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Boutet de Monvel’s calculus [1] of pseudo-differential boundary value problems (BVPs) may
be extended from the smooth case to corner manifolds with boundary. We outline here the
approach of [7] which is to some extent parallel to the corner analysis off the boundary. Here
we refer to new progress from [42].
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1. Introduction

Boundary value problems (BVPs) on corner manifolds suggest applying Boutet de
Monvel’s calculus [1] of operators on a smooth manifold with the transmission prop-
erty at the boundary to the corresponding case with corner singularities. We give
an outline of such an approach for regular singularities, characterized by transversal
intersections of the strata close to the singular points. Another aspect are symbol
hierarchies of the operators, determined by the strata of the configuration, similarly
to those in BVPs. Singularities of first order concern conical points, see [34, 35] or
edges, cf. [33], [19, 20, 23], [5, 7]. Smoothness up to the boundary corresponds to
singularity of order zero. The present exposition refers to tools from [1], combined
with Mellin operator techniques developed in [36], [10, 11], [4] for the case with an
empty boundary. Since the technical details for BVPs are a voluminous program
we mainly illustrate specific corner aspects for the case without boundary. Here we
focus on a manageable concept of weighted corner Sobolev spaces in the sense of
[42]. More details for the case with non-trivial boundary will be studied elsewhere,
cf., [24].

2. General Orientation

Boutet de Monvel’s approach [1] to studying boundary value problems (BVPs)
on manifolds with a smooth boundary has been organized in terms of pseudo-
differential operators with the transmission property at the boundary, cf., also
articles and monographs on this topic [9], [28], [12], [40], [41], [25]. More back-
ground information, also on the case with violated transmission property, may be
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found in [46], [9], [29]. The edge calculus from [36] and subsequent contributions,
see more references below, is not only a kind of calculus for singular manifolds and
degenerate operators, the idea of specific weighted Sobolev spaces form a specific
chapter, cf., also the papers [14], [43], [15], and many other contributions. have
stimulated to a large extent the progress of corner analysis. Similarly to the inte-
rior calculus, i.e., the case with empty boundary, a crucial idea is the relationship
between operators A and symbols σ(A), also referred to as a quantization of the
respective symbol information. In BVPs we have σ(A) =

(
σψ(A), (σ∂(A)

)
with

ψ indicating the interior and ∂ the boundary symbol of A. One of the merits of
Boutet de Monvel has been to integrating boundary operators as well as potential
operators and Green’s function into the symbol framework with interior and bound-
ary symbols, together with their algebra properties. These objects are in general
2 × 2 block matrices; they may also have the form of rows or columns, such as in
Dirichlet or Neumann problems for Laplacians, or corresponding inverse operators
(or parametrices). Compositions concern the case when the numbers of rows and
columns in the middle fit together. Ellipticity in Boutet de Monvel’s space Bµ,e(N)
of operator of order µ ∈ Z and type e ∈ {0, 1, 2, . . . , } on a manifold N with smooth
boundary ∂N is a bijection condition both on σψ(A) over Nint = N \∂N and σ∂(A)

over ∂N. This entails the existence of a parametrix A(−1) belonging to the pair of
symbols σ(A(−1)) =

(
σψ(A)−1, (σ∂(A)−1

)
. For compact N this is equivalent to the

Fredholm property of A between the involved (direct sums) of Sobolev spaces.

The case of BVPs with conical singularities or edges on the boundary or with
violated transmission property, including asymptotics of solutions, is much more
complex. Many investigations are devoted to this case, cf., in particular, [9], [29],
[33–35], [13], [22], [5, 7]. This belongs to the development of singular analysis in
the past decades, originally motivated by models of applications and represented
by schools of researchers worldwide, who developed different analytic approaches
for studying concrete problems or general structure properties, with ideas from
Geometry or Topology. The singular analysis has a particularly glorious tradition
in Georgia, Russia and many other countries, belonging to a network of research
groups and also international conferences. The Vekua Institute of Applied Mathe-
matics of Tbilisi State University belongs to the active centers, with the specialist
and organizer Prof. George Jaiani as a leading personality since many years. It is
a great honor for the authors of this exposition, see also [22], to present an article
on the occasion of his 75. birthday, with the best wishes for health and further
scientific productivity.

