.218) and (3.219) coincide. When n is not an integer,

for any by > 0 we can find the neighborhood I5, § = b{™ where (3.218) will be
fulfilled). In these cases the well-posedness of the Keldysh problem follows from
our Theorem 3.9.3.
If
bp <1 when {n} =0,

bp <0 when {n} >0, (3:221)

(3.200) is fulfilled in I5 but in I5 the inequality cannot be strong and we are not
able to use our theorem. However, after dividing both sides of (3.215) by yl"—1
in €2, we obtain the equation

o104y @u Ou

Ox? o2 oy =9,

)
and now we can apply our theorem, which by (3.221) asserts the well-posedness
of Dirichlet problem.

Thus, for both equations (3.215) and (3.216) b(x,0) = 0. Nevertheless the
Keldysh problem is well-posed for (3.216) for any by; the Keldysh problem is
well-posed for (3.215) for some by (see (3.219), (3.220)), and the Dirichlet problem
is well-posed for other by (see (3.221)). It means that for equation (3.216) with
type degeneration the well-posedness of admissible problems depends on values of
b(x,y) on the line of degeneracy of the equation, while for equation (3.215) with
order and type degeneration, the well-posedness of admissible problems essentially
depends on the behavior of b(x,y) in a neighborhood not on the segment of
degeneracy of the equation. In other words, the Keldysh Theorem in the classical
formulation for equation with characteristic type degeneration can not be valid
for equations with order and type degeneration.

Therefore, when m > 0,n > 2,b(x,0) = 0, the well-posedness of the boundary
value problems for (3.198), even under assumptions (3.199), essentially depends
on additional properties of b(z,y) in the neighborhood (see (3.200),(3.201)) of
line of degeneracy of (3.198), i.e., it is necessary to give the criteria in the neigh-
borhood because it is impossible to establish them on the segment of degeneracy
of the equation.
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Remark 3.9.15 Theorem 5.9.14 remains true if analyticity in (8.199) is replaced
by Hélder continuity on Q a,b,c € CON(Q) which garanties existence of the Green
function k and of the representation

u(wy) = [ blav.5)1(s)ds

of a regular solution (see A. Bitsadze [1], [2] K. Miramda [29] in the part of (,
where equation (3.198) is elliptic and in addition b(x,y) is Lipshitz continuous
on S (concerning the last see footnotes of this section).

Remark 3.9.16 Ifn =0, from (3.198) we get a degenerate elliptic equation with
non-characteristic parabolic degeneration and as it was expected from Theorem
3.9.3 it follows that the Dirichlet problem is well-posed, because of n < 1 for any
m > 0.
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Chapter 4

Singular (Generalized Analytic
Functions

In this chapter the generalized Cauchy-Riemann system of the first order partial
differential equations generated by the second order partial differential equation
of the general form in the plane has been considered. The solutions u(z,y),
v(x,y) of the above system, called conjugate generalized harmonic functions,
satisfy first, second or third order partial differential equations, depending on
coefficients of the generator equation. The question of solving of boundary value
problems for one conjugate generalized harmonic function by means of solutions
of corresponding boundary value problems for another one has been investigated.
As an example of a generator, the degenerate equation

Yy (pra: + @yy) + APy + bgOy = 0, a, b = const ,

has been treated.

4.1 Introduction

The Laplace equation
Pz + Pyy = 0

after introduction of notations

U= Py, V= Py (4.1)
leads to the Cauchy-Riemann system

Uy = Uy, Uy = —Uy

By given u (or v) one can define v (u) up to an additive constant. The necessary
and sufficient condition ensuring it

Upe = —Uyy (Vyy = —Vaz)

is fulfilled if u (v) € C? Tt is also known that from solution of the Dirichlet
problem with respect to one of conjugate functions v and v one can obtain the

135
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solution of the Neumann problem for another one. The present chapter deals
with similar questions when the generator of a system of first order partial dif-
ferential equations is the general second order partial differential equation of two
independent variables [5]:

Ly = A(z,y)@us + 2B(2,9) 0wy + C(z,y)pyy + alz,y)ps + bz, y)p, = 0. (4.2)

Taking into account (4.1), we have the following system (compare with [7])
Av, + 2Bv,(= 2Bu,) + Cu, + av + bu = 0. (4.4)

Definition 4.1.1 The functions u and v satisfying the system (4.3), (4.4) will be
called conjugate generalized harmonic functions in the sense of the system (4.3),
(4.4), provided equation (4.2) is elliptic.

In the case of harmonic functions v and v the combination
w(z) = u(z,y) +iv(z,y), z=z+iy,

leads to an analytic function of the complex variable z provided u,v € C*. In this
chapter considering, in particular, the EPD equation as a generating equation
we construct singular analytic functions. In contrast to the complex analytic
functions, when both the real and imaginary parts are harmonic functions, i.e.,
they satisfy the same second order equation in case of singular generalized analytic
functions the imaginary part satisfies EPD equation, while the real part fulfills a
third order equation. Moreover, we solve (in general) weighted BVPs for singular
generalized analytic functions, when on the straight line of singularity the m-th
order derivative either of the imaginary or of the real part with the corresponding
weight is prescribed. in the particular case, when a = b = 0, we get the classical
Schwartz formula for the analytic function in the half-plane.

4.2 Equations for conjugate generalized harmonic func-
tions

The characteristic form of the system (4.3), (4.4) has the form

'1 -2

— 2
CA A+ 2B) '—A+QB)\+C’)\.

Therefore, the equation (4.2) and the system (4.3), (4.4) are of the same type or
degeneration.
Let A, B,C,a,b, € C?(Q), domain Q C R2.

Case 4.2.1. A=0,a=01in Q.

For u from (4.4) we obtain the first order equation

Lyu:=2Buy +Cuy,+bu=0 in Q. (4.5)
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Case 4.2.2. A=0,a %0 in Q.

From (4.4) we immediately have v expressed in terms of u:
v=—a'Liu in Q, (4.6)

where
Q= A{(z,y) € Q:a(x,y) #0},

After differentiation of (4.6) with respect to y, and substitution of the obtained
expression into (4.3), we get

2Buyy + Cuyy + (2B, + a — 2a a, B) u,

+(Cy+b—ata,C)uy, + (by—atba,)u=0 in Q,. (47)
On the remained subset 2\, we have (4.5).
Case 4.2.3. A#0, (aA™!), =0 in Q.
From (4.4) we have
v, = —A'Liu—aA v in Qyu, (4.8)

where
Q4 :=A{(z,y) € : Alz,y) # 0}
The expression
Vpdx + vydy,

where v, and v, are given by (4.8) and (4.3), correspondingly, will be the total
differential if and only if (iff):

Upyr = AyA_2L1u
— A1 (2Byu, + 2Bugy + Cyuy + Cuyy + byu + buy) (4.9)
—(aA™Y), v —aA v, in Qa.

Further,
Uy = A7 [Ay A7 (2Buy + Cuy + bu)
—2Byuy — 2Bugy — Cuy,
—(Cy+b)uy — byu] —aA u, in Qyu,

since in case under consideration
(aA’l) =0 and v, =u
y 4 T
Therefore,

Augy + 2Bugy + Cuyy + (a + 2By, — 2A7 Ay B) u,
+(b+C,— ATA,C) u, (4.10)
+(by —bAT'A)u=0 in Q.

In (2\Q4) N, we have (4.7); in (2\Q,) N (Q2\Q4), i.e., in Q\ (24 U Q,) we have
(4.5).
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Case 4.2.4. A £0, (aA™"), #0 in Q.

In view (4.3), replacing in (4.9) v, by u,, and determining v from the obtained
expression, we have

-1
v=— [A (aA—l)y} [Atyy + 2Bugy + Cuy,
+(a+2B, — 247 A, B) uy + (b+ C, — A7 4,C) uy, (4.11)
+ (by — bA_lAy) U] in Q(@Afl)y N Qy,

where
Qaa-r), = {(z,y) eQ: (aA_l)y # O} :

In order to exclude v from the condition (4.11), we have to substitute its ex-
pression given by (4.11) [assuming u € C?(Q)] into (4.3) which should be fulfilled
by uw and v:

Algzy + 2Bugyy + Cuyyy + (AK + Ay) Uy
+ (a+4B, — 2A7'AyB + 2BK) uyy + (b +2C, — A7 A,C + CK) uy,

A (ad™), + (a+2B, - 247 A,B) K ~2 (A7 A,B), + 2B, + 0, | u,

+[(0+ 0, AT A,C) K — (A1 A,0), —bATIA, + Cyy + 20,) u,

+ _(by —bATIA) K — (bATIA,) + byy] u=0, in Qgan, N, (412)

where

K:=A(A), { A(aa™),] _1} .

Y

In (\Qa-1), ) N9 we have (4.10); in [\ (Qaa-1), U Qs ) | N9 we have (4.7);

in O\ (Q(GA_l)y UQaU Q) we have (4.5).
Because of symmetry

us— v, A«—C,a+—b, x+—y, (4.13)
the equation for v will have the following forms.

Case 4.2.5. C'=0,b=0, in Q.

Lyv :=2Bv, + Avy, +av =0 in Q. (4.14)
Case 4.2.6. C' =0, b=£0, in Q.

2Bvy; + Avgy + (2B, + b — 20710, B) v,

+ (A +a—b"10,A) v, + (ay —ab b)) v =0 in , (4.15)

where
Q= {(z,y) € Q:b(x,y) # 0}.

On the remained subset we have (4.14).
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Case 4.2.7. C #£0, (bC™1), =0 in Q.

Cvyy + 2Bvy, + Avg, + (b+ 2B, —2BC™C,) v,

+ (CL + Ax - AC—lcx) Uz + (az - aC_lCm> v = O 111 QC7 (4]‘6)

where
Qc =={(z,y) € 2: C(z,y) # 0}.
n (Q\Qe) N O we have (4.15); in Q (Qc U Q) we have (4.14).

Case 4.2.8. C #£0, (bC 1), #£0 in Q.

Cyye + 2BUyss + Avyry + (CM + Cy) vy,
+ (b+4B, +2BC™'Cy 4 2BM ) vy, + (a4 2A, — ACT'Cy + AM) vy,
+[C(C) + (b+2B, —2BC'C,) M =2 (BC'C,)  + 2By + ba] vy
+[(a+ A, — ACT'Co) M — (ACT'C,), —aC ™' Co + Ags + 204 ] v,
+ [(az —aC™'Cy) M = (aC™'C) + age] v =0 in Qpe-1y, NQe, (4.17)

where

M= (0™, {[C (0™} L Que, = {(my) €21 (607, # 0}

In [Q\Q(bc—l)z} NQc we have (4.16); in [Q\ (Q(bc—l)z U QC)] Ny, we have (4.15);
in Q\ [Q(bc—l)z UQecU Qb] we have (4.14).

Corollary 4.2.9 If A, B, C, a, b are independent of z then v will be satisfying
the generator equation (4.2);

If A, B, C, a, b are independent of y then u will be satisfying the gemerator
equation (4.2);

If A, B, C, a, b are constants then both the conjugate functions will be satisfying
the generator equation (4.2).

Proof. Let A, B, C, a, b be independent of z. Then Case 4.2.8 is excluded
since (bC~'), = 0; the equations (4.15), (4.16) will coincide with (4.2); after
differentiation with respect to x from (4.14) we also obtain (4.2). The second
part of the corollary will be proved by analogy with preceding. Il

Remark 4.2.10 In Cases 4.2.1, 4.2.5 conjugate functions satisfy first order equa-
tions; in Cases 4.2.4 and 4.2.8 they satisfy the third order equations which are
of composite type provided that (4.2) is elliptic; in Cases 4.2.2, 4.2.3 and 4.2.6,
4.2.7 they satisfy the second order equations with main parts coinciding with the
main part of (4.2), and therefore, all the above equations are of the same type.
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Remark 4.2.11 The equations (4.12) and (4.17) are the pure differential equa-
tions of lowest order foru € C3 andv € C3, correspondingly, in appropriate cases.
But they are also satisfying the following loaded integro-differential equations of
the second order:

x t t
J (aA=")(6y)de
/ (A_lLlu)y (t,y) + (A" Liu) (t,y) / (aA_l)y (&, y)dE| e dt
i r [ (aA=) € mde
+ /ux (xo,7)dT + Co — / (A_lLlu) (t,y)eo Tt
Yo @
[ J (e )€ mde
X/(“A_l)y(t,y)dHeIO( e Ue (T, ) — Uy (T0,y) = 0,
Co = v (w0, Y0) ; (4.18)
/ r J (b1 @ m)dn
/ (C’ngfu)m (x,7) + (C”lLQv) (x,T)/(bCl)x(x,n)dn evo dr
Yo Yo
r; 7 }(bC_l)(x 7)dn
+ /Uy (t,y0) dt + C, _/(C_lLQU) (x,T)evo U dr
x0o Yo
Y y
N J (bC1) (@m)dn
X / (bC_ )z (x,T)dT+evo vy(z,y)—vy (x,y0) =0, Cy = u (20, yo) -
Yo

Proof. From (4.4) we have
Ve +aA W+ A Liu = 0.

