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Abstract. Here we examine the multivariate quantitative approximations
of Banach space valued continuous multivariate functions on a box or R¥,
N € N, by the multivariate normalized, quasi-interpolation, Kantorovich type
and quadrature type neural network operators. We research also the case of
approximation by iterated operators of the last four types, that is multi hid-
den layer approximations. These approximations are achieved by establishing
multidimensional Jackson type inequalities involving the multivariate modu-
lus of continuity of the engaged function or its high order Fréchet derivatives.
Our multivariate operators are defined by using a multidimensional density
function induced by a parametrized arctangent sigmoid function. The approx-
imations are pointwise and uniform. The related feed-forward neural networks
are with one or multi hidden layers.
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1 Introduction

The author in [2] and [3] (see chapters 2-5) was the first to establish neural
network approximations to continuous functions with rates by very specifically
defined neural network operators of Cardaliagnet-Euvrard and ”Squashing”
types, by employing the modulus of continuity of the engaged function or its
high order derivative, and producing very tight Jackson type inequalities. He
treats there both the univariate and multivariate cases. The defining these
operators ”bell-shaped” and ”squashing” functions are assumed to be of com-
pact support. Also in [3] he gives the Nth order asymptotic expansion for the
error of weak approximation of these two operators to a special natural class
of smooth functions, see chapters 4-5 there.

For this article the author is motivated by the article [16] of Z. Chen and
F. Cao, also by [4]-[12], [17], [18].

The author here performs multivariate parametrized arctangent sigmoid
function based neural network approximations to continuous functions over
boxes or over the whole RN, N € N. Also he does the iterated multlayer
approximation. All convergences here are with rates expressed via the multi-
variate modulus of continuity of the involved function or its high order Fréchet
derivative and given by very tight multidimensional Jackson type inequalities.

The author here comes up with the "right” precisely defined multivariate
normalized, quasi-interpolation neural network operators related to boxes or
R¥ as well as Kantorovich type and quadrature type related operators on RY.
Our boxes are not necessarily symmetric to the origin. In preparation to prove
our results we establish important properties of the basic multivariate density
function induced by a parametrized arctangent sigmoid function and defining
our operators.

Feed-forward neural networks (FNNs) with one hidden layer, the only type
of networks we deal with in this article, are mathematically expressed as

N, (x) :cha(<aj ~x)+b;), z€R’ seN,
=0

where for 0 < j < n, b; € R are the thresholds, a; € R* are the connection
weights, ¢; € R are the coefficients, (a; - ) is the inner product of a; and z,
and o is the activation function of the network. In many fundamental network
models the activation function is the arctangent sigmoid function. About
neural networks read [19]-[21].
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2 Background

We consider the function

*od
arctan:c:/ —z, r e R. (1)
0 1+Z2

We will be using the following parametrized function with a parameter A\ > 0:

TAT
2 T 2 [ dz
hy (z) := — arctan <§)\x> = —/0 112 z € R. (2)

™ ™

We have
h)\ (O) = 0, h)\ (—1’) = —h)\ (l’) s h)\ (—|—OO) = 1, h)\ (—OO) = —1,

and

2 1 A 4\
/ S | = — " >0 3
3 () T <1+%) 2 447222 (3)

all z € R.

So that h, is a strictly increasing function from R into [—1, 1], with horiza-
ontal asymptotes y = +1.

Furthermore we get that

y B 82 \3

Clearly then

Ry (x) <0, for z € (0,400),
and

Ry (x) >0, for z € (—o0,0),

with A% (0) = 0.

That is hy is strictly concave over [0,+o00) and h, is strictly convex over
(—o0,0]. Obviosly A} € C (R).

Therefore h) is a sigmoid function fulfilling exactly all the properties of the
general sigmoid function described in [13].

When 0 < A < 1, hy, is expected to outperform the ReLu and Leaky RelLu
activation functions.

We consider the activation function

wA(x)::i(hx(x—kl)—m(x—l)), s ER, (5)
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As in [11], p. 285, we get that ¢y (—z) = ¥, (), thus ¢, is an even function.
Since x +1 > o — 1, then hy (x + 1) > hy (x — 1), and ¢y () > 0, all z € R.

We see that
hy(1)  arctan (Z))

¥x (0) = 5 = - : (6)

Let x > 1, we have
/ 1 / /
Py (2) :Z(h,\(x“‘l)_h/\(x_l)) <0,

by R/, being strictly decreasing over [0, 400).