In Section 3 we specify categories of singular manifolds M or N consisting of
subcategories

Mk, Nl, for k, l = 0, 1, 2, . . . , (1)

with k or l being singularity orders, where M indicates the case with empty and
N with nontrivial boundary.

Section 4 will illustrate classes of degenerate differential operators and also rela-
tions to singular boundary conditions.

Section 5 is devoted to BVPs both on smooth and singular manifolds with bound-
ary. We shall see immediately why it is reasonable referring to the classes of under-
lying spaces M or N at the same time, although we have, for instance, N0 ⊂ M1.
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In the present consideration manifolds M with singularities are assumed to be
regular in the sense of some transversality conditions close to points or subsets
where smoothness is violated, see more notation below, where BVPs refer to sin-
gularities on boundaries and also to conical exits to infinity. But even for standard
prototypes of such configurations M the operators A in the present exposition act
in weighted corner Sobolev spaces and specific degenerate symbols σ(A) are closely
related to weighted cone spaces. The motivation of the general approach consists
of characterizing solutions to elliptic equations on M or N, belonging to categories
of singular manifolds (1), cf., notation in Section 3, below. In particular, singular
spacesM ∈ Mk for k = 0 are oriented smooth manifolds, k = 1 indicates conic sin-
gularities or smooth edges. Larger k correspond to higher singular corners or edges.
Pseudo-differential analysis for k = 0 from the very beginning relies on coordinate
invariance under diffeomorphisms. For k > 0 we have to take into account many
specific constructions, both on the level of singular manifolds, of corner analogues
of Sobolev spaces, and also of degenerate symbol structures, including various kinds
of quantizations. Numerous analytic details in the iterative description of operator
structures for increasing k, l, and also interactions of objects from the closed case
to that with boundary and vice versa require a careful management of notation
in the context of categories (1). Therefore, for future purposes, in the present ex-
position we briefly recall notation and methods concerning general structures of
singular analysis and outline classes of boundary value problems in the corner con-
text. Those play a role of examples of possibilities of treating more general models
of applications, cf., motivation from [13] or [18] and methods from [17] [16].

3. Singular Manifolds

Examples of singular manifolds M ∈ Mk or N ∈ Nl for different k, l, concern
spaces with conical points, edges, or corners, cf., other examples below. Although
we do not aspire to utmost generality, we need the freedom of choosing objects in
Mk or Nl, but it is advisable to have in mind situations when the respective spaces
are piecewise smooth manifolds such as cubes in Euclidean spaces or their faces
of different dimension. Let us start with the closed case Mk, k = 0, 1, 2, . . . , of
singular spaces M, where k = 0 indicates oriented smooth manifolds, k = 1 spaces
with conic singularities or smooth edges, and k > 1 the case with corners or higher
edges. As noted before, we employ here the terminology of other papers, see, also
[3, 4], but the intuitive idea is that the spaces Mk are characterized by repeatedly
forming (regular) cones or wedges, combined with global constructions of gluing
together such local models to larger configurations. We often refer to notation

X△ := (R+ ×X)/({0} ×X) (2)

which is an infinite straight cone, and

X∧ := R+ ×X, (3)

the corresponding stretched version with X belonging to suitable categories of
topological spaces, e.g., closed oriented manifolds. Later on those will assumed to
be manifolds with smooth boundary ∂X. In such a case (3) X∧ has the smooth
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boundary (∂X)∧. The subspace ({0} ×X) ⊂ (R+ ×X) in (2) represents a conical
singularity where we tacitly impose some regular behavior. In simple cases we mean
the regularity close to the vertex of a cone