Obviously,

x

— [ (aA=V)(ty)dt [ (ad=1)(Eg)de
v(z,y) =e oA l(y)_/(AlLW) (t,y)emo( e dt| . (4.19)

zo

In order to determine I(y) we have to substitute (4.19) into (4.3):
— [ (aA=1) (6w ’

Uy =Vy =€ ™ I'(y) — / [(A_lLlu) (t,y)

/ / (aA=1)(&y)de

+ (A7 Lyu) (t,y)/(aA_l)y(f,y)df e*o dt

Zo
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i J (a1 ) € mde

- l(y)—/(A_lLlu) (t,y)eo dt

x0

i ~ [ (aa ) e

X / (aA*l)y(g,y)dge “0 . (4.20)

Zo

Since [(y) is independent of z, substituting z = x( into (4.20), we obtain

ug (20, y) = I'(y). (4.21)

Hence,
Yy

l(y) = /ux (20, 7) dT + C). (4.22)

Yo

Substituting (4.21), (4.22) into (4.20), we get (4.18)
From (4.19) and (4.22) there follows

v (0, 90) = 1 (y0) = Cp.

4.3 Construction of conjugate functions in terms of each
other
If w is given, then in Case 4.2.1 from (4.3) there follows

v(z,y) :/ux(:v,T)dT+v0(x) in Q (4.23)

Yo

and, therefore, the following statement is valid.
Statement 4.3.1. In Case 4.2.1 v is defined up to an arbitrary function vy(x).

Statement 4.3.2. In Cases 4.2.2 and 4.2.4 v is uniquely defined by the formulas
(4.6) and (4.11), correspondingly.

In Case 4.2.3, substituting (4.23) into (4.4), for vo(x) we have the following
equation:

A (2, y0) vi(2) + a(x,y0) vo(x) + 2B (2, yo) ua (x, Yo)
+C (I> yO) Uy (ZL‘, yO) + b (‘Tv yO) U ($a yU) = 07

taking into account that vy is independent of y, and setting there y = yo. Further,

vo(x) + (aA™) (2)vo(z) +2 (A7 B) (2, 90) uz (2, y0)

+(ALC) (2, 50) ty (2 90) + (BAD) (2, 90) w (,50) = 0 in Q4 (2
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since in this case

(aA™), =0, (4.25)

and, therefore, aA™' depends only on x. Obviously, the general solution of (4.24)
has the form

wiw) = AT g, [ (7B) oy )

+ (A_IC) <t7 yO) uy <t7 yO) + (bA_l) (ta yO) u (ta yO)]

J(aa-1)©de .
X € %0 dt p, Cy=const, in Q4. (4.26)

x

After substitution of (4.26) into (4.23), which is valid in all the cases, we have
x Yy x
— [ (aA=1)(&)dg J (aA=1)(&)dg
v(z,y) =e 0( ) C’o+/ 47

e=o ug(x, 7)dT
o Yo
- / GO (t, 90)
0
X [2B (t,y0) uz (£, y0) + C (¢, y0) uy (t,y0) + b (t,yo) u (t, yo)] dt} in Q4. (4.27)
On the other hand the integral

(m,y) T T
f aA~1 (f)dE f aA~1 (E)df
ey — e O

(z0,Y0)
x [2B(z,y)us(z,y) + Clz,y)uy(z,y) + bz, y)u(z,y)] d} (4.28)

is independent of a curve of integration lying in §24 if

f aA—1 f aA~!
ezo( A=1)()de (aA=Y) (@, g e ) + ] = _ewo( )©)de
X [2 (A7'B), (2, y)u(2,y) + 2 (A7'B) (z,y)tyy (2, y) (4.29)

+(A710), (2, y)uy (@,y) + (A71C) (2, y)uyy (2, 9)
+(bA7Y), (2, y)u(e, y) + (A (2, y)uy(2,9)]

Hence, after multiplying both sides of (4.29) by

[ (aA)()de
p J(aa)

I

we obtain (4.10) which is really fulfilled in Case 4.2.3. Now, taking as the curve
of integration a piecewise linear curve connecting points (zo, %), (z,v0), (z,y),
the integral (4.28) will be coincided with the integral

Y z T T
J (aA=1)(&)dg [ (aA=1)(&)de
/e’o( ) UI($,T)dT—/€IO( ) A1 (t,90)

Yo xo
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X [2B (t,y0) us (t, yo) + C (t,y0) uy (t,y0) + b (¢, yo) u (t, yo)] dt.

Therefore, we can rewrite (4.27) as follows

T (z,y) z
— [ (aA71)(&)de S (aA=1)(&)de
’U([E,y) =e * <CO+ / ero {ux(xay)dy_A_l(:an)

(z0,y0)

X 2B(z,y)uz(z,y) + C(z,y)uy(z,y) + b(x, y)u(z,y)| dz}) in Qq. (4.30)
If u =0, then

— [ (aa 1) ()ae
U(I’,y) = C’06 0 )

and this last pair (u,v) should satisfy the system (4.3), (4.4). It is easily seen
that this pair fulfills (4.4). Substituting them into (4.3), we have

— [(aa V)0 p
—Cpe o /(aA_l)yd§ =0.

o

Hence, it should be realized

T

00/(aA—1)yd§:o in Q4.

Zo

But, by virtue of (4.25),

T

/(aAl)ydgzo in Qy.

x0
Consequently, Cy can be an arbitrary constant.

Statement 4.3.3. In Case 4.2.3 v has been defined in 24 in terms of u up to
the additive term i
— [ (aA=")(€)d¢
Coe =0 ,

where Cy is an arbitrary constant.
Because of symmetry (4.13) three following statements hold:

Statement 4.3.4. In Case 4.2.5, by given v,

x

u(z,y) = /vy(t,y)dt+u0(y) in Q,

o

where ug(y) is an arbitrary function.



144 Lecture Notes of TICMI, vol. 24, 2023

Statement 4.3.5. In Cases 4.2.6 and 4.2.8 u is uniquely defined in terms of v
by the formulas

uw=—b"'Lyw in O,
and .
w=— [C (bC—l)y} [Cvy, + 2Bvys + Ay,
+(b+2B, —2BC7'C,) v, + (a+ A, — ACT1C,) v,
+ (az —aC™'Cy)v] in Que-1y. N Qe,
correspondingly.

Statement 4.3.6. In Case 4.2.7 u has been defined in Q¢ in terms of v up to
the additive term

y
— [ (bA=1) (m)dn
006 Yo s

where C' is an arbitrary constant. It has been given by the formula
y (zy) oy
— [ (bC=1) (mydn J (bC=1) (m)dn
u(z,y) =e % Co+ [ em {vy(z,y)dz — C7(z,y)

(x0,y0)
X [2B(z,y)vy(z,y) + Az, y)va (2, y) + alz, y)v(z,y)] dy}) in Qc.  (4.31)

Remark 4.3.7 By given solution ¢ of (4.2) the corresponding [in view of (4.1)]
solution (u,v) of the system (4.3), (4.4) is uniquely defined. By given (u,v) the
corresponding [in view of (4.1)] solution ¢ of (4.2) is defined up to an additive

constant Cy:
(z.y)

olx,y) = / vdx + udy + Cy. (4.32)
(z0,y0)

Equation (4.3) guarantees independence of this integral on a form of the curve of
integration. Equation (4.4) guarantees that (4.32) is the solution of (4.2).

In fact, from (4.32) there follows (4.1), and after substitution of (4.1) into
(4.4) we obtain (4.2).

Remark 4.3.8 If we consider the more general than (4.2) equation
Lo+cp=0 (4.33)

then (4.1) does not lead to the system of type (4.3), (4.4) since cp in (4.33) can
not be expressed in terms of u and v without integration. But if in the domain )
there exists a positive reqular solution v of (4.33), then substituting into (4.33)
the product

p=x"v,
where ¢ is a solution of (4.33), we will have

AXzz + 2B Xay + Cxyy
+[a + 2A(Iny), + 2B(In), ]| xx
+[b+ 2B(Iny), + 2C (Iny),] x, = 0.
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Hence, x will be a solution of an equation of type (4.2). If (4.2) is of the canonical
form and elliptic, then its positive regular solution (see [10], [11]) always exists,
in general, locally.

Remark 4.3.9 Summarizing the Statements 4.3.1 - 4.5.6, we arrive at the fol-
lowing conclusion: if u and v are conjugate functions in sense of the system (4.3),
(4.4), then u is defined in terms of v up to the addend

uo(y) in Case 4.2.5;
w(y) = 0 in Cases 4.2.6, 4.2.8;
’ - f(bc’l)(n)dn
Coe ®0 in Case 4.2.7.

and v is defined in terms of u up to the addend

vo(y) in Case 4.2.1;
ve(y) = 0 in Cases 4.2.2, 4.2.4;
’ — [ (aa=1)()de
Coe =0 in Case 4.2.3.

Remark 4.3.10 Let R be the operator corresponding to the equations (4.5), (4.7),
(4.10), (4.12) and I be the operator corresponding to the equations (4.14) - (4.17).
Then in )

Ru =0, (4.34)

Iv = 0. (4.35)

If in the half-plane y > 0 denoted as R% for the equation (4.34) the boundary
value problem (BVP) with the boundary condition (BC)

li ( )_amu
im v, =
y_>0+’Y +1\Y dym

(), (4.36)
where Ypi1(y) s a certain weight function, is uniquely solvable under some re-

strictions, then under some restrictions on u the BVP for the equation (4.35)

with BC
) am—i—l,U
ylggl+’7m+ 1 (y ) W

will be solvable up to the addend v,(x).

= ['(z) (4.37)

In fact, after differentiation of (4.3) m times with respect to y, we have

am—i—lu am—i—l v
dymox o Oym+1 )

(4.38)

Further, after differentiation of (4.36) with respect z, in view (4.38) we have

_— = hnl ’ym+1 (y) aym+1 (439)
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If in R? for the equation (4.35) the BVP with with BC (4.37) is uniquely
solvable under same restrictions, under same restrictions on v for the equation
(4.34) the BVP with BC (4.36) will be solvable up to the addend w,(y); here BC
(4.36) will be fulfilled up to an additive constant.

In fact, from (4.38) and (4.37) there follows (4.39). After integration of the
latter, we will have

. o™u
ylg(gymﬂ(y)ay—m = f(x) + const.

4.4 A system generated by EPD equation

Let A=C =y, B=0, a,b = const. Then the equation (4.2) will have the form

YPrz + YPyy + ap, + by, =0, (4.40)
and the system (4.3), (4.4) generated by it will have the form
Uy = Uy, YUy + YUy + av + bu = 0. (4.41)

Since in R} A =y # 0 then (aA™"), = —ay™ # 0if a # 0, and from (4.12) there
follows that
Y (Ugay + Uyyy) + 2Ugzy + aligy + (b + 2)uy, = 0; (4.42)

if a = 0 then (aA~"), = 0, and (4.10) gives

Y (U + Uyy) + buy, — by tu = 0, (4.43)
ie.,

Y2 (Uge + Uyy) + by, — bu = 0. (4.44)

After differentiation of (4.44) with respect to y and division by y, we obtain
(4.42), where a = 0. Therefore, for any a (4.42) is fulfilled but the class of regular
solutions of (4.42) when a = 0 is wider than the class of regular solutions of
(4.43). Hence, these two equations are not equivalent.
Since in RZ C' =y # 0, then (bC '), =b(y™'), = 0, and from (4.16) there
follows
By i= y (v + vyy) + av, + bv, = 0. (4.45)

Remark 4.4.1 Let us consider (see Section 3.8)
F@2 = 4% Uy + Uyy) + aytiy + byu, + cu =0, a,b, c = const . (4.46)

From identity

ybf;i 71F(a,b,c) (ybi2bu> = E(a,bi)u’

where
bE =14 /(1 —-b)2— 4c, (4.47)
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there follows
vE—p

y T etE) — g labe) (4.48)

The last relation represents one to one correspondence between solution u'®*® of
the equation (4.46) and solutions u***) of the equation

E@bH)y, = (.