Let now 0 <z < 1,then1—2 >0and 0 < 1—2 <1+ x. It holds that
Ry (z —1) = h\ (1 —x) > R, (z + 1), so that again ¢} (x) < 0. Consequently
1y is stritly decreasing on (0, 400) .

Clearly, ¢, is strictly increasing on (—oo,0), and ¢} (0) = 0.

See that

Tim s () = § (ha (00) — ha (+00)) =0, (7)
and 1
Tim s () = § (b (—00) — ha (00)) = 0. ®)

That is the z-axis is the horizontal asymptote on ).
Conclusion, ¥, is a bell symmetric function with maximum

hy (1) arctan (’T—’\) '

¥ (0) = 5~ - :

We need

Theorem 1 We have
Y Un(w—i)=1, VzeR (9)

Proof. As exactly the same as in [11], p. 286 is omitted. m

Theorem 2 It holds -
/ Uy (z)dx = 1. (10)

Proof. Similar to [11], p. 287. It is omitted. =
Thus v, (x) is a density function on R.
We give
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Theorem 3 Let 0 < a < 1, and n € N with n'=® > 2. It holds that

3 by (nz — k) < L= (ZH —2), (11)

Notice that

Proof. By [13]. =

Denote by [-] the integral part of the number and by [-] the ceiling of the
number.

We further give

Theorem 4 Let x € [a,b] C R and n € N so that [na| < |nb|. It holds
1 1 2m

n < = , Vaz€lal]. (12)
S e — k) Ua(1)  arctan(rA)
Proof. As similar to [11], p. 289 is omitted. =
Remark 5 We have
Lnb)
Jim D (e = k) A1, (13)

k=[na]

for at least some = € [a,b].
See [11], p. 290, same reasoning.

Note 6 For large enough n we always obtain [na] < |nb]. Also a < £ <b,
iff [na] <k < |nb|. In general it holds (by (9)) that

[nb]
> a(nz—k) <1 (14)
k=[na]
We introduce

N

Zy (w1, wy) =2y () = [ [ s (@), == (21,...25) €RY, N €N. (15)

=1

It has the properties:
(i) Zy(z) >0, Vz e RY,
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(i)

Z Z)\(.Z‘—k) = Z Z Z Z)\(.Z‘l—l{?l,...,ZEN—k'N):l,

k=—o00 k1=—00 ka=—00 kn=—00
where k := (ky,....k,) € ZV,V z € RV,

hence

(iii)

VzeRY, neN,
and

(iv)
/]RN Zy (z)dx =1,

that is Z is a multivariate density function.

Here denote ||z|| := max {|z1], ..., |zn|}, 2 € RY, also set oo := (o0, ...

—00 := (—00, ..., —00) upon the multivariate context, and

[nal := ([nai], ..., [nay]),

|nb| := (|nb1], ..., |nby]),

where a := (ay, ...,an), b := (by,....bn) .
We obviously see that

L) lnb] /N
Z Zy(nx — k) = Z (Hw,\ (nz; — kz)> -

k=[na] k=[na]

[nb1 | [nbn ] N [nb; |

Z 3 (wa:m »):H ST (nas — k)

=[nai1] kny=[nay] =1 \ k;=[na;]
For0<6<landneN,aﬁxedxeRN,wehave

Lnb]

Z Zy (nx — k) =

k=[na]

[nb] |nb|

Z Zy(nx — k) + Z Zy(nx — k).

{ k= [na] { k= [na
| 1 ==l > =

ml

oo — n

(16)

(17)

(21)
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In the last two sums the counting is over disjoint vector sets of k’s, because the
W] > 5

condition HS — a:HOO > L
where r € {1,...,N}.
(v) As in [10], pp. 379-380, we derive at

[nb] 1-8
1) 1—h -2
> Zy(nz — k) ' A(Z ), 0<B<1, (22

TS

withn € N:n'? > 2 e [[X, [a;, bi] .
(vi) By Theorem 4 we get

1 1 2 N
RSN (x_m<<¢A<1)>N_(arctan<“>> W

Ve (Hf\il [ai,bi]>, n € N.
It is also clear that
(vii)
> 1—-~h 1= _9
Z Zy(nx —k) < A (7; ) : (24)

{ k= —o0
[

0<pf<1l,neN:n"F>2 zrcRV
Furthermore it holds that

Lnb)
Tim k;} Zx(nx — k) # 1, (25)

for at least some x € <Hfi1 [a;, bz]> :

Here (X, H“v) is a Banach space.