V △ ⊂ R1+N

for some sufficiently large N , where V is a (say, closed) sub manifold of the unit
sphere SN in R1+N and dimV = n for some n ≤ N, where

V △ := {rx : r ∈ R+, x ∈ V }. (4)

For n = 0 where V is only a single point we have V △ = R+. Otherwise, if V
contains two points a ̸= b then the generated closed half-lines have a transversal
intersection at the origin of R1+N , and this is an aspect of the regular behavior we
are talking about. Also when V is a space with singularities, iteratively generated
by the definitions below, for convenience we may assume that for some sufficiently
large N there is chosen an embedding V ↩→ SN and that the regular cone V △

having the link V is of the form (4).

Remark 1 : There is another role of using the closed half-axis R+ or the open
interior R+ in formulating singular manifolds. For instance, letM be a Riemannian
manifold with smooth boundary ∂M. There is then a collar neighborhood V (M)
of ∂M, often identified with a trivial [0, 1)-bundle over ∂M. As we shall see below
it makes sense also to talk about the trivial R+-bundle over ∂M which is the
inner normal bundle. In this context we also interpret M as a manifold with edge
s1(M) = ∂M. We often say that s1(M) has a neighborhood V (M) in M with the
structure of the respective cone bundle with fiber R+ although the neighborhood
itself in M is only the respective [0, 1)-bundle.

We hope this will not cause confusion, but the control of distributions on the
half-axis up to ∞ will be important for the philosophy of edge Sobolev spaces in
considerations for higher singularities, and also in the interpretation of homogeneity
properties of edge- and corner-symbols.

Remark 2 : The point of view of Remark 1 is more visible when we generalize
the terminology for a manifold M with edge s1(M) = Y. In this case there is a
neighborhood V (M) of s1(M) with the structure of a locally trivial X△-bundle
over s1(M) for some (oriented closed) manifold X. The neighborhood V (M) itself
may be identified with a corresponding X♭△-bundle over Y for

X♭△ := ([0, 1)×X)/({0} ×X). (5)

In this case we do not ignore either the identification of V (M) with anX△-bundle
where we treat X△ \ X♭△ as a manifold with a conical exit to ∞, not only as a
cylinder [1,∞)×X.Moreover, V (M) induces an X-bundle VO(M) over s1(M) with
fibers {1} ×X, identified with X, using the fact that the half-axis as a component
of the fiber X△ only contributes a trivial line bundle (and we may refer to a fixed
trivialization). Let us invariantly attach VO(M) to V (M) \ s1(M) and denote the
resulting stretched space by V(M), equipped with the splitting of variables

m̃ = (r,mO) ∈ R+ × VO(M) (6)
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into a vertical and a horizontal component.

By definition a space M ∈ Mk for k ≥ 1 contains a subspace sk(M) ∈ M0

such that M \ sk(M) ∈ Mk−1 and a neighborhood of sk(M) in M can locally be
identified with a (locally trivial) cone bundle V (M) over sk(M) with fibers X△

k−1,
with compact links Xk−1 ∈ Mk−1. Transition maps between fibers are induced by
the notion of isomorphisms between elements Xk−1 ∈ Mk−1 which are a natural
consequence of those on the step for k − 1 and required homogeneity of order 0 in
the axial variable t ∈ R+ contained in X△

k−1. A successive procedure then gives rise
to a finite sequence

s(M) = {(s0(M), s1(M), . . . , sk(M)}. (7)

For convenience we assume that for M ∈ Mk the components of (7) satisfy the
conditions

0 ≤ dim sk(M) < dim sj(M) < dim sj−1(M) < dim s0(M), (8)

for all 0 ≤ j ≤ k, and we set dimM := dim s0(M). Another reasonable property
of concrete examples is that

dim sj(M) + 1 + dim (Xj−1) = dimM for all 0 < j ≤ k. (9)

Let us form the stretched space

M :=
(
(M \ sk(M)) ∪ VO(M)

)
/ ∼, (10)

associated with M, obtained by invariantly attaching the above-mentioned VO(M)
to M \ sk(M); this is just the meaning of notation in (10). There is then a double

2M ∈ Mk−1 (11)

defined by gluing together two copies M+ := M and M− of M along the common
subspace VO(M).