If ¢ = 0 then (4.46), after division by y, when y # 0, coincides with (4.45). In
this case from (4.47) it is obvious that either b* = b or b* =2 —0b. If c # 0, then
bt #£b,2 —b.

Thus, if a # 0, then third order equation (4.42) and second second order
equation (4.45) are conjugate in sense of the system (4.41). Hence, in view of
Remark 4.3.10 from the solutions of BVP for second order equation (4.45) we
can recetve solution of the corresponding BVP for the third order equation (4.42)
which is of composite type since the equation (for composite type equations see

(6], 18]) 3
SHOIR

when y > 0, has both real (g = O) , and imaginar (g = j:z') solutions. Ify =0,
the order of (4.42) degenerates.

y(En+n*) =0, ie, y

Let
1 when b < 1 —m;

Ym(y) =< —(lny)~! whenb=1-—m; (4.49)
y* ™1 when b >1—m,
where m € {0,1,2,...}.
Let remind that
o™v

T (Ym(y)) == {v e C*(R?) : %n(y)ay—m eC (Rf;)} :

R ={(x,y):z e R, 0<y<e<l1};
7 () = {0 € T () 0 € € (R URY) culw0) € 07 (1), > 1

*

T (ym(y)) = { €T (m(y) : lim (z,0) = o},

|z| =400
T =Ty =T,

[e)

C™ be class of bounded functions from C™ with bounded derivatives;

C™™ whenb<l—morb=1—m, m > 0;
C™' whenb=1—-m, m=0;

C and f(€) = O(I&]2), [¢] = +00, a > 1 -,
if b €] — o0, 1], whenb > 1—m,

f(§) €
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where C~™ be class of continuous functions with bounded antiderivatives of the

*

order
< m; C™™ C C™™ be class of functions with the m-th order antiderivative

vanishing at infinity;

Oy =

0 whenb<1l-—-m
—m whenb>1—-—m

Theorem 4.4.2 (see Section 3.3 and also [2], [3] §2.1, and [4], §1). - The BVP
for (4.45) with BC
ity 10 (0) 5 = S(0), 2 € R

y—0+

is always solvable in T, (ym(y)). Ifb<1—m, m =0; orb>1—m, the
solution is unique; if b < 1 —m, m > 0, it is defined up to an additive constant
under some restrictions at infinity (e. g., boundedness if b <1—m and b <0 or
u=0 (yl‘b), ro=a?+y*— +oo if b >1—m and b > 2; also Problem 4.4.5).
Ifb<1—m, m>0, and f € C™™, the solution is unique in T (Y (y)) under

the above restrictions at infinity. The solution has the form

;

M_Y(a,2 —b,0)y'° / FEm™(€)epP2de whenb < 1—m
v(z,y) =3 & (a)y" / FEmM(©)e?pmm g when b =1 — m, (4.50)
_1<CL, b7 m) / f(g)eaep_bdé' when b >1—m
\
where .
3 ameoz@ —-b
Mifa,bm) =yt [ (6 —ap e

d(a) = (m + 1)M,(a,m + 3,0) + aM,41(a, m + 3,0) for m > 0;
YTl 1+ e for mo= 0,

pi=(x—&*+1? 0= aurcctng_g € [0, 7.

Problem 4.4.3. Let b < —m. Find u € C? (Ri) satisfying the equation (4.42)
and BC Iy
yli}(l)l-‘rﬁ =f(z), v€R', fe 91 (RN (*j’*m (RY), (4.51)

when conjugate function (in sense of the system (4.41))

v e Trrh(1), and v = O(1), r — +o0.
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Problem 4.4.4. Let b= —m. Find u € C® (R%) satisfying the equation (4.42)
and BC
10™u

lim (~Iny)™'— = f(z), s € R", fe C' (R )nc ™ (R'), (4.52)

y—0+ dy™
when conjugate function (in sense of the system (4.41)
ve T ((-Iny)™"), v=0(1), r — +o0.

Problem 4.4.5. Let b > —m. Find u € C? (Ri) satisfying the equation (4.42)
and BC gm
limgy®" m? U _ f(z), z € R, fec' (R, (4.53)

y—0 oy™

where

FE&)=0(¢), [&] = 400, o> —b if be]—o0,0],
when conjugate function (in sense of the system (4.41))

v=0 (y'"), r — +00, for b €]2,+o0f;
v=o(y"?), r — +00, for b €]l,2];
v=0 (1), Vg, 0y = (172), r — +00,
+o0
ylir(r)ler / v-vydr =0 Whenyligi(lny) v=0, € R, for b=1;

veC(RTUR"), v=o0(1), r = +oo, for b€]0,1;
:;x

U:—7+O(T_1)’Ur +0(r?), v, =;y+0(7“_2), r — 400,

7= M; (a,b,m + 1) /f £)e pbde,

“+o00

am-i—lv L
ylg&y / v - vydx = 0 when ylg&y Dy 0, x € R, forb €] — 00,0].

—0o0

Theorem 4.4.6 All the solutions of the Problems 4.4.3 - 4.4.5, correspondingly,
have the following form

( Mm+1(a, 2 — b, O)y_b

< / FEME)E — 2)e? 2 + Coy™, b < —m

u(w,y) = / FEM(E)(E — w)e?pm2dE + Cuy™, (4.54)

Ya,b,m +1) /f

df, b > —m,
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where C, = const, f(_m) means bounded one among antiderivatives of the m-th

order:
=)t =
FEME) = /mf(T)dT—l- kzzockfk, ¢ € R, ¢, = const.

o

Proof. According to Remark 4.3.10, in order to solve Problems 4.4.3 - 4.4.5, we
have to solve BVP for (4.45) with BC (4.37). Therefore, by virtue of Theorem
4.4.2 (see (4.49), (4.50), where we have to replace m and f by m + 1 and f’,
correspondingly),

( —+o00

M4 (a,2 —b,0)y'? / (£ e b 2dg, b < —m;

—00

+oo

v(z,y) =< dyly(a)y™! / (€)Y e pmm=2dg, b= —

—00

Mg ebm ) [ FQeprde b —m,

\

(4.55)

where [];™! means bounded antiderivative of the m + 1 order.
If b < —m, in view of the statement 4.3.6, taking into account (4.55), we have

(z,y)
U(ZE, y> - y_byg CO + / yby()_b [M;l—ll-l(av 2 - b7 0)
(zo,y0)
a 1-b,a0 b—2
/ flm y_cr —————d&dr —y ' M} (a,2 — b,0)y" "

a9 b 2
/ A ( —— +ae™p’” 2) dedy

@) = {17 + const 0}
(T3] N
i -4 = {(_%)}WH)
T {(_m)(f) when m > 0
L [7/(€)]5Y = f(€) + const whenm =0
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and the last constant we take equal to zero in order to fulfill (4.51) exactly (see also
the end of the Remark 4.3.10). In case m > 0, we also have to take equal to zero
the above constant and all other constants, but the last, arising by integration.
Otherwise the boundedness of the next antiderivative will be violated. The last
restriction is connected with the question of uniqueness of representation (4.50).
If we did not care for the question of uniqueness, we could take [f’(£)](="V
instead of f~™(&) but then we had to take the above constant equal to zero in

order to fulfill (4.51) exactly.

Evidently,
ayl beaﬁpb 2 B a(g o .ﬁl])y eoz9pb 2
oy o ’
002 a0 pa __OE—w)ep
Y o7 + ae™p — ay
Hence,
u(a,y) =y~ yoCo + My} /f
(=) A — )eaepb 2 A& — x)eaepb—2
X / dx + dy| d§
ox dy
(z0:y0)
(z.y)
=y uhCo+ ML /f —net | e
(z0,y0)
=y " |Cu+ M} (a,2 - / fom —x)epP2de | | (4.56)
where
Cy:= yOOO m—i—l( 2- ba O)
+00
X / FEme) [(e (- z)e®? = ’] d¢ = const .
e (z0,90)
It is easily seen directly that (4.56) satisfies (4.51).
Case b = —m can be considered in analogous way.

If b > —m, after integration by parts from (4.55) we obtain

aeae —b

v(z,y) = —M;(a,b,m + 1) /f d¢

+oo
0
ZMT@hm+D/ﬂQ%

b
d¢.
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Then, in view of (4.31),

(z,y)
u(z,y) =y "y Gﬁ-/iﬁ%bM%Wm@m+U

(w0,y0)

2 _ab —b
/f aepdww—le@@m+U

626049 -b aea9 —b
/f ( a; + o )@@

But 9600 b
e p~
_ b — oy’
ybfl yaQeaapb+aa€ Hpb o Yy By
0x? ox dy
Hence,
uley) =y {bCot M5 b+ 1) [ £
@y | 9 bae"; P ybaejp_b
Y Y
d d d
X / I x + By Y '3
(z0,y0)
+oo
—b -1 p0ep"
=yt Cor My abm ) [ on PG| @D
where
(z,y)
a9 7b
C, = y5Co — My (a,b,m + 1 /f [ } d¢ = const .
(z0,y0)
It is easily seen immediately that (4.57) satisfies (4.53), if C\, = 0. O

Remark 4.4.7 Since in case under consideration u satisfies also (4.18), from
Theorem 4.4.6 there follows that (4.54) (4.54) is the solution of BVP for loaded
integro-differential equation of second order (4.18), where A= C =y, B =0,
a,b = const, with the appropriate BVC out of (4.51) - (4.53).

Remark 4.4.8 Let us now consider the case a = 0. In the case of the Dirichlet
problem for v = u%Y the weight is vo(y) (see (4.49), Section 3.2 and also [3]).
Let us find the weight for the Neumann problem for the equation (4.45), where
a = 0. The conjugate function u satisfies (4.44), i.e., w = ul®»7Y. On the one
hand, in view of (4.48),

0,b,—b)

u® =y by 070, (4.58)
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On the other hand, by virtue of (4.3), conjugate in sense of (4.41) functions

w00~ gnd uOY) satisfy the following relation
ulPh 0 = {00, (4.59)
Evidently, from (4.58) we have
uOb8) = by (00,

Taking into account the latter, from (4.59) there follows

ufco’_b) = ybuéo’b). (4.60)
Since in R% BVP with BC
. (0,—b) _ 1
ylg&fyo(y)u (x,y) = f(x), € R, (4.61)
where
1 when b > —1;
Y(y) =9 —(ny)™" whenb= -1
y bt when b < —1,
is correct, obviously,
lim o (y)ul " (z,y) = f'(z), =€ R" (4.62)
y—0+

Finally, from (4.60), (4.62) there follows

lim 4"~ (y)u" (z,y) = f'(z), = € R,

y—0+
where
y ! when b < —1;
yb’yo(y) =<¢ —(ylny)™' when b= —1;
y° when b > —1,

is the weight function for the Neumann problem. The solution of the Neumann
problem can be constructed in the following way: Under conditions of Theorem
4.4.2 when m = 0, the unique solution u'®~ of the BVP with BC (4.61) is
given by (4.50), where m = 0. Further, from (4.58) we find u®*=% and than in
usual way by means of (4.30) we find its conjugate function, which is just desired
solution.

4.5 BYVPs for singular generalized analytic functions

Introducing the notation

1 1
w = u+ v, az::§(8x—i0y), 82:25(8x+i8y), Z:=1x + 1y,
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and taking into account that, by virtue of (4.3),
ozw + 0,w = 0,
we can rewrite the system (4.3), (4.4) in the following form
ad,w + Bosw — Lo, — adzw + yw — Fw = 0

where A—C A+C b
- + a+1
= B = = .

el 5 tiB B 5 7 5

If
AC — B? = 82 — (Rea)? — (Ima)? > 0,!

then w is called a generalized analytic [11] or pseudo-analytic [1] function.
In particular, the system (4.41) can be rewritten in the following form

(z — 2) O:w(z, 2) + Re[(ia — b)w(z,2)] =0, a,b= const. (4.63)

Hence, the solution w of the equation (4.63) is generalized analytic function when
y # 0, and when y = 0, the equation (4.63) degenerates in algebraic one. Let

a # 0.

Problem 4.5.1. Find w(z) € C*(R%) fulfilling in R% the equation (4.63) when
either

0™ Rew

dim Y1 (y) oy = f(x) (4.64)
or aml

. mw

Jim i (y) oy = f(x) (4.65)

under conditions of Theorems 4.4.6 and 4.4.2 respectively, and under following
additional conditions in case of boundary condition (4.65):

F(E) = O (™), |6l = +00, a>b if m=0,0<b<1,
when b > 1—m;

FEME) =0 (g™, gl = +o0, a>1—m, ifm=0,1,
when b =1 —m;

and when 1 —m < b < 0, the arbitrary constants in the expression of f=V (&)
arising by integration should be taken equal to zero.