Let f e C <Hf\;1 [a;, b ,X) o= (x1,..,xn) € [I~, [ai,bi], n € N such
that [na;| < [nb;],i=1,...,N.

We introduce and define the following multivariate linear normalized neural
network operator (z := (xq,...,xx) € (vazl [ai,bi]>):

ZIE””HM f (%) Zy (nz — k)
A (f, 1, zny) = A, (f,x) = —
: " Zk na] 2 (nx — k)

10
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Lnb J [nb2] [nbN ] k
i =[nai] Zkg 2[na2'\ ZkN N!’naN] ( T TN ( i=1 w)\ nx; — ki ))

nb;
For large enough n € N we always obtain [na;] <
a; <% < by, iff [na;] < ki < [nbi),i=1,...,N.

When geC <Hl | lag, bl]> we define the companion operator

(26)

|nb;|, i = 1,...,N. Also

T leicnbgna] g ( ) Z (TLI - k)

A, (g, ) = — (27)
Z;E:meﬂ Zy (nx — k)
Clearly Avn is a positive linear operator. We have
N N
A, (1,z)=1, Ve (H [ai,bi]> .
i=1
Notice that A, (f) € C (Hf\il [a;, b ,X) and 4, (g) € C (HZ | lag, bl]) .
Furthermore it holds that
Sl
k [na] Hf( )H ZA nx—k) Y
[An (f, )], < m =A. (IfNl,,2),  (28)
K L meﬂ Zy (nx — k) ( ! )
Ve[, [aibi].
Clearly | fll, € € (TTX, [a:,b1)
So, we have
lAa (£ ), < A (1711, 2) (29)
Vo eI anbl, Ve N,V feC (T, anb], X)
Let ce X and g € C (H ! lag, z]) then cg € C (HZ 1 lag, b ,X) :
Furthermore it holds that
A, (cg,z) = cA, ( x,VmEHaz,i. (30)
Since A, (1) = 1, we get
A, (c)=c¢, VYVceX. (31)

We call 4, the companion operator of A,,.
For convinience we call

[nb]

A (fr) =Y f( )ZA (nz — k) =

k=[na]

11
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[nb1] [nb2] [nby | o N
Z Z Z f ( - ) (H Yy (nx; — k’z)) ; (32)

ki=[nai] k2=[naz] kn=[nan]

Ve (Hfil [ai,bi]) .

That is ) A (f.2) -
e S g 2 (nz — k)
Ve (Hl 1[az7b]>, n € N.
Hence
A5 (£.2) = £ (@) (S0 20 (02— B))
An (fix) — f () = - (34)

Zk tna] Zx (nx — k)

Consequently we derive at

[An (f ) = f ()],

(23) o N . [nb]
2 (W) B -f@ Y Zme-b)| ()

arctan
k=[na] .

v o€ (T fas b
We will estimate the right hand side of (35).
For the last and others we need

Definition 7 ([11], p. 27/) Let M be a convez and compact subset of <RN, H'Hp>,

p € [1,00], and let (X, ||||7) be a Banach space. Let f € C (M, X). We define
the first modulus of continuity of f as

wi(f,0):= sup  [f(z)=fWI,, 0<6<diam(M).  (306)
r,ye M:
|z —yll, <6

If 6 > diam (M), then
wi (f,0) = wy (f, diam (M)). (37)

Notice wy (f,9) is increasing in § > 0. For f € Cg (M, X) (continuous and
bounded functions) w; (f,d) is defined similarly.

Lemma 8 ([11], p. 274) We have wy (f,d) = 0 asd 0, iff f € C (M, X),

where M is a conver compact subset of (RN, H-Hp>, p € [l,00].

12
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Clearly we have also: f € Cy (RN , X ) (uniformly continuous functions)
iff wy (f,0) — 0 as 0 | 0, where w; is defined similarly to (36). The space

Cp (RN , X ) denotes the continuous and bounded functions on R¥
When f € Cp (RN,X) we define,
B, (f,x):= B, (f,x1,...,xNn Z f< )Z)\ (nx — k) ==

k=—o00

> Y.y f(kl B ) (ﬁwmna—kn)? 39

ki=—0c0 ko=—00 kny=—o00
n€N,Vx RN N €N, the multivariate quasi-interpolation neural network

operator.
Also for f € Cp (RN X ) we define the multivariate Kantorovich type neu-

ral network operator

Con(f,x) =C,(f,x1,...,zN) := Z (nN /nf(t) dt) Zy(nx — k) =

3=

k=—0o0

k1+1 ko+1 kn+1

o oo > ( / / /N f(tl,,,,,tN)dtl...dtN>

> Y.y

k1=—00 ka=—00 kny=—00

: (H Yy (na; — kz)) ; (39)
neN, VzeRN.