The cone bundle V (M) over sk(M) with fibers X△
k−1 contains VO(M) like a

“horizontal part” which is complementary to a “vertical part”, a trivial R+-bundle
over sk(M). Variables m̃ on the stretched manifold M locally close to VO(M) =
M− ∩ M+ admit a splitting of the form

m̃ = (t,mO) ∈ R+ × VO(M). (12)

This reminds of the splitting m̃ = (t,m) of local variables m̃ on a smooth manifold
M with boundary close to ∂M into the inner normal t to the boundary (with respect
to a Riemannian metric) and the component m tangent to ∂M.

As a simple example we consider a closed manifold X and form a wedge M :=
X△×Rq which belongs toM1 with edge s1(M) = Rq. Then we have VO(M) = X×Rq

and M = R+ ×X × Rq.
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It is often convenient to employ global cut-off functions on M for M ∈ Mk, often
denoted by ωglobk

or simply ω. Such a function ω on R+ is a smooth real-valued
function such that ω(t) ≡ 1 for 0 < t < ε0 and ω(t) ≡ 0 for t > ε1 for some
0 < ε0 < ε1. Globally on M we write ωglobk

when the cut off function is interpreted
as a function on M which locally close to VO(M) in a splitting (12) only depends
on t and behaves like the former ω for sufficiently small 0 < ε0 < ε1.
Prototypes of elements in Mk are polyhedral configurations, embedded in RN ,

for instance, the unit cube Q in R3 which belongs to M3. In this case the 8 isolated
corner points form the subset s3(Q), and it is easy to identify the other strata
sj(Q) for j = 0, . . . , 2, where s0(Q) is just the open interior. Moreover, we have
∂Q ∈ M2. Such examples are of particular interest in models of mechanics or other
applications, formulated in terms of (e.g., elliptic or parabolic) partial differential
equations (PDEs), given in s0(M), with symbols of a specific corner-degenerate
behavior in stretched variables. The singular geometry also gives rise to a corre-
sponding degenerate behavior of boundary conditions. It is then desirable to express
parametrices and regularity of solutions within a pseudo-differential approach.

The general calculus of (pseudo-differential) operators A - say, classical ones -
on a space M ∈ Mk refers to a symbol structure, connected with (7), in this case
a principal symbol hierarchy

σ(A) = {(σ0(A), σ1(A), . . . , σk(A))}, (13)

where σ0(A) is the standard principal symbol of A on s0(M), though degenerate in
local stretched variables and covariables close to the singularities, while the other
components, say, for dim sk(M) > 0, are families of operators, also with a specific
dependence on variables and covariables on sj(M), 1 ≤ j ≤ k. These operators act
between weighted Kegel spaces over the open stretched cones X∧

j−1 := R+×Xj−1 to

be studied below, with X∧
j−1 being interpreted as a space with (in general, singular)

conical exit to ∞, analogously to Boutet de Monvel‘s calculus [1] in the smooth
case, we need the categories (1) for the case without or with boundary at the same
time.

Definitions for N are similar to those for M but transition maps are required to
be smooth up to boundaries. The closed half space

R
n
+ = {x = (x′, xn) : x

′ ∈ Rn−1, xn ∈ R+} (14)

belongs both to M1 and N0, where N0 is defined to be category of oriented smooth
manifolds with boundary. We have the proper inclusion N0 ⊂ M1 and a similar re-
lation below for higher singularities. Isomorphisms in N0 are orientation preserving
diffeomorphisms up to the boundary.

