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Rheological models are widely used in material modelling and simulation. The first steps were
done by Bingham, Reiner and others in the first half of the 20th century. With the increasing
use of plastics starting in the fifties of the last century, the method of rheological modelling
became more and more popular. The main focus was on the phenomenological description of
the material behaviour. However, in the last years, rheological models were used also in the
case of microstructural models. The contribution at hand presents a brief introduction to the
method of rheological models and some new applications.
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1. Introduction

Figure 1. Vladimir A. Palmov.

This paper is dedicated to Vladimir Alexandrovich
Palmov (Fig. 1), the great scientist in the field
of continuum mechanics, who was the academic
teacher of the first author. Prof. Palmov was born
on July 7th, 1934 in Batumi (Soviet Union, now
Georgia), where his father served as a military of-
ficer. Finally, his family moved to Leningrad (now
St. Petersburg), and he finished the secondary
school. Since 1952, his life was connected with
the Leningrad Polytechnic Institute (now Peter the
Great State Polytechnic University), as he was a
student of the Faculty of Physics and Mechanics.
In 1958, he graduated from the Department of Me-
chanics and Control Processes (specialization in Dy-
namics and Strength of Machines), he obtained the
degree of Candidate of Science (under supervision of
Prof. Anatoly I. Lurie) in Physics and Mathematics
in 1963 and the degree of Doctor Science in Physics and Mathematics in 1972. After
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that, he was appointed as a professor in 1974 and since 1974 he was the Head of the
Department of Mechanics and Control Processes (he held this position up to 2013).
He died on October 15th, 2018 in St. Petersburg (Russian Federation).

Figure 2. Palmov’s last book.

His research focus was on mechanics of deformable
solids including Cosserat continua, the direct ap-
proach in theory of plates, the theory of vibra-
tions of inelastic bodies, the theory of constitutive
equations, and general problems of dynamics and
strength of machines. In his first fundamental mono-
graph (Russian edition 1976 [1], English translation
1998 [2]), he presented the method of rheological
modelling with applications to microplastic materi-
als, which was in that time absolutely new. A spe-
cial issue of the ZAMM (Journal of Applied Mathe-
matics and Mechanics / Zeitschrift für Angewandte
Mathematik und Mechanik, 2009, Vol. 89, No. 4)
containing papers dedicated to Palmov on the oc-
casion of his 75th birthday was published (edited
by H. Altenbach, A. Belyaev and V. Eremeyev). His
scientific testament is his last book [3], see Fig. 2.

2. Foundations of Rheology

The term rheology comes from ancient Greek, meaning the theory (λoγoα) of flow
(ρεω). In this sense, it is related to fluids (liquids or gases), but also to “soft” solids
or solids under conditions in which they respond with plastic flow (moderate tem-
perature, loads beyond the yield stress) or creep (elevated temperature, loads below
the yield stress) to an applied load. The formula “panta rhei” (ancient Greek πανεα
ρει, which means everything flows) is an aphorism traced back to the Greek philoso-
pher Heraklit, suggested by Plato (in the dialogue Kratylos), but literally appearing
for the first time in the late ancient Neo-Platonist Simplikios to characterize the
Heraclitic doctrine [4].
One of the first investigations in the field of rheology was related to the design

of water clocks in the 16th century AD. In that time, it was obvious that one had
to take into account the temperature dependency of the viscosity of water. Deeper
scientific studies of rheological questions started in the 17th century, in particular
by Isaac Newton, who defined the viscosity for liquids showing a proportional de-
pendency between shear stresses and the shear strain rates, and by Robert Hooke,
who established the law of linear elasticity (Hooke’s law). A brief historical survey
is presented in [5, 6].
From the 17th century, we distinguish several classes and subclasses of rheological

models. The models are at present:

• ideal materials with the subclasses
– rigid or Euclidian solids (no deformation), which were also in the focus of Isaac

Newton.
– elastic solids (linear and non-linear), firstly studied by Robert Hooke and Robert

Boyle, for which was introduced a material parameter characterizing the indi-
vidual response of a material on a load (Young’s modulus, probably introduced
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by Giordano Riccati 25 years before Thomas Young and discussed also by Leon-
hard Euler 80 years earlier) and finally a full set of the classical (small strain)
elasticity equations assuming isotropy and linear behaviour was presented by
Augustin-Louis Cauchy, Charles Augustin de Coulomb, Claude Louis Marie
Henri Navier, Siméon Denis Poisson, among others.