Again for f € Cg (]RN , X ), N € N, we define the multivariate neural

network operator of quadrature type D, (f,z), n € N, as follows
rN) € Zﬂ\:, Wy = Wy, py.ry > 0, such

Let 0 = (91,.. 0]\[) € N (7“1, ceey
0 01 0
that > w, = 21: 22: Z Wry g, oy = 15 k € ZN and
r=0 r1=01r2=0 ry=0
5nk (f) —5nk1 ka,.. Zwrf( )
01 62
k1 s kz ) kn TN)
wm RN - T vy T + — ) 40
where 7 := (% o g—x)
We set
D, (f,x) := D, (f, @1, ..., xn Z ok (f) Zx(nz— k)= (41)
k=—o00

13
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Z Z Z On k1 o kin () (H U (nx; — k,)) )

ki=—00 ko=—00 kny=—00

VreRY

In this article we study the approximation properties of A, B,,C,, D,
neural network operators and as well of their iterates. That is, the quantitative
pointwise and uniform convergence of these operators to the unit operator /.

3 Multivariate Parametrized Arctangent Neu-
ral Network Approximations

Here we present several vectorial neural network approximations to Banach
space valued functions given with rates.
We give

Theorem 9 Let f € C <Hf\;1 [ai,bi],X>, 0<fB <1, ze€ <Hf\il [ai,bi]>,
N,n € N with n'*=? > 2. Then
1)
145 (f,2) = f (@), <

(o) [ (Fas) # 0=t i,

and

2)

OJ =: A1 (n),
(42)

140 ()= £1L]|_ <2 (13)

We notice that lim A, (f) I, f, pointwise and uniformly.
n—oo

Above wy is with respect to p = oo and the speed of convergnece is
max (n—lﬁ, (1 — hy (nl_ﬁ — 2))) .

Proof. As similar to [12] is omitted. See also [14]. =
We make

Remark 10 (/11], pp. 263-266) Let (RN, ||'||p>, N € N; where |||, is the L,-

norm, 1 < p < co. R¥ is a Banach space, and (RN)] denotes the j-fold product
space RN x ... xRN endowed with the maz-norm [z gy = max |2All,, where
<A<

z = (x1,...,2j) € (RN)j.

14
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Let (X, H”v) be a general Banach space. Then the space
Li=L; (RY)'; X)

of all j-multilinear continuous maps g : (]RN)j — X, 7=1,...,m, 1s a Banach
space with the norm

lg ()]l

[l - Nl ll,

lgll = llgll,, == sup g (2)ll, =su (44)

ol vy =1)

Let M be a non-empty convexr and compact subset of R*¥ and xo € M is
fixed.

Let O be an open subset of RV : M C O. Let f : O — X be a continuous
function, whose Fréchet derivatives (see [22]) f9) : 0 — L; = L; ((RN)j ;X)
exist and are continuous for 1 < j <m, m € N.

Call (x — x0) = (x — g, ...,x — ) € (RM), 2 € M.

We will work with f|p.

Then, by Taylor’s formula ([15]), ([22], p. 124), we get

L9 () (@ — 20)
HOEDY L O)j(| o) 4 R (z,20), all z € M, (45)
7=0 '

where the remainder is the Riemann integral

R, (z,x0)
_ [P0 )y ) ey
= /0 1] (f (xo+u(z—x0)) — f (xo)) (x —x20)" du,  (46)

here we set fO) (xo) (x — 20)° = f (o) .
We consider

wi=w; (f™,0) = sup | f™(z) - " ()|, (47)
z,yeM:
lz—yll,<h
h > 0.
We obtain

| (7 (o + 2 = o)) = £ (o)) (= o) ", <

Hf(m) (2o + u (z — 20)) — f™ (xo)” |l =zl <

ullze - wo||pw
)

o (13)

15
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by Lemma 7.1.1, [1], p. 208, where [-] is the ceiling.
Therefore for all x € M (see [1], pp. 121-122):