Theorem 4.5.2 All the solutions of Problem 4.5.1 have the following forms:

—+o0
b
’LU(Z) _ D—ly—b / f(*m)(f)ea-arg(f—Z) ‘55 _’Z’ df + C*y_b, (466)
where
D :=Mp1(a,2 —b,0) when b< —m, (4.67)

IB=Ima, A=8+Rea, C=5—-Rea.
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D :=dy1(a) when b= —m, (4.68)
D := M, (a,2—5b,0) when b<1—m, (4.69)
D :=d,(a) when b=1-—m, (4.70)

C. is an arbitrary real constant;

“+oo
w(z) =21 / F(£)0. (e“'arg(z_5)|§ —2|7%) d¢, (4.71)
where
F(&) == My (a,b,m +1)f(&) when b> —m, (4.72)
F(€) := My a,b,m)f"V(€)  when b<1—m. (4.73)

(4.67), (4.68), (4.72) and (4.69), (4.70), (4.73) correspond to the boundary con-
ditions (4.064) and (4.65), respectively.

Proof. In view of the well-known Picard Theorem (see, e.g., [9], [10]), solutions
u,v € C? (R%r) of the system (4.41) are analytic functions with respect to the
real variables z, y since v satisfies (4.45), and u satisfies the non-homogeneous
equation
Ugg + Uyy + ay ug + (b + l)y_luy = —y o,

with analytic in R with respect to x, y coefficients and the right hand side.

In case of the boundary condition (4.64), according to the Theorem 4.4.6, the
solution w of the Problem 4.5.2 can be constructed by means of (4.54), (4.55) as
u + 1v, taking into account that

0 =arg({—z), p=[¢— 2|,

=2+ _ p*

£E—2 =7
0 0
ay (e*p™") + z% (e®p™") = 2i0, (e*p7?).

In case of boundary condition (4.65), at first we find v which will have the form
(4.50). Further, in the similar way as proof of Theorem 4.4.6, we find conjugate
u. Therefore, it will have the form (4.54), where in coefficients of integrals and

in conditions with respect to b the non-negative integer m should be replaced by
m — 1. At last, we calculate u + iv. O

§—z+wy=

Remark 4.5.3 If m > 1, and b < 0, is cases (4.67) - (4.70), the representation
(4.66), because of f™(€), besides of Cy™, contains as well the following arbi-

trariness:

dt
t—1

+oo
CD—l/ea-arcctg(—t) (1+t2)§
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+o00
b
::CD_{/ew”mﬂ%Nt+U(l+t%?4dt
=CD ' [My(a,2 — b,0) +iMy(a,2 — b,0)]
— D! [—%Mo(a, 2~ b,0) +iMy(a,2 — b, 0)]

— oD <z - %) Moy(a,2 — b,0),
where C' is an arbitrary real constant.

In the case (4.73), if b > 0, because of f(=Y(¢), the representation (4.71)
contains the following arbitrariness

+oo
2iC / az [ea-arg(zfﬁ)’é‘ _ Z|7b} d£

“+o00
_iC —6aIarg(Zi£)’£ . Z|7b|+oo iy / 2 [ea-arg(zfé)m _ Z|fb] d&
oo dy
= C . M()(CL, b, 1)yib7

where C' is an arbitrary real constant.

Let now a = 0, then u satisfies the second order equation (4.44). In this case
the boundary value problem can be set and solved in the similar way, taking into
account that, by virtue of Remark 4.4.8, now

1 ifb<1l—mandm =2k, orb=-2k>1—m;
yt if b < —m and m = 2k + 1;
(—ylny)~! if b= —m and m = 2k + 1;
ybtm-1 if —m<b<l—mandm=2k+1,
orb>1—m, m>0and b# —2k >1—m;
| (—lny)™' if b=1—mand m = 2k,

ke {0,1,...}.

4.6 Some general remarks

In Section 4.2 some sets have been introduced.
Since functions indicated in indices of sets

Qo, Q4 Qaany,, W, Qo Que-y
Y x

(which are subsets of a domain {2 and whose closures are supports of the above
functions) are continuous (even more a,b, 4,C € C*(Q), (a¢A™"), € C'(Qa),
(bC~H* € C' (Q¢)), the above sets are open and locally simply connected i.e.,
for any point from each of the above sets there exists simply connected domain
contained in the above set and containing point under consideration. On the
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other hand the above sets can be multiply connected domains and even unions
of domains without joint points.

In Section 4.3 in all the cases we have formulas for construction of v by means
of u and vice versa of u by means of v either only by differentiation [see (4.6),
(4.11), and Statement 4.4.5] or by differentiation and quadratures [see (4.23),
(4.30), and Statements 4.4.4, 4.4.6].

Here should be emphasized that the formulas (4.6), (4.11) mentioned in State-
ment 4.4.2 (or formulas of Statement 4.4.5), where v (correspondingly u) is deter-
mined by u (correspondingly by v) only by differentiation without integration, are
valid in indicated sets without any additional restrictions. The formulas (4.23),
(4.30), (4.31) and the formula of Statement 4.4.4, containing integration, are valid
locally, in general, in indicated sets. The above formulas will be valid globally
in indicated sets if we demand simply connectness of corresponding sets (such
are they in Sections 4.4 and 4.5). Moreover, in (4.23) and in Statement 4.4.4,
should be convex parallel to axis y and z, correspondingly (i.e., whenever the set
contains two points lying on a line parallel to the axis, it contains the segment
connecting the above points). In formulas (4.30), (4.31) there have been taken
into the consideration the following reasonings: if a path of the integration lies
in two-dimensional domain and the integrand depends only on one variable, then
the curvilinear integral of the second kind (with respect to the above variable) is
equal to the integral along the projection of the above path on the corresponding
axis, where the integrand can be defined by means of parallel (to another axis)
transfer.

Thus, we have the above-described chain of the first order partial differen-
tial equations system (4.3), (4.4), its generator partial differential equation of
the second order (4.2), and the conjugate first (4.5), (4.14), second (4.7), (4.10),
(4.15), (4.16) and third (4.12), (4.17) order partial differential equations. Now,
if we are able to solve certain boundary value problems for one of them, then we
can solve the corresponding (not the same) boundary value problems for other
ones. This is illustrated in Sections 4.4 and 4.5 in the case when the generator
equation is a second order elliptic differential equation (4.40) (which arises in the
theory of elastic cusped plates) with the order degeneration. So, in Section 4.4,
by means of solutions of the boundary value problem when on the boundary the
m-th order derivative of the solution of the second order equation (4.45) with the
suitable weight is given, the corresponding boundary value problem for the third
order partial differential equation (4.42) has been solved; by means of the weight
function for Dirichlet problem for the second order degenerate equation (4.45),
the weight functions of Neumann problem for conjugate second order degener-
ate equation (4.44) have been constructed and the way how to solve the above
weighted Neumann problem has been shown. In Section 4.5, for a singular gener-
alized analytic function [i.e., for solution of the first order degenerate (singular)
complex partial differential equation (4.63) generated by the degenerate equation
(4.40)], the weighted Riemann-Hilbert type problems have been solved.
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Chapter 5

Weighted Boundary Value

Problems for Higher Order
Partial Differential Equations

In this chapter, based on the results of Chapter 3, we investigate (in general
weighted) Dirichlet and Riquier BVPs for higher order degenerate PDEs. In par-
ticular, the above-mentioned equations are obtained by iterating elliptic EPD
operators with different constant coefficients. We give two ways of constructing
solutions to weighted, in general, BVPs for degenerate higher (even) order equa-
tions. Here we employ the results of Sections 3.2 and 3.3 concerning weighted, in
general, BVPs for second order degenerate EPD equations.

5.1 The iterated EPD equation

The 2n order equation

(ﬁ E(‘”’bj)> p(z,y) =0, ne N\{1}, (5.1)

where a;, bj, j =0,...,n — 1, are (in general) complex constants, will be called
the iterated EPD equation (see, G. Jaiani [2], [4]-[7] and [8], pp. 46-57).
The principal part of the equation (5.1) has the form

o on . 82 82 n 82n
y'Atu =y (81102 _2) =Y Z ( > §2—k) gy 2k
Let us consider corresponding 2n order form with respect to real constants Ay,

)\21
K (M, X)) = Z ( ) (= k))\% e ()\% + /\g)n

Since the conical manifold

K ()\1, )\2) = y2 ()\% + )\%)n =0

159
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for y # 0, has not real points except the point A\; = 0, Ay = 0, equation (5.1) is
of elliptic type for y # 0 according to classification (see [1], p.10). When y = 0
equation (5.1) has an order degeneration from the order 2n to n. Let us also
consider the following particular case of equation (5.1) (see, G. Jaiani [2], [3], [5],
[6] and [7], pp.59-95)

Ebp .= (1:[ E(“J"b)> o(x,y) =0, neN\{1}. (5.2)

It is easily seen that operator E° is independent of the order of factors E(®:).
The following corresponding principle

e (z,y) =y P (2,y) (5.3)

is valid. The principle (5.3) to each solution ¢®(z) corresponds solution (%) (z)
and vice versa. The above corresponding principal follows from the identity

Elp(2)] =y P EX Pyt P (2)] (5.4)

where ¢ € C?" (R%). The identity (5.4) evidently is true for n = 1 [see (5.3)].
Let it be true for n =m — 1 > 1, then

Efngo = plen-1t) (EanSO) = Elm-1b) = yl‘bEifl (yb—1¢)
y B B (v )y T ER Y (v )

i.e., (5.4) is true for n = m too. Thus, according to the method of mathematical
induction (5.4) is true for an arbitrary n € N.

5.2 The first BVP in the half-plane
In this section we assume that

a; #ag, Jj#k, jk=0,...,n—1 (5.5)
For the sake of brevity let z := (x,y) and zq := (z0,0).

Problem 5.2.1. In R% find a function ¢ € C*" (R%) satisfying equation (5.2)
in R and either BCs

. OFp(z

legclo (;Z(k) = fi(x0), k=0,....,n—1, Reb<2—n, (5.6)
or BCs o

. B z

Zli}rilony():fk(:co), k=0,....n—1, Reb>n, (5.7)

where z € R, zy € R, andf,gj_k) ceCRY,7=0,....n—2,k=0,...,n—1;

while fénil*k)ec (Rl\;>, =0,...,n—1; ; s a union of discontinuity points

of the first kind of the last functions; subscript ”"*” means the subset of bounded
functions of the corresponding class of functions.
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Theorem 5.2.2 A solution of the Problem 5.2.1 has the following form

1+oo

() Yt & .
Y (z) = b) Z / D;(b,&)e™?p"~2d¢, when Reb < 2 —n, (5.8)
and
(@ =
w@):—————zj/z%@—bgk%%*@;wmmlmb>m (5.9)
D(2 —b) =
Dj (bv 5) =
Ao (ag,b) ... Ao(aj_1,b) fo (&) Ao (ajt1,b) .. Ao (ap—1,b)
An-1(ao,b) ... Ap_1(aj_1,b) f,(ll:ln) (€) An-1(aj+1,0) ...y Ap-1(an-1,b)

Proof. We look for solution of the Problem 5.2.1 under BC (5.6) in the form of
the following sum

P(2) = (), (5.10)

where functions 1;(z) € C? (R%r) ,7=0,...,n—1; are solutions of the following
BVPs

E(ajab)¢j(z) =0, 2 eRi, j=0,...,n—1,
R, j=0,....n—2

= F; (o), zERi, xoe{

provided that functions F} satisfy the conditions of Problem 5.2.1 with respect
to f;. At the same time functions Fj, j = 0,...,n — 1, should be chosen in such a
way that

R, k=0,...,n—2,

x 5.11
RN, k=n—1. (5:11)

ak% 5
Zl_g:loz = fi(xo), z€ R, x €

If Reb < 1 —j and a; # 0 for odd j (it could be assumed with out loss of
generality, since on the one hand, in view of (5.5), only one of the constants a;
can be equal to zero; on the other hand operator E? is independent of the order
of cofactor operator E(%*) and, therefore, we always can give the even index j to
the coefficient a; which is equal to zero), then, by virtue of Theorem 3.3.8 (see
formula (3.63)) and Remark 3.3.10

+0o0

1-b ,
w(e) = [ B e =01 (5.12)
J
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Substituting (5.12) into (5.11) and let z — x, we get

ij(k_j)(fﬂ) = fr(z), z €

j=0 "

n—1 Ak (a,j,b; : (513)

RY, k=0,...,n—2,
Rl\;,k:n—l.