– inviscid or Pascalian fluids (pressure in the fluid is the same in all directions or
no resistance to flow). The theory for such fluids without viscosity was developed
by Leonhard Euler, Daniel Bernoulli and Giovanni Battista Venturi.

– Newtonian fluids which have been discussed not only by Isaac Newton, but
also by Gotthilf Hagen, Jean Léonard Marie Poiseuille, Maurice Marie Alfred
Couette, Claude Louis Marie Henri Navier, George Gabriel Stokes, and others.
The last two presented a first set of three-dimensional equations for linear-
viscous Newtonian fluids describing experimental data in a proper manner.

• linear viscoelasticity, which is related to material phenomena like creep and relax-
ation. Such material behaviour cannot be represented by elastic or viscous models
alone. Various models have been suggested by James Clerk Maxwell, William
Thomson (later Lord Kelvin), and John Henry Poynting. Finally, Ludwig Boltz-
mann introduced the superposition principle for this material behaviour.

• generalized Newtonian materials, suggested for materials with a more complex
behaviour, which was discussed by Theodore Schwedoff (colloids) or Eugene Cook
Bingham (paints).

• non-linear viscosity, etc.

It is obvious that many scientists contribute important results to rheology such that
many rheological models have been named after these researchers. Examples for this
are the Hookean model, the Newtonian model, the Prandtl model, the Kelvin-Voigt
model, the Maxwell model, the Schwedoff model, the Bingham model, the Burgers
model, among others [7].

3. The Development of Rheology as a Scientific Branch

Using the term “rheology” for the science that deals with the flow and deformation
behaviour of matter was only established in the late 1920s by Eugene Cook Bingham,
who himself worked in the field of plasticity theory, together with Markus Reiner
[8]. The chemist Eugene Cook Bingham was convinced of the necessity of a branch
of mechanics/physics that deals with rheological questions and thus has certain
intersections with chemistry and engineering. In a discussion with Markus Reiner,
he mentioned [8]: Here you, a civil engineer, and I, a chemist, work together on
common problems. With the development of colloid chemistry, such a situation will
appear more and more often. We must therefore establish a branch of physics that
deals with such problems. On August 29, 1929, he founded the Society of Rheology
in Columbus, Ohio with others [6].
Establishing the new scientific branch, the aim of research was formulated: Rheol-

ogy is the study of the deformation and flow of matter. However, there were strong
restrictions at the beginning. For example, the flow of electrons and heat were ex-
cluded by agreement. Later, various models were developed. These models make it
possible to describe qualitatively and quantitatively, categorize, and predict differ-
ent flow and deformation behaviour. In addition to rheology itself, they are used in
many areas of technology and science, e.g., in materials science, in geology and in
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food technology.
From the statements above it is clear that rheology and continuum mechanics are

in a close interaction. The constitutive equations suggested in continuum mechanics
contain parameters which should be identified. One possible way for establishing
constitutive equations is their representation by combining rheological models. In
addition, within rheology, experimental methods for characterizing the flow of the
materials are established. In [5], the following necessary basics of continuum me-
chanics for rheology are presented briefly:

(1) conservation of mass,
(2) stress concept,
(3) symmetry of stress tensor,
(4) stress equations of motion, and
(5) energy conservation.

These statement should be slightly extended. First, it is better to use balance equa-
tions instead of conservation laws. They are more general and allow to include the
interaction from the environment. Second, taking into account the progress with
respect to generalized continua, see for example [9–12], the symmetry of the stress
tensor cannot be guaranteed. However, the assumption that the symmetry condition
for the stress tensor is valid simplifies the derivation of constitutive equations. Note
that this assumption plays the role of a restriction, and we can connect rheology
with continua based on the assumption that the stress tensor must be symmetrical
in a simple manner. Otherwise, even if we can establish constitutive equations for
continua with symmetric and antisymmetric stress tensors, the identification effort
for the additional constitutive parameters is increasing dramatically. Third, the sec-
ond law of thermodynamics should be taken into account – it allows to distinguish
physical admissible and not admissible constitutive equations. However, we should
find the answer to the question: How can one reflect the individual response of a
material on acting loading(s)?
At present, the rheological modelling is successfully applied to many practical

problems, particularly in mechanical and civil engineering. The reason for that is
that the method takes a position between the deductive and inductive approach
in modelling the constitutive behaviour [13]. In addition, it is straightforward to
combine rheological elements by connecting them in parallel or in series to obtain
more complex models. Furthermore, the physical admissibility of complex rheological
models is guaranteed as long as the individual rheological elements are physically
admissible. Further simplifications result from the following axioms of rheology [7]:

(1) Under the action of hydrostatic pressure, all materials behave in the same
manner as perfectly elastic body.