{Fulle = 2, ] (1 - )
R, (x, < — || e d
IR )l < wlle =l [ | E

=y (|lz = w0, (49)
by a change of variables, where

It s — )™t >
(1) ::/O H %ds’:% (Z(|t|—jh)’j:>, VieR,

is a (polynomial) spline function, see [1], p. 210-211.
Also from there we get

o _ ’t|m+1 |t‘m h|t‘m_1 v R 0
m (1) < (m+1)!h+2m!+8(m—1)!  VEER, (50)

with equality true only at t = 0.
Therefore it holds that

R oo, <o (222l maly ble—alp ™
m AT H0ly = (m—+1)!h 2m) s(m—1) |’
Ve M.
We have found that
SS9 (o) (2 — o)’
(o) 3 Il ]
Jj=0 y
m+1 m m—1
- - h||z — ol
w gy [l =zl = ol ; w
wr (£, >< m+Dh  2ml 8(m—1)! 62

Vx,xge M.

Here 0 < wq (f(m), h) < 00, by M being compact and f™ being continuous
on M.

One can rewrite (52) as follows:

™) (20) (- — o)
-3 22t e

Y
m—+1 m m—1
- —ally Al
(m) || xO”p || m0||p 0 p v M 53
wi (f ’)<(m—|—1)!h 2m! Sm_1) | e (53)

16



George A. Anastassiou. Parametrize arctangent based Banach space...

a pointwise functional inequality on M.
Here (- — zo)’ maps M into (RN)’ and it is continuous, also ) (xo) maps
(RM) into X and it is continuous. Hence their composition fU9) () (- — o)’

is continuous from M into X. .
Clearly f (-) = 372, w € C(M,X), hence

eC(M).

Y

™) (20) (- — 2o)?
-5 e

J=0

Let {ZN} be a sequence of positive linear operators mapping C (M)
NeN
into C (M) .
Therefore we obtain

Ly (Il ==oll;™) ) (xo) (L (II- = oll}') ) (o)
Wy (f(m),h) ( ( (m+1)]h>> +< ( o >>
h (L (Il = ol ™)) (o)

+ (54)

8(m —1)! ’

VNEN,VaeM.

N ~ ~
Clearly (54) is valid when M = [] [a;, b;] and L, = A,,, see (27).
i=1
All the above is preparation for the following theorem, where we assume

Fréchet differentiability of functions.
This will be a direct application of Theorem 10.2, [11], pp. 268-270. The
operators A,, A, fulfill its assumptions, see (26), (27), (29), (30) and (31).
We present the following high order approximation results.

Theorem 11 Let O be an open subset of <RN, H-Hp>, p € [1,00], such that

N
I1 [ai,bi] € O CRY, and let (X, ||H7) be a general Banach space. Let m € N

=1
and f € C™ (0, X), the space of m-times continuously Fréchet differentiable
functions from O into X. We study the approzimation of f| . Let xg €

4,05
=1

N
(H [ai,bi]) and r > 0. Then

i=1

17
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1)
(n () (20) = 32 5 (40 (79 0 = ) ) ()| <
Wi (ﬂm), . ((Zn (||. _ x0||§+1>) (x0)> ”*)
rm!
(A (1= ol)) ) 7
[(mil)+g+%]’ (55)
2) additionally if f9 (z¢) =0, j =1,...,m, we have
1(An (£)) (20) = f (@)l <
o (70 (3 1= ) a0) ™)
rm)!
(A (1= 2ol*)) ) 56)
[(mi—l) +g+%} ’
3)
1(An (1)) (20) = f (w0)], < i% | (40 (79 @) ¢ =20)) ) ()| +
Wi (ﬂm), r ((Zn (||. _ x0||§+1>) (x0)> ”*)
rm!
(A (1= ol)) ) 7 )
[(m 1+ nt 3+ %}
and
4)
NGRS IN .

18
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5 L (ool |-
j:1 j N v 00,Tp € l;[l [ai,bi]
| (A (1 = 2l™)) | 7
w1 <f 9 r || Zo ||p (ZL‘O) Oo,xoellj:vll[ahbi}

rm)!
(721)

(An (H - xOH;nJrl)) (ZL‘O) oo,zoeﬁ [ai,bi]
i=1

1 +r+mr2
m+1) 27 8|

We give

Corollary 12 (to Theorem 11, case of m = 1) Then
1)