*

whence, after differentiation of the k-th equation (n — k — 1)-times we obtain
A (a,0) s
SR ST Y ) = £ (@), k=0,.. n— 1. (5.14)

Solving the system of algebraic equations (5.14) with respect to functions
Fj(n_j_l)(x), we get

n—1
F (@) = D7 0) Y A £ (), (5.15)
7=0
where
n—1 -1
D(b) := D (ag, ..., an_1,b) == D (ag,...,an_1,b) [H A (aj, b)] (5.16)
j=0

is the determinant of the system (5.14). Here

AO (ao, b) s ceey Ao (an,l, b) s
D<b> :D(CLOa '7an717b) - s
An,1 (G’O; b) sy An,1 (an717 b)
and Ay; is the cofactor of its element
Ay (aj7 b)
Aj (aj7 b)

of the determinant D(b).

By virtue of (2.64), and well-known properties of determinants we have
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1:10 A (ajv b)
D(b) =D (CLO, ey Qp1, b) — (_1)n71 7;— -
[1(6+7)
1
Qg
2
D
=
(k) o
Z C2ja0]_a§7 kGNZ
j=0
k—3
Z C2j+1a03 +ay, ke Ny, Z( ) -0
Jj=0 =0
\
( n—3
2
n—1
(C2j)a/03 _agfl’ ’n,—l €N2
7=0
n—4
—~ (n-1) +1 1
Coj+1 Gy +Cl6li , n_leNl
( =0

(j-th column we can get from the first one replacing ag by a;_1, j =2,n — 1)

n—1 1 1
A(a;, b a R ne1
et jl;[() (25,5) > A (=1)z, (n—1) € Ny;
n— . . . - 2 -
[T+t (- DeN
= gt A

(taking into account that the last one is the Wandermond determinant)

) nﬁ;A (aj7b)
— (_1)% )=

I (@-a),

n—2
H (b + j)n—l—j 0<k<j<n—1
§=0

where 7 is the greatest even number which is not grater than n. Hence, by virtue
of (2.59),
D(b) #0
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and, moreover, by virtue of (5.16), (2.59),

D(b) #0,

when (5.5) is fulfilled and a;j,b € R'. If a; and b are complex numbers, then we
have to assume that (2.55), (2.56) are fulfilled. Since,

An,1 n—1 = D ((1,0, e, 9, b) s
Anflj = D(ao,...,aj,l,an,l,ajﬂ,...,an,g,b), ] = O,...,n—2,
under same restrictions

Anfljio, ]:0,,n—1 (517)

On the one hand after integration by parts (n — j — 1)-times

3
/ (= T)n_2 F§n—j—1)(7)d7

(n—2)! 7
o
n—j—2 (f . &))n—Q—l ) £ (f . 7_)jfl
- N T )+ | &
N o
n—2 -1
=F©O+Y ad, j=0,...,n-1,) ():=0 (5.18)
* 1=0 7 1=0

On the other hand taking into account equalities (5.15), (5.17),

3
/ (3= T)n_2 F(n—j—l)(7>d7

(n—2)! J
o

n—2
= D7 '(b) {Z A 1T + Anr

n—2
fn—1(_n+1)(§) + Z agl] } ; (5.19)
* 1=0

gl,gl,gl = const .
ik
From the equality of the left hand sides of (5.18), (5.19) it follows that
n—2
F() = D7 () {Z Ay £ 0
k=0 *

*
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+An 1

o +z ( NrE0) s]}
Z Ak]fk

Therefore, by Vlrtue of (5.16), we obtain

B = Ay agh) 2

Substituting (5.20) into (5.12), in view of (5.10), we get (5.8).
From (5.20) we have

(5.20)

Fi(x) = A; (a;,0) D71 (0) DV (b,x), j=0,...,n— 1.

Hence, under the restrictions of the theorem we conclude that functions Fj(z),
J =0,...,n — 1, satisfy conditions of the Problem 5.2.1 with respect to f;.

If fr(x) =0, k =0,...,n — 1, then the solution of the problem under con-
sideration can be represented as (5.8), where function fo(z) = 0, while functions
f](_j) (), 7=0,...,n — 1 are arbitrary polynomials of order (j — 1). It is easy to
see that this solution is trivial one (s. [7], p. 63, 64).

Solution of Problem 5.2.1 with boundary condition (5.7) according to the cor-
respondence principle (5.3), can be reduced to the Problem 5.2.1 under boundary
condition (5.6). O

Remark 5.2.3 Let
Reb>n+py, pr € N’ k=0,...,n— 1.

It is easily check that (5.9) is a solution of equation (5.2) which satisfies the
following BCs (s. [7], pp. 66-69)

o ( - b+18ky ®
Die

lim Oy Oy*

Z—To 8pkyk*b+1

aypk
Remark 5.2.4 A solution of Problem 5.2.1 under the BCs (5.6) is unique if

> = fi(w0), 2€RZ, (1) R, k=0,...,n— 1.

aj,bERl,;:Q

e Elpe o (REURY), j=1,..,n—1; (5.21)
oPra—t AT~ k
: j—k—l1
zlig:lo urdyi , (5.22)
j—k—=l>0, p+q=k, j=1,....n—1, k=0,...,5, 1 =0,...,q, p,g=0,...,k;
&
P co(wUR) :
ooy € € (RIUR'). (5.29
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Proof. It can be proved that

J ptq= k q ap+q ZA‘] k

=3 Y Y

a2j—l—k

y
— q,j—k—1
o Z Z bil v Qap+2r Qya—i+2(—k—r)’ (5.24)

j j
where af7, bi'f are certain constants, in particular af; bg‘ll =0forj—k—-1<0
T

j
and ady =1,j=1,...,n—1.
If o satisfies BCs (5.6), then, according to (5.23),
J_ pte=k i 52— ATk
ZIEEOZ Z kj kaxpayq j+k
k=0 p,q=0,...,
o k
J  pteg=k j-k a'@

j j
- Zli)rfrlo Z Z Z Z:Z%ik axp+2rayj*p+2r

k=0 p,q=0,....k r=0
q>j—k

o pre=k gk

_Z Z Zbgq]kf;?gr o), j=1,...,n—1. (5.25)

If now, ¢ is a difference of two possible solutions (i.e., f; = 0, z € R,
j =1,..,n — 1, for this difference), which satisfy conditions (5.21)-(5.23), then
by virtue of (5.6), (5.24), (5.22), (5.25), we have

lim ¢ =0, hmE’bg):O, j=1...,n—1.
Z—I0 Z—X0

Hence, ¢(x,y) = 0 how it is proved below in Section 5.3 for the case n =2. [
Remark 5.2.5 A solution of Problem 5.2.1 under the BC (5.7) is unique if

aj,bE]Rl,;:Q

yb_lgp, yb_lEf’ap e’ <R1UR1> ,7=1,....n—1;

lim yj—k—zak_lAj_k (v ')

— 07
220 OxPQy1~

j=k=1>0,p+tq=k, j=1,....n—1, k=0,...,5, 1=0,...,q, p,g=0,....k;

8] . .
(%s@yjs (RQURI) =0,...,5,j=1,....,n—1.
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Remark 5.2.6 Solution (5.8) satisfies conditions (5.21)-(5.23).

Proof. By virtue of (5.7), when o + 5 = j we have

. (1) ik : (1)
' OF—L AT~k J . ' H27—k—l
lim y]_k_l—w = lim Z J—K y]_k_l (,0'
2550 8xp8yqfl 20 — T axp+2rayqfl+2(]fkfr)
i—k ] k n—1
_ -1 - Y
o |07
r= n=

) aj—k‘—l 1-b—B(¢ _ B ,an0 b—2
< [pppe? W E D e
axp+2’r'7aayq*l+2(jfk‘77‘)fﬁ

j—k . n—1
_ ] —k ; e
=070y [< r )ZD;” (b,z0)y' 1
r=0 n=0
Ooaj—k—l 1-b-B(¢ _ \Boanh jp—2
< y—_Coofen at| —o.
Oxpt+2r aayq J r
o0 E=x+yt

(1)
So, (5.22) takes place. Since (5.24) is true for ¢, from (5.22)-(5.24) it follows

()
validity (5.11) for ¥ (boundedness becomes clear after substitution £ = x +
yt). O

5.3 The generalized Riquier problem in the half-plane

The method used in the previous subsection excludes consideration of the case
when either a; = a; for i # j or b; # b; for i # j.
For the sake of simplicity we consider the fourth order equation

Elenb) o plaoko) 0 — (5.26)

and apply another method of solution of basic BVPs which allows investigation
of the general case for (5.1).

Let the constants a;,b; € R, j=1,...,n— 1.

Let us introduce the following classes of functions.

Kmom (%(y), '1Y(y)), ms € N° 6 =0,1, is the class of functions ¢y satisfying
the conditions:

po € CU(Ry), Bl o Blaot) gy =0,

c O(R?), 6=0,1,
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where
e1(21,y) = By (z,y),

R2 = {(z,y): 2 €R', 0 <y <e=const <1},

0 1
Kmomi(y(y),7(y)), ns € N, is the class of functions ¢, satisfying the condi-

no,Mn1
tions:

, 0 1
(1) wo € K™ (Y(y),7(y));
(4) ps € C(RZURY), §=0,1, | |lim e1(z,0) = 0;
x| —+00
(iii) s € CT5(RY), §=0,1.
K(Tg’ml = Kmom

0 1 0, 1
Kmom (Y(y), V(y)) (or Ko™ (Y(y),Y(y))) is the class of functions yy satis-
fying all the conditions of the class
mo,m1
no,M1

except of the second and third conditions for 6 =0 (§ = 1).
K[om = mo,sma

0,my 11
mo,m1 — mo,mi1
K0 = gmoam

K"%Oaml = Kmo,m1 .
KS”Ovml = Kmo,m]_ .
)

0, 1 0, 1
Ko (y(y), 7(y)) € Kom(Y(y),Y(y)), no,n1 € NV is the class of func-

no,n1 no,n1
0
tions (g satisfying the conditions

lim ¢1(z,0) =0 for ny#0.
|z|—+o0
Bellow (see [2], [4], [5], also [7], pp. 69-95 and [8], pp. 46-57) the following
BVPs are solved.

Problem 5.3.1. Let by € |—00,2 —mg| and (as,bs) € i1ms, 0 = 0,1. Find a
function py € K" (1,1) which satisfies the following boundary conditions

mo,mi1

RIS
lim

z—xQ 3ym5

= fs(z0), 2 € RY, 2y e R, 6 =0,1, (5.27)

where
frectmi™ 5=0,1, e ™ g = Eloblg,,

and the conditions

O(1), r — oo when either as € R, b5 €] — 00, 0[
or as =0, bs = 0;
#ol:9) = o(1), r — oo when either as € R, bs €]0,1]
or a'57é07 b6:0,

(5.28)
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Problem 5.3.2. Let by €] —00,2—mg| and (ag, by) € i3mg, (a1,b1) € i1m,. Find

a function
1\
vo € Kidm, ((111—) ,1>
’ Y

which satisfies the following BCs:
(1) (5.27) for § = 1;

(44)
. 1\ 0™ 2 1

zlignlo (hl;) g = fo(zo), z€ RL, 29 € R, (5.29)

where
fl c C(fmlfl); fl c Cm07m172
(or £ O =0 (7)o a>0) (530
C(im0)7 mgy > 07
fO < C(_1)7 moy = 07

(or if foeC and fo(§) =0 (|¢]7%), |¢] = +o0, @ >0, for me=0); (5.31)

and if mg > 0, my > 0, then @q satisfies conditions (5.28); while when my = 0,
my > 0 it satisfies (3.55), (3.56), and (5.28) § = 1.

Problem 5.3.3. Let mg < my + 1 and (ag,bo) € i1,mg, (@1,01) € igm,. Find a

function
1\
ez 1) )

which satisfies the following BCs:
(1) (5.27) for § = 0;
(i)

_ 1\ ' om
zlig:lo <ln§> 8y7;p11 = f1(z), z € RY, 2y € R, (5.32)

where fs € CC™=9: § = 0,1, and if mg > 0, my > 0, then p, satisfies conditions

(5.28); while when mo > 0, my = 0 it satisfies condition (5.28) for § =0 and ¢,
satisfies (3.55), (3.56).