(2) Each matter features all rheological properties, but in different degrees. Note
that the main rheological properties include elasticity, viscosity, plasticity,
etc.

(3) There is a hierarchy of ideal bodies such that the rheological equation of the
simpler body, i.e., a body lower in the hierarchy, can be derived by setting
one or other of the constants of the rheological equation of the less simple
body, i.e., a body higher in the hierarchy, equal to zero.

Finally, it is worthwhile noting that one-dimensional rheological models can be gen-
eralized to three dimensions in many cases.
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4. Palmov’s Method of Rheological Modelling the Simplest
Three-Dimensional Case

In the monograph [1], Palmov presented his ideas concerning rheological modelling
for the first time. Let us briefly introduce his basic ideas.
As a start, let us assume isotropy for the material behaviour. In addition, we con-

sider the split of the stress tensor σσ into its hydrostatic part σmI and its deviatoric
part s = σσ − σmI with the second-order unit tensor I and the hydrostatic stress
σm = 1

3trσσ. The same is done for the strain tensor εε, whose deviatoric part is de-

noted by e = εε− 1
3ϵI with the volumetric strain ϵ = tr εε. Let us now formulate the

constitutive equations for the stress deviator, the free energy F , and the entropy S
for the rheological element α as functions of the temperature Θ, the temperature
gradient ∇∇Θ, the volumetric strain ϵ, and the strain deviator e:

sα = sα(Θ,∇∇Θ, ϵ, e), Fα = Fα(Θ, e), Sα = Sα(Θ, e), (1)

whereby the subscript α denotes the corresponding rheological element. The con-
nections of n rheological elements are given as:

• connection in parallel:

s =

n∑
α=1

sα, e = e1 = . . . = eα = . . . = en, F =

n∑
α=1

Fα, S =

n∑
α=1

Sα, (2)

• connection in series:

s = s1 = . . . = sα = . . . = sn, e =

n∑
α=1

eα, F =

n∑
α=1

Fα, S =

n∑
α=1

Sα. (3)

Now the basic elements can be introduced:

• Hookean element for linear elasticity with the shear modulus µ as material pa-
rameter

s = 2µe, (4)

• Newtonian element for linear viscosity with the viscosity coefficient ν (the dot
indicates the partial derivative with respect to time)

s = 2νė, (5)

• and the Prandtl-St. Venant element for plasticity with the yield stress σy as ma-
terial parameter: {

ė = 0 if N(σσ) < σy,

ė =
1

λ
s if N(σσ) = σy,

(6)

where N(σσ) is the norm of the stress tensor and the variable λ is referred to as
“plasticity factor”.
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• In addition, for the remaining part, i.e., the relation between the hydrostatic stress
σm = 1

3trσσ and the volumetric strain ϵ = tr εε (with the stress tensor σσ and the
strain tensor εε), we make use of the following constitutive equation for pure elastic
behaviour, where the parameter K is the bulk modulus:

σm = Kϵ. (7)

By connecting several of the basic elements, we can develop complex models, such
as:

• viscoelastic models
– Kelvin-Voigt model: one elastic and on viscous element in parallel,
– Maxwell model: one elastic and one viscous element in series,
– Poynting model: a Maxwell model in parallel with a second elastic element,
– generalized Kelvin-Voigt model: n Kelvin-Voigt elements in series,
– generalized Maxwell model: n Maxwell elements in parallel,

• plastic models
– Prandtl model: one elastic and one plastic model in series,
– Bingham model: one viscous and one plastic element in parallel with an elastic

element in series,
– generalized Prandtl model: n Prandtl models in parallel,

• etc.

Further discussions concerning Palmov’s approach with respect to large strains, for
example, are given in [14, 15].
Until now, there are some open questions:

• One of the basic assumptions is isotropy. The split of the stress tensor and the
strain tensor into volumetric and deviatoric parts is unique. How can we formulate
the anisotropic constitutive equations?