More generally, Nk for k > 0 is furnished by topological spaces N containing
an sk(N) ∈ M0 such that N \ sk(N) ∈ Nk−1, and N contains a neighborhood
V (N) of sk(N) with the structure of a locally trivial E△

k−1- bundle over sk(N)
for some compact Ek−1 ∈ Nk−1. Then V (N) \ sk(N) just has the fibers E∧

k−1 =
R+×Ek−1. The transition maps for the fibers E△

k−1 of V (N) are controlled up to the
corner points as follows. Denote by VO(N) the Ek−1-bundle over sk(N) obtained
by restricting the above-mentioned fibers R+×Ek−1 of V (N)\sk(N) with variables
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(t, nO) to t = 1. Let us attach in an invariant way VO(N) to V (N) \ sk(N). This
gives us a bundle V+(N) over sk(N) with fibers R+ ×Ek−1. An analogous process
gives us the negative counterpart V−(N) which is an R−×Ek−1-bundle over sk(N),
where

V−(N) ∩ V+(N) = VO(N) (15)

and

V(N) :=
(
V−(N) ∪ V+(N)

)
/ ∼ (16)

is an R×Nk−1-bundle over sk(N). Here / ∼ indicates a natural gluing construction
between the V−(N) and V+(N) along VO(N) in (15). By virtue of Ek−1 ∈ Nk−1 it
follows that R × Ek−1 ∈ Nk−1, and hence we may talk about transition maps of
fibers

R+ × Ek−1 → R+ × Ek−1 in the category Nk−1 (17)

since by induction assumption those features are known on the more regular level
k − 1, where in the case of straight cylinders R+ × Ek−1 points are denoted by
(t, nO). In our case, representing the compact link Ek−1 as an embedded space
Ek−1 ↩→ SΞ similarly to (4), with SΞ being the unit sphere in R1+Ξ for sufficiently
large Ξ, we have an isomorphism of the form

T∧ : R+ × Ek−1 → R+ × Ek−1, T∧ :
(
(t, nO

)
7→

(
t, tTh(nO)

)
(18)

for any isomorphism Th in Nk−1. The multiplication of Th by t ∈ R+ is well-defined
as an operation on points in R1+Ξ \ {0}. Relation (18) induces a bijective map

T△ : E△
k−1 → E△

k−1 (19)

between the respective corner configurations, including their fixed vertex which is
the origin on R1+Ξ. We also can invariantly attach VO(N) to N \ sk(N) and obtain
the stretched space N, also called N+, and a corresponding negative counterpart
N− and we get the double

2N =
(
N− ∪ N+

)
/ ∼∈ Nk−1, N− ∩ N+ = VO(N). (20)

For k > 1 successive procedure allows us to form

sk−1(N) = sk−1(N \ sk(N)) ∈ M0 (21)

when k − 1 > 1, otherwise it follows that sk−1(N) ∈ N0 and we get altogether a
sequence

s(N) := (s0(N), s1(N), . . . , sk(N)), (22)

where s0(N) ∈ N0, sj(N) ∈ M0 for j > 0. The successive construction of
s(N) is performed analogously to s(M) in (7) for the closed case. This proce-
dure is motivated by the iterative ideas for building up sequences of algebras of



74 Lecture Notes of TICMI

pseudo-differential operators, here of BVPs with the transmission property along
the smooth parts of the boundary, beginning with the “most singular subset”
sk(N) ⊂ N when k > 0. Nevertheless, in order to understand the behavior of
transition maps of the above-mentioned E△

k−1-bundle close to the respective cor-
ner boundaries it is also instructive to construct spaces N ∈ Nk by a successive
process the other way around, beginning with an E0 ∈ N0, then pass to a cone E△