Problem 5.3.4. Let my < my + 1 and (as, bs) € i3m;, 0 =0,1. Find a function

1\ ! 1\ !
o € K00 (111—) , (ln—)
’ Yy Yy

which satisfies boundary conditions (5.29), (5.82) where fs € C"™7%) §=0,1,
when mo > 0 (if mg = 0, either (5.31) is valid or fo € ¢V, fi € 02 or
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(5.80) is fulfilled for mg =0); and if ms > 0, § = 0, 1, then o satisfies condition
(5.28), if ms =0, 6 =0, 1, satisfy (3.55), (3.56) vs, 6 = 0,1, if mg =0, my >0
o satisfies (3.55), (3.56) for po and ¢, satisfies (5.28) when 6 = 1, while if
mo > 0, my = 0, then ¢y satisfies conditions ((3.55), (3.56) and ¢y satisfies
condition (5.28) for § = 0.

Problem 5.3.5. Let by = by = b; moreover b > 1 — myq and either ag # 0, or

aw=0 b#£0,-2 . —2 (mo— [?} —1), mo € N\{1}.
In addition b > 1 — my and either ay # 0, or
my
=0, b£0,-2 .. —2 <m1— [7} —1), mi € N\{1}.

Find function g € K™o™ (yPtmo=t ybtmi=1) which satisfies BCs

ms
lim berm‘s_lM = fs(z0), 2 € R, zp e R, 6 =0,1, (5.33)

Zz—x0 aym5

where fs € 09, 8§ =0,1; if b €] — 00, 1], then

Fo&), ATVE) =0 (1E17), (§) = +o0, a > 1 -1,

*

and conditions (3.53)-(3.59) for @y and py, where u, a are replaced by @o, ag and
©1, ay, respectively.

Theorem 5.3.6 The solutions of Problems 5.3.1-5.3.5 have the following forms

+oo
(1)

T
Yo = A;ﬁ) (ag, bo) y* % / {fo(_mO)(f) + [Hmo <§,a0,a1 — ag, by, by — bo)

—0o0

AT

—_ z _ _ apf  bo—2

Aoy (00, 0) 2 (6, 51 = a0, u = o) | S b e, (539
(2) “+o0

Po=d,. (ao)y™ / {fo<‘m°>(§)

T

+ [aono-H (57 ag, a; — ag, —mo — 1, by +mg — 1)
T

+ (mo + 1) Hp, <§,a0,a1 — ag, —mo — 1,by +mg — 1)

T
+Agt1 (1,01 — 2) — dpyy (ag) 2 <07 5701~ Go, by —mg — 1)}

XAy (a1, b1) fl(_ml_l)(f)} e pTmO2 g, (535)
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(3)
Yo=A,,, (ag,b )yt
+o00
o 7T
X / *0( (&) + [Hmo (5,%,@1—@0750,1—”’01—50)
T
_Amo (CL(), bo) Q <97 57 ai — Qo, 1— my — bO)}
<AL £ f et (5.36)
@ “+oo
Po=db ) ad g [ {dml () fol ™€)

— [dmo (ap) (8, g, a1 — ag, My — m1>

T
—aoH 11 (57 aog, ar — ag, —mo — 1,mo — m1> = N1 (@1, —my — 1)
T
—(mo+1) Hp, (57%,@1 — ag, —mg — 1,mg — m1>}
<fCm (g f et (537)
(5)
¢ (z,y)
( +oo
M (anbomo) [ ()
M(abba_;zO) (-1) 0 —b
w00 5b
+(0l1 —ag) M (ay, 0, ml){:l (©)] ™o

+oo
— (a1 — ap) " M~ (a1, b,my) / ATV (©)e™p7dE, ay # ap; (5.38)

400
M~ (ag, b, mo) / {fo@ 1 Ma,b,mo) fﬁ”(@} e p=bde

M (a,b,mq)

o
_M_l (aa b7 ml) / fl(il) (g)eeaep—bdf’ a; = ap = a,

\ —0o0 :

respectively, where

H;, (907 ap, a1 — ag, v, b1 — bo)
—+o0

= / thgroarcete(—t) () (arcctg(—t), 0o, a1 — ag, by — by) (1 + tQ)%fl dt. (

—0o0

5.39)

Problems 5.3.1-5.3.4 for mg = 0 and Problem 5.3.5 are uniquely solvable.



172 Lecture Notes of TICMI, vol. 24, 2023

Solutions of Problems 5.3.1-5.3.4 for mqg > 0 are defined up to an additive
constant.
If fs € 0" =%) § = 0,1, then Problems 5.8.1-5.8.4 are uniquely solvable in
0

the classes
1\ !
Ko (L1), K ((l) ’1> |
0 0 Yy

1\ ! 1\ ! 1\ !
K;L”g;;‘ll 1, (ln—) , Kn’?gxll (ln—) , (ln—) ,
o Yy o Yy Yy

respectively (when we are looking for solutions in the above mentioned classes in
the expressions (5.34)-(5.37) of solutions stars should be replaced by zeros).

Remark 5.3.7 If my = 0, then in solutions (5.34) and (5.36) of Problem 5.5.1
and Problem 5.5.3, respectively, the terms which correspond to the constant C' in
the expression of f1"™ V(&) are equal to zero, since, by virtue of (5.39),

0

“+o00

T
yl*bo / |:H0 (57 o, a1 — G, b(], bl - bO)

—0Q0

— A (ag, by) (9, g ay — ag, by — bo)] Cef P24 —

and this assertion remains also for by =1 — my.
If mg = 0, then in solutions (5.35) and (5.37) of Problem 5.8.1 and Problem
5.8.4, respectively, under the assumption of Theorem 5.3.6, either

AT™ME =0 (1€7) 5 €] = 400, a >0, (5.40)

*

or exists fi7™7(E). But then f; "™ 7V(€) may not contain the arbitrary ad-

*

ditive constant, otherwise, either (5.40) will be violated or fi"™=2(€) will be

unbounded.
In (5.88) the sum of the terms corresponding to the arbitrary additive constants
n fl(_l) is equal to zero, since, because of equalities

“+o0o

/ e"ptd¢ =y "M (a,b,0), z € R%,
+oo
/ 0e®p=td¢ = y' " M(a,b,1,0), 2 € R?,

M (as,b,mp) = (—=1)™° (b — 1,m¢) M (as,b,0), § =0,1,
MO (Cl, b, 1, mo) = (_1)m0 (b — 1,m0) MO (CL(;, b, 1, 0) .



George V. Jaiani. Even Order Sngular Elliptic Equations 173

The expression

oo M (CLl, b, m0>

M~ (ag, b, my) / CM™ (ay,b,m1) a — ao e®?pbd¢
— 0 MO (CI,, ba ]-7 mO)
+o00
1 (a1 —ao0)™ \ o b
-M (alvba ml) / C 0 e P dg

_ Cy' ™" ~1 (a1 — ao)_l M (ag,b,0) M (ay,b,mg)
B M(abb; ml) M <a0,b, mO) MO (a’ab) 17m0) M((l, b7 0)

. (a1 —ao)_lM(Cll,b, O) o
{Mo(a,b,l,O) =0 0>1,

where in the braces the upper and lower expressions correspond to the cases
ay # ag and a; = ag = a, respectively.

Remark 5.3.8 If in the formulas (5.34)-(5.38) fo and fi are piece-wise contin-
uous functions satisfying all the hypotheses of problems 4.3.1-4.3.5, except every-
where continuity, then the expressions (5.84)-(5.38) will satisfy equation (5.26) in
R and the pairs of BCs (5.27); (5.27) for 6 =1, (5.29); (5.27) for § =0, (5.82);
(5.29), (5.32); (5.33), respectively, at the points of continuity of the functions fo
and fi1, even if as, bs, 6 = 0,1, be complex numbers and Rebs, o = 0,1, satisfy
the same conditions which were satisfied by the real constants bs, 6 = 0,1 (except
of the cases by =1 —mg and by =1 —my, when bs, 6 = 0,1, are always supposed
real ones). Naturally, we exclude the complex values of as and bs, 6 = 0,1, when
the dinominators in (5.34)-(5.38) vanish.

Proof of Theorem 5.3.6. Since
E(ambo)(po = ¢, (5.41)

we equivalently reduce Problems 5.3.1 - 5.3.5, to the pairs of BVPs like Problem
3.3.1 - 3.3.5 for the homogeneous equation

Eleb)y =0 (5.42)

and for the non-homogeneous equation (5.41). Here the function ¢, in the right-
hand side of equation (5.41) is a solution of the certain BVP for equation (5.42).
In that cases, when in the Theorem 5.3.6 is claimed uniquely solvability of Prob-
lems 5.3.1 - 5.3.5 there are assumed that the conditions with respect to ¢; and
o of uniquely solvability of the corresponding Problems 3.3.1 - 3.3.5 are fulfilled.

Thus, if we consider a difference of two possible solutions of Problems 5.3.1 -
5.3.5, first we get certain BVP of the form of Problems 3.3.1 - 3.3.5 for equation
(5.42) with homogeneous BCs under assumptions of uniquely solvability of the
BVP, i.e.,

gOl(l',y)EO, ZER?H
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and then we get a certain BVP of the form of Problems 3.3.1 - 3.3.5 for equation
(5.41) which is converted in to the homogeneous one with homogeneous BCs
under assumptions of uniquely solvability of the BVP, i.e.,

SDO(Iay)EOa ZGR%,-
O

Now, we pass to the constructing of solutions. Problem 5.3.1 is equivalently
reduced to the following pair of BVPs.

Problem 5.3.9. Let (a1,b1) € i1m,. Find a function
pre T (1)

satisfying equation (5.42) and conditions (5.27), (5.28) for 6 = 1.

Problem 5.3.10. Let by €] — 00,2 — mg[ and (ag, by) € i1,m,- Find a function
wo € T,y (1)

satisfying the non-homogeneous (instead of homogeneous according to the def-
inition of the class T (1)) equation (5.41) and conditions (5.27), (5.28) for
0=0.

By virtue of (3.62), all the solutions of Problem 5.3.9 have the form
+oo
Y1 = A;Lll (a1,b1) y"™™ / fl(fml)@)ealepblfzd@ (5.43)

Let us find a particular solution of equation (5.41) with the right-hand side
of the form (5.43). We look for it in the integral form

+o0o
op1(z,y) = A;lll (a1, br) / fl(fml)(f)wl(x =& y)d§, 2 € Ria (5.44)

where the function w;(x — &, y) is to be determined.
Assuming (5.44) twice differentiable under sign of integral, from (5.41) we
obtain
E1(a0,b0)u.)1 — ylfbl ea19pb172.

In the polar coordinate system the last equation we rewrite in the form

0w Oow; 0w Ow Ow Ow Ow
5 07wy 1 1 1 1 1 1
+ +agpctgl p ag 50 +bop 99 +boctg6’—a€

a10_:.,—b
90 +p o o0 e“sin”"14.

p

Whence, particular solutions depending only on 6 satisfy the following equation

82001 8w1 ale . _bl
07 + (boctgh — ag) g = ¢sin 0
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and have the form
0 ¢
wy = /eaotsinbot Ci + /e(“l“O)Tsin(bObl)TdT dt + Cy, (5.45)

90 90

where C, Cy, 0y = const, 6y =]0, 7. Let

Cy=Cy=0, Oy = =
(If
_ -1 _(a1—a0)Z £
a1 —a e 2 a1 # ag,
bl—bgzb,eo——,og—mol—{grl o) P
57(11:@07

then

(a3 — ao)_l/ealesinbedﬁ, ay; # ao,

[VE]

wix—=&y) =19 (5.46)
/e“esin_bedé’, a; = ag = a.)
( 2
Substituting (5.45) into (5.44), after integration by parts, regarding
ATMTVE) = =0 ([€]7), [€] = +o0, >0, (5.47)

*

by virtue of (3.13)-(3.15) we arrive at the desired particular solution
Sopl(xa?/) = _A;zll ((11, bl)
400 66
—mi— a PR T
X / 1:1( D (€)e’sin00) (9, 501~ aop, b1 — ) 8_§d€

1-bo
Y Y
= Aml ar. bl) / ,]:1 (5)6 P Q (9, 5 aq ap, b1 bo) dg (548)

Now, supposing f; € C~™ ! (without restriction (5.47)) it is easily seen that

(5.48) is a particular solution of equation (5.41), when ¢; has the form (5.43).
Indeed,
E(ao bO)SD 1(@,y) = =A%) (a1, b1)

/f( mi—1) {p 2, 0105, 1- ble[alsing+(Q—bl)cose]}df

al,bl /f —mi-1) (%[p_le“lgsinl_ble] dg
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= A} (a1,b1) / [0 pmtembgint=bigqe

A (ahbl 1— bl/f(—ml) a19 b1 Qdf

Further, in view of b1 < 2 —my,
O™pp1 B B _ -1 (mo—m1—1)
lim = Hmo (00, ap, a1 agp, bo, b1 b()) Am1 (al, bl) fl (l‘o) .