• The volumetric part in the constitutive equations is assumed to be purely elas-
tic. There are experimental data indicating that this assumption is not always
appropriate, see, for example, [16].

• For rheological modelling, one can use both the Langrangian or the Eulerian
description. Which approach is the better choice?

Here we need further research efforts to give proper answers. For example, in many
textbooks on continuum mechanics, it is written that the Langrangian description
should be used for solids, while the Eulerian approach should be chosen for fluids.
However, this is questionable since the plastic flow (plastic behaviour of a material)
is similar to the behaviour of fluids (see [17]).

5. Two-Dimensional Rheological Modelling

The first author of this paper has extended Palmov’s approach to two-dimensional
continua in Ref. [18]. In this paper, the following items were established:

• governing equations with respect to the direct plate theory (see, for example,
Ref. [19]),

• basic elements, and

• the statement that plasticity cannot be formulated in the same way as done for
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elasticity and viscosity.

Within the framework of a Zhilin-type theory [20], let us introduce a Cosserat plate.
The main variables are

• the stress resultants, i.e., the transverse force vector F and the moment tensor
M ,

• the strains, i.e., the transverse shear strain vector γγ and the tensor of the bending
and torsional strains κκ, and

• an energetic variable, i.e., the free energy H.

A new variable can be introduced following Palmov’s suggestion in Ref. [21]:

G = M × n, (8)

whereby G is referred to as “polar moment tensor” [22]. It can also be obtained
based on the stress tensor:

G = ⟨a1 ·σσz ·a1⟩ , (9)

where σσ is the classical symmetric stress tensor, a1 = eαeα is the first metric
tensor (note that we consider the two-dimensional orthonormal coordinate system
eα, α = {1, 2} , and make use of Einstein’s sum convention), z is the coordinate in
the transverse direction of the plate, and the brackets ⟨. . .⟩ denote the integration
over the thickness of the plate-like body. It is obvious that G = GT.
For the introduced moment tensors, the following relation is valid:

MT : κκ = M : κκT = G : µµ (10)

with µµ = κκ× n. Note that the variable µµ is introduced in analogy to the transfor-
mation of the moment tensor M into the polar moment tensor G, cf. Eq. (8).
In the following sections, we discuss some basic two-dimensional rheological ele-

ments.

5.1. Elastic Cosserat Plate

Let us introduce the Helmholtz free energy H as a function of the kinematic variables
and calculate the time-derivative:

ρḢ =
∂ρH

∂γγ
· γ̇γ +

∂ρH

∂µµ
: µ̇µ. (11)

Based on the free energy, the vector of the transverse forces F and the polar moment
tensor G are obtained as the following derivatives:

F =
∂ρH

∂γγ
, G =

∂ρH

∂µµ
. (12)

Here, we limit our considerations to the quadratic form of the Helmholtz free energy:

ρH =
1

2
γγ ·ΓΓ ·γγ +

1

2
µµ : C : µµ (13)
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with the transverse shear stiffness tensor ΓΓ and the out-of-plane stiffness tensor C.
The first variable is a second rank tensor, while the out-of-plane stiffness tensor is
of fourth rank:

ΓΓ = Γ0a1, C = C1cc+ C2(a2a2 + a4a4), (14)

where in the case of the two-dimensional orthonormal coordinate system eα, α =
{1, 2} , the following notations are used:

c = e1e2 − e2e1 = a3,

a2 = e1e1 − e2e2,

a4 = e1e2 + e2e1.

Taking into account Eqs. (11)–(14), we obtain

F = Γ0γγ, G = (C1 − C2)(a1 : µµ)a1 + 2C2µµ. (15)

Finally, assuming linear elastic isotropic material behaviour and solving the
boundary-value problems for the two-dimensional continuum and the plate-like body
[23], one obtains the stiffness parameters

C2 =
Gh3

12
, C1 = C2

1 + ν

1− ν
, Γ0 =

(π
h

)2
C2. (16)

5.2. Viscous Cosserat Plate

Now we assume the following expression for the Helmholtz free energy

ρH = ρH(γ̇γ, µ̇µ). (17)

The force vector and the polar moment tensor can be estimated as

F = Γ̃0γ̇γ, G = (C̃1 − C̃2)(a1 : µ̇µ)a1 + 2C̃2µ̇µ, (18)

where Γ̃0, C̃1, and C̃2 are again material parameters of the two-dimensional contin-
uum. In this case, the time derivative of the Helmholtz free energy is