1(An () (o) = f (o)l < [[(An (J© (o) (- = 20))) (wo)]||, +

g (1 (B =) o)) (G (1)) ) 59

7“2
1 JE—
{ +7r+ 4}7
and
2)
An (f)) - <
licaa ) = 11, o f i =
A (FO (20) (- — H +
HH( (f ($0)( $0)>) (xO)H'V oo,xoeﬁl[ai,bi}
1 ~ 2 2
1 2
o) <f< L (A (1 = wl2)) <xo>Hw,m€ﬁ H)
- ) : r’
(A (1 = 202) ) (20) e o [ e 4] (60)
r > 0.
We make
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Remark 13 We estimate (0 < a <1, m,n € N:n'=% > 2),

_ Z;ﬂm 1£ — || Z (navg — k) 2

Zn (||' - l’o||§+1) €) "
ZII;::ana] ZA (TLCL’(] - k)

m—1

k Zy (nxo — k) = (61)

__xo
n

o N |nb]
(arctan (mA) ) Z

k=[na] o0

¢

] N [nb)
(ﬁﬂ(ﬂ/\)) { | /{;:z%ncﬂ 1

||k — L
I = oll <

oo — n¢

m+1

k
Zy (nxog — k) +

o

[nbd]

S

kE_ H 1
|n x0m>na

k
n

mtl (24)
Zy(nzo—k) p <

o0

J

2 Mo 1— hy ('~ = 2) "
b—all™ 2
(arctan (m\)) {na(mﬂ) T ( 2 ) | aHOO ) (62)

(where b —a = (by — ay,...,by — an)).

N
We have proved that (V¥ xo € [] [as, bi])
=1

arctan

R o) [ ol BT

O<a<l,mneN:n>2)
And, consequently it holds that

A (Il = 2ol ™) (x0) < (%)N

|40 (1 = 20l Z7) (o) <

N
00,0 € [] [ai,b;]
i=1

o N L (1= ('t~ —2) b — |
arctan () pa(m+1) 2 >

=p1(n) =0, asn— +oo. (64)
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So, we have that o1 (n) — 0, as n — 4+o00. Thus, when p € [1,00], from
Theorem 11 we have the convergence to zero in the right hand sides of parts

(1), ). |
Next we estimate H( (f(J (x0) (- — x0)3>) (x0)
We have

(A0 (79 @) (- = 20 ) ) (@0)

Lanna] f ( ) (_ B .73()) Z)\ <n$0 _ k)

N " (65)
ZIE:ana] ZA (Tl.ZL’O - k)
When p = oo, 7 =1,...,m, we obtain
) k J ' i
‘f(]) (o) (5_330) < [IF9 (o) H;—xo ) (66)
Y
We further have
j (23)
(3 (52 ) ¢ —200)) o], 2
(W;M)) ( 2 |7 o) (ﬁ - %) Zy (nzg — k) | <
k=[na] .
(m) Z 179 (o) H— —wo| Zatnzo—k)| = (67)
=[na] o
[nb] j
2 k
(W) Hf]) (o) ( Z — —Zo|| 2 (nxo—k)) =
k=[na] o)

2 N ) [nb] i i
(i) 117 ol R N R
{ k = [na]

% = aoll, < 55
[nb] j
{ k = [na] o0
£ 2ol > |
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(ﬁ:(ﬂ)\))lvwm ()| {%+ (1—hA (Zl—a_z)) IIb—allio} e

, as n — 00.

That s

— 0, as n — oo.
.

| (A0 (59 (@) (- = 20)") ) (a0)

Therefore when p = oo, for j =1,...,m, we have proved:

(2 (59 o 207 e

Y

< (o) W9 ol { o+ (2022 e L oo

2m N 1 1— hy (nl=@ —2) '
< | — () A T
B (arctan (7r)\)) Hf HOO {naj + ( ) ) 16 a”oo}

=: 9, (n) < 00,

and CONVETGES to zero, as n — 00.

We conclude:

In Theorem 11, the right hand sides of (57) and (58) converge to zero as
n — oo, for any p € [1, 00].

Also in Corollary 12, the right hand sides of (59) and (60) converge to zero
as n — oo, for any p € [1, 00].