Z2—T0 8ym0 «

The solution of Problem 5.3.10 will be the sum of the particular solution (5.48)
and the solution of the equation

ag,b 0 2
E@o(z,y) =0, » € R2
satisfying the BCs condition

0 4,0 fo(xo)—hm8 Ppl

lim .
z—xQ aymo

z—xg aymo

Whence, having constructed all the solution 90 according to the formula (3.63)
and summing it with (5.48) we obtain all the solutions of Problem 5.3.1.

We solve similarly other problems. E.g., by solving Problem 5.3.5 we need
to find a particular solution of equation (5.41), when the right-hand side has the
form

+oo
Mt (al,b,ml)/fl(f)e‘“ep_bdf.

We are looking for a particular solution in the form

o5 = M= (a1, b my) ' / f1(E)ws( — €, y)de. (5.49)

In this case for the function ws we get the equation
Byt (x — £ y) = em?p "
Hence, by virtue of the identity (3.4), we have
E(ao,Q—b) (l’ _5 y) . yb 1 a19p b.

But the particular solution of this equation we have already found and it has
the form (5.46), provided b is replaced by 2 — b. Substituting it into (5.49), after
simple transformations, we obtain

(

b,
_ M (a6, ) / A€ Ve, ay # ao:

a1 — Qo
90p5:<

—M~"(a,b,my) / [EVE©)0e?pbde, ay = ag = a.
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Therefore,

lim yb+mo—1 ™ ps
Z—TQ 8ymo

— (a; — ao)_l M~ (ay,b,my) M (ay,b,mq) f1(_1) (x0), a1 # ap;
—M! (a,b,mq) Mo (a,b,1,myg) fl(*l) (z0), a1 = ag = a.

Then acting as above by solving of Problem 5.3.1 we arrive at (5.38).

The solutions of Problems 5.3.1 - 5.3.5 make possible to solve a number of
BVPs of the type of the first BVP, in particular, the first BVP proper. It should
be noted that such a passage is possible only in the case of degeneration of the
order of the equation. The equation under consideration in the present chapter
is such one.

Problem 5.3.11. Let by < —my, fo € O™ (™™ Find a solution of
Problem 5.3.1 satisfying BC

@ml —+1
lim o

Z_mOW _ le (SEQ), oy Riv T0 € le fl € gfmlfl mgmo*mﬂrl’ (550)

(instead of BC (5.27) for 6 = 1) and the following conditions

=0, z € R, 1y € R, (5.51)

_ omitly, 1 (m1—mo+1)
zlirrxlom - Amo (aOv bo) Am1—5 (CLQ, bo) fO ' ’ (ZL‘Q)

Hmo,m1—6 - .
e [ () ) = A a0 £ ()| | 5= 0,1,
(5.52)
where -
H™" = Hm (57 Gg, 1 — Ao, bOJ bl - bO) An (CLO, bO)
(5.53)

—Ap, <a07b0) H, (g;aoafh — ag, by, by — bo) .

Problem 5.3.12. Let by € [—my,1 — my[, fo € C™ ™" Find a solution of
Problem 5.3.1 satisfying BC

. gm 02 0 x = oy o —mmy —
hm—<y8_y2+b03_y) wo = f1 (o), f1€§Y ! lﬂg ommi=l (5 .54)

2—T0 ayml

(instead of BC (5.27) for 6 = 1) and the following conditions

am1 +2
lim Yo

— 2 1
Z_WQW =0, ze Ry, 5o € R, (5.55)
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8m1+1
lim —&_P0
2= &EH‘s@yml 0

—1

— A2 (a0, ) <A;fl (a0, bo) fo™ ™) ()

*

+ [miAn, -1 (a0, bo) + agAm, (ao, bo)] fo(mlmeH) (950)}> ) (5.56)

*

* T
Hmom = Ay, (ag, by) |:Am1 (ay,b1) +myHp,, (57 ap, a1 — ag, by, by — bo)

+ apHp, <g,a0,a1 — ag, by, by — bo)]

s
_Hmo (5, g, a1 — ao, by, by — bo> [m1/\m1—1 (CLO, bo) + a’OAml (ao, bo)] )
mlel_l(.,.,.,.7.)|m1:0 EO, mlAm1_1< )|m1 -0 :0

Problem 5.3.13. Let my < mg — 1, mo € N\ {1}, fo € ¢™ ™0t f satisfy

the condition (5.30), fo satisfy the condition (5.31). Find a solution of Problem
5.3.2 satisfying BC (5.50) (instead of BC (5.27) for 6 = 1) and the following

conditions

;T—: [y (a0 i (20)
— A1 (a9, 1 —mg) o™ty (xo)] } ; (5.57)
where -
Hmmo = [aOHm <§,a0,a1 —ag,—m — 1,by +m — 1)

+mH,,_1 (g, ag, ay — ag, —m, by +m — 2> + Ay (a1, by — 2)] A, (ag,2 —m)
_dm—l (GO) Hn <g7 ap, a1 — G, 2 - m, bl -2+ m) .

Problem 5.3.14. Let by < 1 —mq, fo € ¢™ ™" Find a solution of Problem
5.3.3 satisfying the following BC

1

om™ 9? 0 ~
li | = .
zig:lo ( ny) By ( 8y + by &g) ©o = fi (370) ) (5 58)

where f1 satisfies the conditions of Problem 5.3.3 with respect of fi (instead of
BC (5.82)) and the following conditions

1 -1 8m1+2g00
li In— —— =0, ze R% e R! 5.59
ti (1)) vt =0 2 € B e R >59)

1\~ omt
e (lny> Wg/ﬁ?‘s =0, z€RY, w eRY, §=0,1. (5.60)
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Problem 5.3.15. Let mi = myg=m, fo € C* and féo), f1 satisfy conditions of

Problem 5.3.4 with respect to fi. Find a solution of Problem 5.3.4 satisfying BC
(5.58) (instead of BC (5.32)) and the conditions (5.59) and

1\ ! o™ty cC(RY), 5-0:
) =t B A (5.61)

Problem 5.3.16. Let fy € C' and fél), fl satisfy the conditions of Problem

5.8.5 with respect to fi. Find a solution of Problem 5.5.5 satisfying the following
BC

am 0? 0 =
: b+mi—1 o
zlggcloy : Oy (y8y2 + ba_y) %0 = J (@) (5:62)

(instead of BC (5.33) for 6 = 1) and the following conditions

aml-i-QSO
: b+my 0 —
zli}rgoy dx2dy™ 0 (5.63)
am1+1g0
. b+mi—1 o
L T (564
8m1+190
: b+mq—1 0
legloy Oxdy™

(M~ (ag, b,mo) M (ag, b, my) 1o (zo) + Mo (ag,ay,b,my,my)

M (ao, b, mo) f~1 (.flf()) -+ aoM (ao, b, ml) fé (Zﬁo)
alM (al, b7 ml) M ((Zo, b, mo) — aoM (al, b, mo) M (ao, b, ml)’ (565)

X

N\

ai # aop; ~
M= (a,b,mo) M (a,b,my) f} (xo) + My (a,a,b, mg, my)

y f1 (zo) + aM (a,b,my) M~ (a,b,mg) f3 (z0)
( M (a,b,my) — ao M (a,a,b,mg,my)

where z € R%, xy € R,

, a1 = ap = a,

Mj(CLOaal’ba m()aml)
i= My (a1, b, j,mo) M (ag, b, mi)M " (ao, b, mg) — Mo(ar,b, j, my).

Remark 5.3.17 If my = 0, then the conditions (5.52), (5.56), (5.57), (5.60),
(5.61) for 6 = 1 and the condition (5.64) in Problems 5.3.11 - 5.53.16 are absent. If
my = mg = 0, then the conditions (5.52), (5.56) may be replaced by the following
equivalent condition

dp
e C(R?).
ox < ( 5)
If mqy = my =: m, then the condition (5.65) may be replaced by the equivalent
condition gmi
prm—19""" %o 2 (P2
— € (7 (R).
oxoy™ ( E)
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Theorem 5.3.18 All the solutions of the Problems 5.53.11 and 5.3.12 we get from
(5.84) substituting there

A, (a1,b1) {Amo (a0, bo) f1(z) = A, 41 (a0, bo) fo(ml_moJrl)(I)]
f1 (Q?) = Fragnitl * (566)

and

Ay (a0, bo) fi (x) |:m1Am1l (ag, bo) — apApm, (ap, bo) fo(mlmﬁl)(-’ﬂ)]

*
fl(x) = % mo,m1+1 )

AL (ar,b) H

(5.67)
respectively.
All the solutions of Problem 5.5.16 we get from (5.35) substituting there

iy (a0) fr(2) + Ay 1 (ag, L — mg) fo™ ™0 ()
filz) = : : (5.68)

Ao (ar,by) Bt

All the solutions of Problem 5.5.14 we get from (5.36), where

filx) = fi(x). (5.69)

All the solutions of Problem 5.3.15 we get from (5.37), where mi = mgy =: m and

fi(z) = ag {/(@ + fi(x). (5.70)

All the solutions of Problem 5.3.15 has the form (5.38), where

fi(x)

[ (a1 — a0) M (ar. b.my) [M (a0, b,mo) fi (x0) + aoM (ag, b,ma) f7 (o)
alM (al, b, ml) M (ao, b, m0> — aoM (al, b, m0> M (ao, b, ml) ’

= a1 # ap; (5.71)

fi (xo) +aM (a,b,my) M~ (a,b,mg) f§ (x0)
\ 1 —ayM~! (aa b, ml)Ml (a,a,b,mg, my)

, a1 = ag = a.

Solutions of Problem 5.3.6 and for mg = 0 of Problems 5.53.11, 5.3.12, 5.3.14,
5.3.15 are uniquely determined.

Solutions of Problem 5.3.10 and for mg > 0 of Problems 5.3.11, 5.3.12, 5.3.14,
5.3.15 are determined up to an additive constant.

Remark 5.3.19 The classes of uniqueness of solutions of Problem 5.3.10 and
for mg > 0 of Problems 5.5.11, 5.3.12, 5.53.1/4, 5.3.15 easily follow from Theorem
5.5.0.
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Remark 5.3.20 If mqg = my + 1, as it could be easily foreseen, from (5.53) it

follows that
HmomH =,

If m; = my =0, then

HmomtL o, (5.72)
While for other values of my, myg, using (2.65) and the equality

1
H;, (g,ao,al — ag, ¥, b1 — bo) = —m [GOkal (gaam% — ag, Y, b1 — bo)

+(k —1)Hy_» (g,ao,al — ag,v,b1 — bo)} ,

{1—k when by — by < 1;
v <

2—k+0by—0b when by —by >0, k22,

we easily obtain conditions on the coefficients for fulfilment of (5.72).
Similarly, can be investigated the nominators of the expressions (5.67), (5.68),
(5.71).

Proof of Theorem 5.3.18. Conditions (5.51), (5.52), (5.55)-(5.57), (5.59)-
(5.61), (5.63)-(5.65) lead the question of investigation of the uniqueness of solu-
tions of Problems 5.3.11-5.3.16 to the question of investigation of the uniqueness
of solutions of Problems 5.3.1-5.3.5. E.g., in the case of Problem 5.3.15, because
of (5.59) and (5.61) we have

_ 1\ om .
zligclo <ln§) 6y”i1 = GO{, (z0) + fi(x), 2 € RZ, x5 € R,

Therefore, the difference of two possible solutions of Problem 5.3.15 is the solution
of Problem 5.3.4 with the homogeneous BCs.
It is easy to prove that under admissible conditions for f, of Problems 5.3.11-

5.3.16 the solution <(p1()) of Problem 5.3.1 satisfies the conditions (5.51), (5.52),
(5.55), and (5.56); the solution 9(02()3 of Problem 5.3.2 satisfies the conditions (5.51)
and (5.57); the solution g(g()) of Problem 5.3.3 satisfies the conditions (5.59), (5.60);
the solution 9(3()) of Problem 5.3.4 satisfies the conditions (5.59), (5.61); the solution

c(;’()) of Problem 5.3.5 satisfies the conditions (5.63)-(5.65).