ρḢ =
∂ρH

∂γ̇γ
· γ̈γ +

∂ρH

∂µ̇µ
: µ̈µ. (19)

Combining Eqs. (17)–(19) results in

1

2
Γ̃0γ̇γ · γ̇γ +

1

2
(C̃1 − C̃2)(a1 : µ̇µ)

2 + C̃2µ̇µ : µ̇µ− ∂ρH

∂γ̇γ
· γ̈γ − ∂ρH

∂µ̇µ
: µ̈µ ≥ 0 (20)

and, finally, the second law of thermodynamics for the two-dimensional continuum
yields

H = const(γ̇γ, µ̇µ), Γ̃0 ≥, C̃1 − C̃2 ≥ 0, C̃2 ≥ 0. (21)
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Assuming linear viscous isotropic behaviour, the constitutive parameters are

C̃2 =
ηh3

12
, C̃1 = C̃2

1 + κ

1− κ
, Γ̃0 =

(π
h

)2
C̃2. (22)

Note that in this case the computation is similar to Ref. [23]. An alternative approach
of modelling viscoelastic behaviour is presented in Ref. [24].

5.3. Plastic Cosserat Plate

The last rheological model introduced here is the plastic two-dimensional continuum.
It is obvious that we have to introduce “yield conditions” for both the transverse
force vector and the polar moment tensor:

N(F ) < Fy, γ̇γ = 0,
N(F ) = Fy, γ̇γ = αF , α ≥ 0,
N(devG) < Gy, µ̇µ = 0,
N(devG) = Gy, µ̇µ = βa1 : dev(G) , β ≥ 0

(23)

N denotes the norm, which is defined for a vector and a second-rank tensor in
different ways:

N(F ) = ∥F ∥ , N(devG) =

√
1

2
devG : devG. (24)

Note that devG is the two-dimensional deviator of G. It seems that there is no
solution in the general case of a yield condition. Nevertheless, Palmov has provided
a solution for rigid plastic materials, cf. Ref. [25]. Assuming that the stress tensor
can be represented as follows

σσ = σσ0sign(z) + nττ + ττn (25)

with the plane stress tensor σσ0 and the stress vector ττ in the “thickness” direction,
we estimate

G =
h2

4
σσ0, F = hσσ. (26)

Finally, we get the following yield condition
N(G)2 +

h2

16
N(F )2 < Gy, γ̇γ = 0, µ̇µ = 0,

N(G)2 +
h2

16
N(F )2 = Gy, γ̇γ = AαF , µ̇µ = βa1 : dev(G) .

(27)

To conclude Sect. 5, let us give some final comments on literature. Palmov presented
his pioneering work concerning two-dimensional continua in Ref. [25]. The problems
arising with the plastic model are due to the “no thickness” assumption in the case
of the two-dimensional continuum. At the same time, the plastic material behavior is
developing w.r.t the thickness direction (exceptional case is the rigid-plastic material
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behaviour - but this is only a rough approximation and idealization of the real
material behaviour). The actual state of the art is given in Ref. [27]. Because of
the problems with the formulation of the plastic model in Ref. [26], the theory for
viscoelastic plates was presented in the paper at hand.

6. Application: Advanced Rheological Models

The aim of this section is to present the development of phenomenological consti-
tutive equations that describe inelastic material behaviour at elevated temperature
and relatively small loads, i.e., loads far below the yield limit. Such behaviour is
often named “creep”. It is well-known that a creep process can be split into three
stages: primary (hardening is dominant), secondary (equilibrium between hardening
and softening), and tertiary (softening including damage) creep [29]. To character-
ize hardening, recovery, and softening processes, a fraction model with creep-hard
and creep-soft constituents [31, 32] is introduced because it is obvious from micro-
graphs of alloys under consideration that such alloys contain two phases (Fig. 3).

Figure 3. Microstructure of advanced Chromium
steels: complex microstructure with grains, precip-
itates, subgrains and dislocations [34].