0

and wedges E△
0 × Rq with boundary, etc..In order to reach N ∈ Nk for k = 1 it

suffices to work with such local cones or wedges for some arbitrary q > 0 and then
to construct global spaces N1 ∈ N1 such that Y = s1(N1) for a chosen manifold
Y ∈ M0 by gluing together local wedges with edge Y using a partition of unity on
Y which yields N1. where s0(N) ∈ N0, sj(N) ∈ M0 for j > 0.
Let us now turn to the principal symbol structure of BVPs on singular manifolds

N ∈ Nk, motivated by Boutet de Monvel’s calculus [1] in the case k = 0. Recall
that other aspects of boundary value problems, partly without the transmission
property, have been investigated by Vishik and Eskin [46, 47] and [9] or [28], [12],
[2], [25]. In BVPs A on compact N ∈ N0 we first consider s(N) = {(s0(N)}.
At the same time we have N ∈ M1 and in ”M1”-notation s(N) = (intN, ∂N).

An operator A in Boutet de Monvel’s calculus which is an upper left corner of a
corresponding 2× 2 block matrix has a pair of principal symbols

σ(A) = {(σ0(A), σ1(A))} =: {(σψ(A), σ∂(A))} (23)

with σψ(A) being the homogeneous principal interior symbol and σ∂(A) the
(twisted homogeneous) principal boundary symbol of the operator A. This pair
can be identified with σ(A). More generally, if an A of order µ ∈ Z and type a
which is a BVP on a corner manifold N ∈ Nk with boundary, for k > 1 we have to
expect a similar picture as in the closed case, and we have principal symbols σj(A)
associated with sj(N) consisting of families of operators

σj(A)(·) : Ks,β,γ(E∧
j−1) → Ks−µ,β−µ,γ−µ(E∧

j−1), (24)

continuous for s > a − 1/2. Here Ks,β,γ(E∧
j−1) are Kegel spaces over E∧

j−1 where

N ∈ Nk is locally close to sj(N) is modeled on Rqj × E∧
j−1 for a compact link

Ej−1 ∈ Nj−1. Moreover, β = {β1, . . . βj−1} ∈ Rj−1, γ ∈ R are weights. More
information on such Kegel spaces may be found in in [24].

Interpreting A as an operator on N ∈ N0, we identify σ0(A) with (23) For a
general BVP A on N ∈ Nk we write

σ(A) = {(σ0(A), σ1(A), . . . , σk(A)}, (25)

where the component (24) are associated with sj(N), j = 1, . . . , k. In the following
sections we will study the structure of corner BVPs for the cases k = 0, 1 while
k = 0 corresponds to the known case of BVPs in Boutet de Monvel’s calculus on a
smooth manifold with boundary N ∈ N0.
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4. Degenerate Operators

As noted before the corner calculus of BVPs on N ∈ Nk induces the calculus of
lower right corners which are pseudo-differential operators on a corner manifold
M := ∂N ∈ Mk without boundary. Conversely, the ideas of the latter calculus just
extend to the case of BVPs on N ∈ Nk, consisting of upper left corners. Other
ingredients are entries of trace and potential type, similarly to Boutet de Monvel’s
algebra in the smooth case. In the present exposition we focus on some crucial ele-
ments of such a voluminous program. Because of the assumed situation of regular
corner geometry, encoded by the above-mentioned iterative definition of spaces in
the categories (1), we formulate an iterative approach of pseudo-differential oper-
ators with degenerate symbols in stretched variables. The constructions start with
compact X ∈ M0 and we recall constructions for spaces of parameter-dependent
edge operators on a space B ∈ M1 with edge Y := s1(B) of dimension q > 0. The
space of those operators will be denoted by

Lµ(B, b;Rdλ). (26)