E.g. we can easily follow the following calculations
(1)

I omt2p,
o 0x20y™
+00
0
= A, (ao, bo) lergoya—ny*bO*ml / {J:o(ml_mOH)(ﬁ)(f — )™t

+ |:Hm0 (E,ao,al — ag, bo, by — bo) - Amo (ao, bo) Q (9,

T
2 _7a1_a07bl_b0>]

2
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XA (a1, b1) fu(§)(€ — @)™t} el phom2dg

+oo
= lim |:Ar_n%) (ao, bo) f (m1=mo+1) (ZL’ + yt)

Z—I0 *
—0oQ

T
H,, <§,a0,a1 — agp, by, b1 — b0>
Amo (CL07 bo) Am1 (CL1, bl)

% {y2§ [y2—b0—m1 (f o x)ml—lea()pro—Q} } dt
Yy |E=z+yt

_|_

filz + yt)

: O [ 9 poom T
_A;nll (al,bl) ZILI;IO / f1<1‘ + yt) {y28_y [yQ bo 1Q (87 5,@1 _ Go,b1 _ bO)

X(S_x)ml 160,9 b() 2

1} 05 ) o ()

*
™

Hmo <§,a0,a1 — agp, by, b1 — bo>
T
Ao (0, 00) Aoy (ar ) 22 ()

“+o00

+

X hm {ng |:y2—b0—m1 (E _ x)m1—lea9pb0—2j| } dt
Z_””O_OO dy |e=a+yt
+oo 8
T
—A ) (a1, b1) fi (o) Zhlilo {?JZa—y [92_1)0_””9 (9, 501~ Go, by — bo>

—0o0

X(é- o {L‘)ml 1 a0 bo 2}}|£ ot dt = 0’
when by < 2 —mq, m; € N, since, because of (3.123),

F( L0
/ {y28_ |:y2—bo—m1 (S - l.)m1—1ea9pbo—2} } dt = 0 when bO <92 mi;
Y [E=z+yt

and+
0 T
2 2—bg—m1 mi1—1_af bog—2
Y- 1Y Q0,5,a1 —ag, by — by ) (§ — ) e’p } dt
é { @y [ ( 2 ) } |E=z+yt
B o
T
=vg |V / (0,51 — a0, by = bo ) (€ = a)™ e P2
0 T -
= ya_yHm—l (5; a; — ag, by, by — bo)

when by < 2—my, by <3 —myg, My € N.
According to the similar arguments we get
(1)

am1+2 QO 0

. 2 1
ZILIQOyW:0 when by < -—my, b <l-—my, z€R, x9eR.

If my = mg = m, then
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1 -1 8m+1((4p) +oo
. 0 1. -1 —1 / M
tim () T~ g <dm @iz (e [ {dnlasiere -
— [dm(ag)Q (9; g, ai — ag, 0> — aoHpmi1 (g, ag, ay — ag, —m — 1, O)
—Apsi(ag,—m—1)—(m+ 1)H,, <g,a0,a1— ag,—m— 1,0>] f1(&)(€ — x)m}

+oo
<™ fag(0) = m + Dyl -+ (o) [ 5 <§><s—x>m+1e“1%—m—3d§>

= —d;nl(ao)d;f(czl){dm(al) [a0A i1 (ag,—m—1)+(m + 1A, (ag,—m—1)] fi(x0)

*

—dpm(ao) [aonH (gu ag, ay — ag, —m — 1, 0)

+(m+1)H,, (g, ag,a; — ag, —m — 1, O)] f1(zo)

s
+ [aonH <§,a0,a1 — Qp, —Mm — 1,0> + Apya(ar, —m — 1)

+(m + 1)H,, (g,ao,al — ag, —m — 1,0)] [ao A1 (ag, —m — 1)

+(m + 1A (a0, —m — 1)] f1(x0) — dim(a0) Amsr (a1, —=m — 1) f1(20) }

i ag)d () {dmmo)dm(anfg (x0)

*

—dpm(ao) [aon+1 <%, ag, ay — ag, —m — 1, O)

+<m + 1)Hm (ga ap, @1 — Ao, =M — ]-7 O)] fl('rO)

™
+dm(ao) |:6L0Hm+1 (5, Qp, a1 — Ao, —MM — 1, O) + Am+1(a1, —m — ].)

+(m +1)H,, (g o, a1 — ag, —m — 1, 0)] fi(wo)

—dp(ag) Apsr (a1, —m — 1) fi(zo)} = —fo(x0) for zeR3i, xo€R.

*

If ay # ag then
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(5)

gmit2 Do
1' b+m1—
ZLI?O Y 8$28ym1
_ by M_l b / ! ai, 0, Mo
zigloy o (ag,b,my) fol&) + (a1 — ag)M(ay, b, ml)ﬁ(g)

am1+l 0 b al _ aO am1+l a00 —b
agh — o
X@x@yml (e P )dé M (ay, M(ay,b,my) my) / Sil§ 5’x8ym1 T omlym

+oo
M m1+1 ,a06 ,—b
= Mg (ao, b, mo)[fc’)(iﬁo)  Mar, b mo) (o) ] /(yb+m1+1—a € P ) dt

T (al —ao)M(al, b, ml) &%’Gyml
+oo - E=a+yt
aml"rleao@ —b
— (a1 — a)"*M " (ar, b,m1) fi (o) / (yb+m1+1Wyﬂ’LIp) 0
- + E=x+yt

0 M (a1, b,mo) f1 (o) 0 / o aot b
=M 1 b / , a9 b+m1+1—d

5 o) o) gy G| B pemea 220 g

+o0
8 am1+6a09 —b

_ (a1 - CLO)*lel(ah b, ml)fl(xo)ya_x / <yb+m1+1Wym/:) e

E=atyt

M(ab ba mO)
(Ch - aO)M(a17b7 m1)

=M (ay, b, mo)[{é(xo)—i- fl(xo)} ng(ao,b, my)

ox
—(a1 — ag) "M~ *(ay, b, ml)fl(xo)y%M(al,b, my) =0 when z € Ri, zo € R
O

Now, taking into account (5.51), (5.52), (5.55)-(5.57), (5.59)-(5.61), (5.63)-
(5.65), and comparing in pairs (5.27) for 6 = 1 with (5.50); (5.27) for § = 1
with (5.54); (5.32) with (5.58); (5.33) for 6 = 1 with (5.64) it is easy to obtain
(5.66)-(5.71).

Remark 5.3.21 After constructing explicitly solutions of Problems 5.3.11-5.3.16
without taking into account the conditions (5.51), (5.52), (5.55)-(5.57), (5.59)-
(5.61), (5.63)-(5.65) we directly check that they are solutions for the complex
constants ag, bs, & = 0,1 (see also Remark 5.3.8) as well. So that the above
conditions we need only for the analysing the question of the uniqueness of the
solutions.

Remark 5.3.22 In the particular case when m; = mg = 0, by = bg = b <
0, ay = ic, ag = ic with the real constant ¢ # 0 the operator Eb is real one and
the real solution (5.34) of Problem 5.3.11 with regard to (5.66) aﬁer some simple
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transformations will get the form

oo [ CA(e,b) fol€) + BB(e, b) FED(€)

play) =y / [A2(cb) + B(e,b)] cos(cf)
¢B(e,b) fo(€) — bA(e,b) FEI(E)
+ . sin(cf) p p"%d¢, 2 € R, (5.73)

c[A%(c,b) + B(c, b)]

As we have shown (see Section 2.1, the formulas (2.55), (2.56) and the corre-
sponding consequent ones)

AQ(C, b) _{_BQ(C, b) _ 22b(1 . b)—Qﬂ_QB_Q <2+c+b 2 —c— b) -

2 ’ 2

for b < +ec.
If b = —1 and c = 1, then the operator y=>Ey " will be biharmonic one and
from (5.73) we have the following well-known formula

“+o0o “+oo
3 2 ~
ooy =L [ gt + = [ F€)p e
for the half-plane.

Remark 5.3.23 If mi = mg = 0, by = by = b, then the solution of Problem
5.3.12 has the form

oz, y)
e 2[afo @+ AV aofo(© + V@)
) / * eag& . * eale pb—2d§
a1 —do A(ao, b) A(ay,b)
when a1 # ag;
yl-b
) Ala,b) (5.74)
+o0 ( [A(a,b) + aMo(a, 2 — b, 1,0)] fo(€) + Mo(a,2 — b,1,0) £1(€)
’ A(a,b)

~

= [afo(§) + fl(_l)(f)W} e pb=2d¢ when a1 =ap=a

*

p € K™ (1,1) is unique and satisfies the conditions (5.28) and

dp 2 Py 2 1
%EC(RE), ZIL%O@—O, zeR:, zoeR.
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Remark 5.3.24 If b > 0, a; = ic, ag = ic, where real number ¢ # 0, then we
easily reduce the solution of Problem 5.3.16 to the following form

o b T T(=1)meA(e, —b) 0
pley) c(b? = )[A%(e, —b) + /12(0, —b)] / { [ (b,mo — 1) folé)

—00

+ (_gb)’";?(_c ’1;3?) zl(—l)(g)] cos(ch) + {(—tl)::;:f_(ci;b) e
+ <_(111)Tj711f1£671)—b) 5(1)(5)} sin(ce)} pYdE.
| (5.75)

Evidently,

A2(c, —b) + B(c, —b) = 272(1 + b) 272 B2 (2 +c+b 2—c+ b) .,

2 ’ 2
for b > +ec.

5.4 On a way of constructing solutions of BVPs for higher
order equations

In this section the simple way of constructing solutions of boundary value prob-
lems for higher order equations by means of solutions of boundary value problems
for equations of less order is pointed out (see, G. Jaiani [9]).

Suppose that a domain © € R? and its boundary is 9. We seek a function
@ satisfying

n—1

Fy:= <HEj>go =0 in Q, (5.76)
=0

Bjp=f;, j=0,n—1, on 09, (5.77)

where E;, j = 0,n — 1, are second order elliptic operators which can degenerate
on the part of the boundary or on the whole one; B;, j = 0,n — 1, are differential
operators of certain order (zero order is also admitted), in general, containing
the weight functions and f;, j = 0,n — 1, are given functions. Suppose that the
operator F' remains unchangeable by an arbitrary rearrangement of operators £},
J=0,n—-1.

Let us assume that the problems

Lk@k =0 in Q, BZQOk = wka k= O,n — 1, on aQ, (578)

where B}, k = 0,n — 1, are certain differential operators, ¢y, k = 0,n — 1, are
given functions, are solvable in classical sence and the solutions have the form

or = Vi(Yr), k=0,n—1, (5.79)
where the operator Wy, k = 0,n — 1, are such that one can define

ByUy(iy), k.j=0,n—1, on 9.
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Theorem 5.4.1 Suppose that the system
n—1
> Bil(w) = f;, j=0,n—1, on 99 (5.80)
k=0

is solvable with respect to Yy, k = 0,n — 1. Then the problem (5.76), (5.77) is
solvable in the classical sense and the solution has the form

n—1

=Y Tp(ty). (5.81)

k=0

Proof. Let us seek the solution of the problem (5.76), (5.77) in the form

n—1
= ¢ (5.82)
k=0

where @i, kK = 0,n — 1, are the solutions of the problems (5.78). Since E;,
j = 0,n—1, in (5.76) are rearrangable, (5.82), obviously, is solution of (5.76)
and, by virtue of (5.79), has the form (5.81). On the other hand, in view of
(5.80), such ¢ satisfies (5.77).

It is clear that a similar proposition holds true also for more general cases
in the sense of type and order of operators F;, j = 0,n — 1, and a number of
independent variables under various initial, boundary and mixed conditions.

By application of this proposition there are two principal moments: suitable

choice of boundary operators B, k = 0,7 — 1, and solvability of the system
(5.80). ]

This method has been applied to investigation of equation (5.2) (see Section
5.2 and also [9]).

5.5 Some general comments and problems to be solved

In this chapter problems set for the iterated EPD equation in the half-plane are
completely investigated. All the solutions are constructed in explicit form, in
quadratures.

The analogues BVPs are to be investigated for the iterated EPD equation in
the finite domain as it was done for the single EPD equation.

The methods of approximate and numerical solution of the posed BVPs are
to be developed.

Efficiency of the explicit solutions constructed in Section 5.2 and Section 5.3
for numerical solution of BVPs should be studied.
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