In the case of heat-resistant steels, the
volume fraction of the creep-hard con-
stituent is assumed to decrease towards
a saturation value. Such an approach de-
scribes well the primary creep as a re-
sult of stress redistribution between con-
stituents and tertiary creep as a result of
softening (decrease of the volume frac-
tion). To describe the whole creep curve,
a damage parameter in the sense of con-
tinuum damage mechanics [30] is intro-
duced. The material parameters and the
response functions in the model are calibrated against published experimental curves
for X20CrMoV12-1 steel [33]. The model is verified based on experimental creep
curves under varying stress load and the stress-strain curves of high-temperature
tensile tests under constant strain rate. The consideration of both softening and
damage processes is necessary to characterize the long-term strength in a wide stress
and temperature range. The one-dimensional model can be generalized to the case
of multiaxial stress states taking into account the material parameters of the cali-
bration.
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after Röttger 1997

600◦C

530◦C

500◦C

creep strain
n
or
m
al
iz
ed

cr
ee
p
ra
te

|σ| = 150MPa (compression)
σ = 150MPa (tension)
|σ| = 175MPa (compression)
σ = 175MPa (tension)
|σ| = 185MPa (compression)
σ = 185MPa (tension)
|σ| = 196MPa (compression)
σ = 196MPa (tension)

Experimental data after STRAUB (1995)

ε [-]

σ [MPa] 1 815 1000 1200 1300

stress controlled, symmetric loading cycle,
after Bunch and McEvily (1987)

plastic material behavior -
hardening and softening

creep behavior - only first and third
creep stage observable

cyclic behavior - width of stress
strain loop increases, stress strain
loop is shifted ratchetingFigure 4. Cyclic creep for stress-
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The constitutive model should account for
some experimental observations shown in Figs. 4
and 5. From Fig. 4, it becomes obvious that
the width of the stress-strain loop increases un-
der cyclic loading and that the stress-strain loop
is shifted to the right side (ratcheting). Fig-
ure 5a demonstrates that the inelastic material
behaviour is related both to hardening and soft-
ening and that there is a strong dependence on
the temperature. Concerning the creep behaviour
as shown in Fig. 5b, the three creep stages are ob-
servable, but there is a strong dependence on the
loading direction, i.e., whether tensile or compressive loads are applied.



Vol. 22, 2021 23
Motivation A Simple Example Historical Remarks Creep-Damage Modeling

Characteristic Material Behavior

0 0.02 0.04 0.05 0.08 0.1 0.12 0.14

100

200

300

400

500

600

0 0.05 0.1 0.15 0.2 0.25

10
2

10
3

10
4

10
5

10
6

ε [-]

σ
[M

P
a]

Experimental data
after Röttger 1997

600◦C

530◦C

500◦C

creep strain

no
rm

al
iz

ed
cr

ee
p

ra
te

|σ| = 150MPa (compression)
σ = 150MPa (tension)
|σ| = 175MPa (compression)
σ = 175MPa (tension)
|σ| = 185MPa (compression)
σ = 185MPa (tension)
|σ| = 196MPa (compression)
σ = 196MPa (tension)

Experimental data after STRAUB (1995)

ε [-]

σ [MPa] 1 8151000 1200 1300

stress controlled, symmetric loading cycle,
after Bunch and McEvily (1987)

plastic material behavior -
hardening and softening

creep behavior - only first and
third creep stage observable

cyclic behavior - width of stress
strain loop increases, stress
strain loop is shifted ratcheting

15 May 2015 Altenbach Material Modeling 40

(a) Influence of the temperature on the stress-
strain curve, after [35].
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(b) Different behaviour under tension and compression,
after [36].

Figure 5. Inelastic material behaviour.

The basic idea for modelling is the assumption that the material under consider-
ation behaves like a binary mixture. As illustrated in Fig. 6a, the total stress σ is
composed of the stress σh for the hard phase and the stress σs for the soft phase:

σ = ηsσs + ηhσh, (28)

where ηs and ηh are the volume fractions of the inelastic soft and hard phase, re-
spectively. Furthermore, we assume that the iso-strain assumption is fulfilled. In this
case, we have a rheological behaviour with a parallel connection, cf. Fig. 6b:

ε̇ = ε̇s = ε̇h. (29)

The further development starts from the following two assumptions:

• kinematic hardening follows for different inelastic properties, i.e., if the volume
fraction is kept constant, the proposed binary mixture model results in a backstress
model similar to the approach in Ref. [38], and

• if the volume fraction of the inelastic hard constituent decreases towards a sat-
uration value, the creep rate increases after the minimum creep rate is reached.
This allows for the consideration of softening effects.