Here b := (β, β−µ) has the meaning of weight data which correspond to mapping
properties in weighted Sobolev spaces. By the condition of vanishing principal
symbol pairs, we can also pass to order µ− 1 and then, successively to µ−m for a
natural number m. For simplicity we consider here the case m = 0, also later on in
other operator spaces of similar structure. Recall that B ∈ M1 is locally close to
its edge Y modeled on X△ × Rq. Later on, when we manage operators on a space
M ∈ M2 with a corresponding “corner edge” Z := s2(M), the parameter λ plays
the role of (τ̃ , ζ̃) ∈ R1+l, i.e., d = 1 + l, with τ ∈ R being the covariable belonging
to an extra corner axis variable t ∈ R+ and ζ ∈ Rl the covariable belonging to Z
of dimension l. At the same time λ will be replaced by (tτ, tζ), which gives rise to
corner-degenerate families of operators. In addition locally near t = 0 operators will
be composed with the factor t−µ. Concerning the structure of operator families in
(26) for closed X we refer to the paper [6, formulas (3.1), (3.15), (3.16)]. However,
in order to keep the ideas self-contained we outline some essential aspects for the
present exposition. In particular,we employ the formalism connected with the new
Mellin-edge quantization, elaborated in [11].

We formulate several families of operators of the form of parameter-dependent
operator-valued symbols close to the edge Y = s1(B). First let A(C, E) denote the
space of all holomorphic functions in w ∈ C with values in a Fréchet space E, here

E = Lµcl(X;Rq+d
η̃,λ̃

). Let

Mµ
Ow

(X;Rq+d
η̃,λ̃

) (27)

denote the space of all

h̃(w, η̃, λ̃)∈A(Cw,L
µ
cl(X;Rq+d

η̃,λ̃
)) such that h(α+ iρ, η̃, λ̃)∈Lµcl(X;Γα×Rq+d

η̃,λ̃
) (28)

for every α uniformly in compact α-intervals, where

Γα := {w ∈ C : Rew = α} (29)
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is identified with an extra one-dimensional component of the parameter space Γα×
Rq+d
η̃,λ̃

with parameters (ρ, η̃, λ̃), ρ = Imw. The space (27) is Fréchet, and we can

talk about C∞-functions of variables R+ × Rq with values in (27). Later on, we
employ notation Γα in similar meaning in another complex v-plane. Moreover, we
set h(r, y, w, η, λ) := h̃(r, y, w, rη, rλ) for some

h̃(r, y, w, η̃, λ̃) ∈ C∞(R+ × Rq,Mµ
Ow

(X;Rq+d
η̃,λ̃

)), (30)

with w being the complex Mellin covariable belonging to r. For any weight Ξ ∈ R
we set

OpΞM (h)(y, η, λ)u(r, ·) :=
∫
Γ dimX+1

2
−Ξ

∫ (
r

r′

)−w
h(r, y, w, η, λ)u(r′, ·) dr′d̄w, (31)

d̄w := (2πi)−1dw, in the present case for

Ξ := β − n

2
, n := dimX. (32)

Moreover, let

pint(r, y, ρ, η, λ) ∈ C∞(R+ × Rq, Lµcl(X;R1+q+d
ρ,η,λ )),

satisfy the condition

pint = σpintσ̃ (33)

for some cut-off functions σ(r), σ̃(r). Symbols of the edge pseudo-differential cal-
culus locally close to the edge Y have the form

asing(y, η, λ) = σ1(r)r
−µOp

β−n

2

Mr
(h)(y, η, λ)σ0(r)

+ (1− σ1(r))r
−µOpr(pint)(y, η, λ)(1− σ2(r))

+ g
M+G

(y, η, λ),

(34)

X ∈ M0, where σ2 ≺ σ0 ≺ σ1 are cut-off functions in r. In addition g(y, η, λ)
are Mellin plus Green symbols in the covariables (η, λ) and the edge-variable y ∈
Rq, interpreted as local coordinates on Y of dimension q. In this explanation we
suppress notation for the smoothing Mellin symbols; they have a similar structure
as those in [37, Definition 3.2.6], [11]. Off Y the operators in (26) are simply
standard parameter-dependent pseudo-differential operators pint on B \ Y added
to those with symbols in (34) and localized by using a partition of unity on B
subordinate to an open covering of the stretched manifold B which is of analogous
meaning as M in relation (10) containing neighborhoods intersecting ∂B and interior
neighborhoods disjoint to ∂B.