Conclusion 14 We have proved that the left hand sides of (55), (56), (57),
(58) and (59), (60) converge to zero as n — oo, for p € [1,00]. Consequently
A, — I (unit operator) pointwise and uniformly, as n — oo, where p € [1, o).
In the presence of initial conditions we achieve a higher speed of convergence,
see (56). Higher speed of convergence happens also to the left hand side of

(55).
We give

Corollary 15 (to Theorem 11) Let O be an open subset of (R™,||-||.), such
N

that 1] [a;, b)) € O CRY, and let (X, H”v) be a general Banach space. Let
i=1

m € N and feC™(0,X), the space of m-times continuously Fréchet differ-

entiable functions from O into X. We study the approximation of f| ﬁ[ ;
ai,b;
=1

N
Let xy € (H [ai,b@-]> and r > 0. Here @1 (n) as in (63) and pq; (n) as in

i=1
(69), wheren e N:n'=® >2 0<a<1,j=1,..,m. Then
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1)
(A () (a0) = 32 (4n (49 () (= 0) ) (o) <
w1 (f(m)a 7 (1 (”))m%”l) m_ 1 r omr?
- (o)) |y 5 |
2) additionally, if f9) (29) =0, j =1,...,m, we have
[(An (f)) (w0) = f (wo)]l,, <
Wi f(m)a r (901 (n))mil m 1 r mr?
< o > (1 (m))(77) {(m+ gt 7] : (71)
3)
B — 2 (1)
14w (5) = 11, o S5
wi (£, 7 (1 (n) 78 }
( — ) (i1 () (751) (72)

1 r - mr?
m+§+? =:p3(n) — 0, as n — .

We continue with

Theorem 16 Let f € Cp (RN, X), 0 < 8 <1, z € RY, Nyn € N with
n'=8 > 2 w is for p=o0. Then

1)
1B (f;2) = f (@)l

<o (£ )+ (1= (0 =)

= Ay (n), (73)

I1F1L,

2)

[1B. (= 11| < 2 ). (74)

Given that f € (C’U (RN,X) NCg (RN,X)), we obtain li_}m B, (f) = f, uni-
formly. The speed of convergence above is max (niﬁ, (1 — hy (nl_ﬁ — 2))) :

Proof. As similar to [12] is omitted. m
We give
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Theorem 17 Let f € Cp(RY, X), 0 < 3 < 1, z € RY, N,n € N with
n'=P > 2 w is for p=o00. Then

1)
ICa (f2) = F @),
gm(ﬁ%+%)+@—hum%—@)meszam, (75)
J
licu ) =11L||_ < x . (76)

Given that f € (CU (RN,X) NCg (RN,X)) , we obtain le Co (f) = f, uni-
formly.

Proof. As similar to [12] is omitted. m
We also present

Theorem 18 Let f € Cp (RN, X), 0 < 8 <1, z € RY, Nyn € N with
n'=# > 2 w is for p = oo. Then

1)
1D (f,2) = f (@)l
<o (Fn+ o)+ 0= =) IsL ] = n, @
2)
|12 () = 111, < 2. (78)
Given that f € (C'U (]RN,X) NCg (RN,X)), we obtain li_>m D, (f) = f,
uniformly.

Proof. As similar to [12] is omitted. m
Next we perform multi layer neural network approximations.

We make

Definition 19 Let f € Cp (RY,X), N € N, where (X, ||||7> is a Banach

space. We define the general neural network operator

Fo(f,x)= > Lu(f)Zx(nz—k) =

Culhir), il (F) =¥ [ F (1)t (79
Dn<f,l‘), Zflnk(f):(snk(f)
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Clearly I, (f) is an X-valued bounded linear functional such that ||, (f)]]., <

s, 7

Hence F, (f) is a bounded linear operator with H | En (f) ]|7H <
We need =

Theorem 20 Let f € Cp (RY, X), N >1. Then F, (f) € Cp (RY, X).
Proof. Very lengthy and as similar to [12] is omitted. m

Remark 21 By (26) it is obvious that HHA

L= s < oo ana

A, (f) GC(H la;, i],X), given thatfeC(H a;, z],X)

Call L,, any of the operators A,, By, Cp, Dy.
Clearly then

lzz DI = [z @] < iz < i) o
etc.
Therefore we get
Nz olL)| = isiL)| o veen, (81)
the contraction property.
Also we see that
Nz ol < Iz )| < - < iz o (52)

Here L are bounded linear operators.

Notation 22 Here N € N, 0 < 8 < 1. Denote by

N

21 . _

CN = (arctan(wA)) ’ Zf Ln - A"’ (83)
Zf Ln = Bna Cna Dna

L ZfL - An; B’VH

Pm= {5 t kL, =C,D, &

N .
Q — C (};[1 ai,bi] ,X) 5 Zan = An; (85)

C(B (RNaX) ; Zf Ln = Bna Cna Dna
and
N .