Motivation A Simple Example Historical Remarks Creep-Damage Modeling

Basic Idea - Binary Mixture Approach (I)

σs σ σh

F

Stress and Strain Rate Relations for Iso-strain Assumption

σ = (1 − ηh)σs + ηhσh

ηh - volume fraction of the inelastic hard phase

ε̇ = ε̇s = ε̇h
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(a) Stress concept in binary mix-
ture model.

Eh

Es

εinsε
in
s

εinhε
in
h

N N

(b) Rheological model with two branches in parallel (soft phase at the
top and hard phase at the bottom), each branch consist of an elastic
and an inelastic element, after [33].

Figure 6. Binary mixture model.
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Then, the behaviour of both constituents can be described by the following two
equations:

soft : ε̇s =
σ̇

E
+ sgn (σs) fσ(|σs|)fT (T ) , (30)

hard : ε̇h =
σ̇

E
+

σh − σ

σh∗ − σ
|ε̇|, (31)

where E is the macroscopic Young’s modulus, which is assumed to be identical for
both constituents, i.e., E = Eh = Es. The variables fσ and fT denote response
functions with respect to the stress and the temperature T , respectively, and σh∗ is
the saturation stress in the inelastic hard constituent.
The aim is to express the unknowns either by

• known variables,

• material parameters to identify, or

• internal state variables.

In the following, let us assume constant temperature and constant stress, as in
standard creep tests. Thus, Eq. (30) is simplified:

ε̇cr = ε̇s = sgn (σs) fσ(|σs|)fT (T ). (32)

In addition, due to mass conservation, the sum of the volume fractions equals 1, i.e.:

ηs + ηh = 1. (33)

Equation (28) is modified considering Eq. (33):

σ = (1− ηh)σs + ηhσh. (34)

Now, we introduce a new variable, the softening variable Γ , which is based on the
assumption that the volume fraction of the hard constituent decreases with time
towards the saturation value ηh0

:

Γ = ch
ηh
ηs

∀ 1 ≥ Γ ≥ Γ∗ =
ηh∗

ηs∗
, (35)

where ch =
ηs0

ηh0

is a material parameter which should be identified. Note that the

asterisk marks variables with respect to the saturation state. Based on the introduced
softening variable Γ , the unknown volume fraction ηh can be expressed as

ηh =
Γ

Γ + ch
. (36)

By replacing the volume fraction in Eq. (34) with Eq. (36), one obtains:

σ =

(
1− Γ

Γ + ch

)
σs +

Γ

Γ + ch
σh. (37)
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Further algebraic manipulations result in:

σch = σsch + Γ (σh − σ). (38)

Making use of the overstress concept, the variable β, referred to as “backstress” or
“kinematic stress”, is introduced:

β =
1

ch
(σh − σ) . (39)

Based on Eq. (38) and by introducing the backstress, one obtains finally:

σs = σ − βΓ. (40)

For the internal variables β and Γ , it holds:

• the backstress β describes the stress accumulation in the inelastic hard phase.
Since it is an internal variable, an evolution equation is required,

• one can show by proper algebraic manipulations that from the iso-strain condition
and by the chosen rate formulation for the inelastic hard phase, a formulation of
the Frederick-Armstrong type follows:

β̇ =
E

ch
ε̇cr

(
1− β

β∗

)
, (41)

• the softening variable Γ controls the volume change of the inelastic hard phase
and is motivated by microstructural changes,

• the following evolution equation for Γ is adopted from literature:

Γ̇ = As(Γ∗ − Γ )ε̇cr (42)

with the material parameter As.

For further details, the interested reader is referred to Ref. [32]. Let us note that
for constant stress and temperature, the evolution equations both for the backstress
and the softening variable can be integrated and written in terms of the creep strain
εcr:

β = β∗

[
1− exp

(
− E

chβ∗
εcr

)]
, (43)

Γ = Γ∗ − (Γ∗ − 1) exp (−Asε
cr) . (44)

For the required response functions, the following statements are valid:

• the stress and temperature response functions fσ and fT of the inelastic soft phase
need to be defined,

• a temperature response function for the Young’s modulus must be formulated,
and

• the saturation variables β∗ and Γ∗ are stress-dependent and therefore additional
response functions need to be found.
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The following response functions have been identified:

• the viscosity function for the stress dependence of the creep rate:

fσ(σ) = a0 sinh(Bσ), (45)

• the Arrhenius function for the temperature dependence:

fT (T ) = exp
(
−α

T

)
, (46)

• the following linear function for the saturation backstress β∗:

β∗ (σ) = H∗σ, (47)

• and the following stress response function for the saturation softening variable Γ∗:

Γ∗(x) =
aΓ

1 + bΓ exp
(
− x

cΓ

) (48)

with the material parameters a0, B, α, H∗, aΓ , bΓ , and cΓ .

The last step is the inclusion of damage by introducing the scalar damage variable ω
following Rabotnov’s approach, cf. [31]. The following evolution equation is applied
to describe damage according to [31]:

ω̇ = r (ω)h (σ)
| ˙εcr|
ε∗ (σ)

(49)

with the response functions:

r (ω) = lω
l−1

l , (50)

ε∗ (σ) = εbr +
aε

1 + bε exp
(
− |σ|

cε

) , (51)

h (σ) =
σ + |σ|
2σ

, (52)

whereby the variables l, εbr, aε, bε, and cε are material parameters to be deter-
mined by calibrating the constitutive model against experimental data. A detailed
description of this calibration procedure is given in Ref. [33]. The following comments
concerning the calibration process can be given:

• The Frederick-Armstrong-type approach for the backstress follows naturally from
the proposed model.

• The evolution of microstructure is taken into account.

• The stress accumulation in only one inelastic hard phase does not seem to be
sufficient.

• With the improved backstress formulation, all creep curves are described with
higher accuracy.
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In the following, let us briefly indicate how to extend the one-dimensional model
to three dimensions. First, let us assume small strains and isotropy for the elastic
behaviour. Second, if necessary, scalar variables are replaced by the corresponding
second-order tensors, such as the backstress tensor ββ. Third, some variables, partic-
ularly the stresses, are substituted by their equivalent properties. Here, we choose
the von Mises hypothesis. This procedure results in the following three-dimensional
evolution equations:

• an evolution equation for the creep strain:

ε̇εcr =
3

2
fσ

(
σ̄vM
1− ω

)
fT (T )

s̄

σ̄vM
− 1

2G

d

dt
(Γββ) (53)

with the effective stress deviator s̄ = s − Γββ and the effective von Mises stress

σ̄vM =
√

3
2tr(s̄)

2,

• an evolution equation for the backstress tensor:

β̇β = Ah

(
2

3
ε̇εcr − ε̇vM

ββ

β∗ (σvM)

)
, (54)

whereby the variables ε̇vM and σvM represent the equivalent strain rate and stress
of von Mises-type,

• an evolution equation for the softening variable:

Γ̇ = As [Γ∗(σvM)− Γ ] ε̇crvM, (55)

• and an evolution equation for the damage variable:

ω̇ = r(ω)h(σσ)
ε̇crvM

ε∗(σvM)
, h(σσ) =

σI + |σI |
2σvM

, (56)

whereby σI represents the largest principal stress.

Further details are given in Ref. [31], where also some verification results are pre-
sented. The following conclusions were drawn:

• Within its range of calibration, the binary mixture model reproduces the material
behaviour with high accuracy.

• Physical processes on a microstructural level are accounted for. Nevertheless, the
material parameters are determined based on the results of macroscopic creep
tests.

• Complex creep curves including hardening, softening, and damage are accurately
represented by the proposed constitutive model.

• In addition, the model is able to predict the material behaviour if loading condi-
tions differ from the range of calibration.

• Implementations into the finite element method are possible, cf. Ref. [39].

• In some cases, softening is overestimated by the model.

• For lower temperatures, the model overestimates hardening, which should be im-
proved in the future.

• The transition from linear elastic to non-linear stress-strain behaviour is currently
too strict and should be refined in forthcoming papers.
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Finally, such an approach is applicable to other materials as well, e.g., to model the
creep behaviour of thermoplastics, as done in Ref. [40].

7. Summary

Rheological models are a powerful tool for describing complex material behavior.
The advantages of the inductive and the deductive description of the individual
response to external loads are brought together. After a brief historical overview
of the rheological model method, the method is introduced in a variant developed
by Palmov. Application examples (two-dimensional continua, creep of heat-resistant
alloys) conclude the article.
More applications can be established: binary mixtures, plastics, etc. New chal-

lenges are related to the integration of the symbolic tensor calculus and the basics
of continuum mechanics, cf. [28].
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