Y — H [aiu bz] ’ Zf Ln - An; (86)

i=1
RN; Zf Ln - BmcmDn'
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We give the condensed

Theorem 23 Let f€Q,0< <1, 2€Y;n, N€N withn'=? >2. Then
(i)
Lo (f,2) = | (2)]],

<o o (Fom)+ (1= (2 =2) 17| ] =m0, 7)
where wy 18 for p = oo,
and

(1)
HHLn (f)—waHoo <7y (n) =0, asn — . (88)

For f uniformly continuous and in £ we obtain

n—00

pointwise and uniformly.

Proof. By Theorems 9, 16, 17, 18. =
Next we do iterated multilayer neural network approximation (see also [9]).
We make

Remark 24 Let r € N and L,, as above. We observe that
Lf—f=(Lof =Ly )+ (L f = L2 f) +

(Li72f = L) ot (L2F = Laf) + (Luf = £).
Then

lnzr = a0, < |znr = 2ol )|+ ||lizets - 22l

+

N2 = sl |+ o+ 127 = 2aflL ||+ 1 = 11,

o0

Nzt @ar =PI+ 1222 Ear = 21|+ (1267 Ear = 01
oot 1 @t = |+ [0Enr = 11| < [12ar = 10| (s9)

That is
lnzes = s <o |izas =11, (90)

We give the following multilayer neural network approximation.
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Theorem 25 All here as in Theorem 23 and r € N, 75 (n) as in (87). Then

lizer =11, s . (o1)

So that the speed of convergence to the unit operator of L] is not worse than
of Ly,.

Proof. By (90) and (88). m
We make

Remark 26 Let my,...m, e N:m;y <my < ... <m,, 0 < g <1, fe
Then ¢ (my) > @ (ma) > ... > @ (m,), ¢ as in (84).
Therefore

wi (frp (M) = wi (f, 0 (ma)) = . = wi (0 (my)) - (92)

Assume further that m}fﬂ >2,1=1,...,7r. Then

L=ty (mi?=2)  1=ny(mh? - 2) | — iy (1 — 2)
> > ... > .
2 = 2 == 2

Let L,,, as above, i = 1,....r, all of the same kind.
We write

Lo, (Lo, (- Lony (Lin, f))) — f =
Luny (Lin—y (+-Lmg (L f))) = Lan, (L, s (-Lma f)) +
Loy, (Lony s oLy ) = Lony (L (- Lony ) +
Loy (L (o Ling ) = Lune (Lonyy (oo Lony ) + oot (94)
Lon, (L, f) = Lon, f + Lin, f — f =
Ly, (L, (--Ling)) (Liny f = f) + Lun, (Liy—y (c-Ling)) (Liny f — f) +
L, (Linyy (-Lny)) (Ling f = ) + oo+ L, (Liny f — ) + Lon, f — .

Hence by the triangle inequality property of

L | we get

|Zm, Loy oy (B £)) = £ || <
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|z Lo f = DI+ |12 S = 11,
(repeatedly applying (80))

<12t = A1+ 1 = 21+ [N = 11|+t

o

[ [P [ T R
i=1
That is, we proved
12, (s o (Lo ) = £ < 3 1wt =11 o0
i=1

We give the following multi layer neural network general approximation
result.

Theorem 27 Let f € Q; N, my,ma,....m E N:m; <my < ...<m,, 0<
b <1, m}fﬂ >2 i=1,...,r,x €Y, and let (Lp,, ... Lm,.) as (Am,, -, Am,.)
or (Bmys ooy Bm,.) o1 (Cpayy ooty Cin) 07 (Dinyy ooy D), p = 00. Then

1L (Lo s Loy (L 1)) (@) = £ ()], <

1 (L Ly (Lo £)) = £,

=1

<
oo

Js

rex [wn (Fro m) + (1= ha (mi 2 =2)) 71, o7

Clearly, we notice that the speed of convergence to the unit operator of the

e Y [ (G tm + (1= (i~ =2)) 111,

iterated multilayer neural network operator is not worse than the speed of Ly, .

Proof. Using (96), (92), (93) and (87), (88). m
We continue with

Theorem 28 Let all as in Corollary 15, and r € N. Here @3 (n) is as in (72).
Then

lnazs=n| <+

Proof. By (90) and (72). m

4nf = 1L < res (). (98)

Application 29 A typical application of all of our results is when (X, ||||7) =

(C, |-]), where C are the complex numbers.
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