In the following we systematically employ weighted Sobolev spaces Hs,β(X∧)
defined on X∧ = R+ × X of dimension n, first for closed X ∈ M0 of dimension
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n. Those are immediate analogues of “cylindical” Sobolev spaces Hs(R × X) of
smoothness s on R ×X locally on X related to Hs,β(X∧) by isomorphisms

Sβ−n/2 : Hs,β(R+ × Rn) → Hs(R1+n), (Sαu)(r, ·) := e−(1/2−α)ru(e−r, ·), r ∈ R
(35)

for α := β−n/2. We have rθHs,β(X∧) = Hs,β+θ(X∧) for any real θ. Moreover, we
also employ modified spaces defined by

Ks,β(X∧) = {u = ωu0 + (1− ω)u∞ : u0 ∈ Hs,β(X∧), u∞ ∈ Hs
cone(X

∧)} (36)

where Hs
cone(X

∧) locally for large |x|, with x ∈ R1+n belonging to an infinite
subcone determined by the condition {x/|x| ∈ V } for a coordinate neighborhood
V of the unit sphere S1+n, is modeled on (1− ω)Hs(R1+n)|V ∧ . Here ω is a cut-off
function, smooth and of bounded support, with ω(r) ≡ 1 close to r = 0. The spaces
(36), also called Kegel spaces, are independent of the choice of ω; for any fixed ω
they are Hilbert spaces with a scalar product determined by a non-direct sum of
spaces close to 0 and for large r, cf., [11, Definition 2.1]. The spaces (36) will also
be called Kegel spaces; those are equipped with the group action

(κδu)(r, ·) := δ
n+1

2 u(δr, ·), δ ∈ R+. (37)

Definition 4.1: We define spaces of operator-valued symbols RµedgeG
(Rqy × Rqη ×

Rdλ; (β, β̃)ε)

g(y, η, λ) ∈
∩

s,s′,e,e′∈R

Sµcl(R
q
y × Rqη × Rdλ;Ks,β;e(X∧),Ks′,β̃+ε;e′(X∧)), (38)

g∗(y, η, λ) ∈
∩

s,s′,e,e′∈R

Sµcl(R
q
y × Rqη × Rdλ;Ks,−β̃;e(X∧),Ks′,−β+ε;e′(X∧)) (39)

for some ε > 0. Moreover, let RµedgeG
(Rqy × Rqη × Rdλ; (β, β̃)∞) be the space of those

g(y, η, λ) such that (83) and (84) hold for all ε > 0.

Furthermore, RµedgeM+G
(Rqy×Rqη×Rdλ; (β, β̃)ε) is defined to be the set of all operator

families of the form

g
M+G

(y, η, λ) = g
M
(y, η, λ) + g

G
(y, η, λ) (40)

for

g
M
(y, η, λ) = ω(r[η, λ])r−µOp

β−n/2
M (f)(y)ω′(r[η, λ]) (41)

for some cut-off functions ω(r), ω′(r) and f(y, w) ∈ C∞(Rq,M−∞
As (X)) and

g
G
(y, η, λ) ∈ RµedgeG

(Rqy × Rqη × Rdλ; (β, β̃)ε). (42)
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We use the fact that

asing(y, η, λ) ∈ Sµ(Rq × Rq+d;Ks,β(X∧),Ks−µ,β−µ(X∧)), (43)

for the symbols (34), between weighted Kegel spaces Ks,β(X∧) and Ks−µ,β−µ(X∧),
respectively, both equipped with the group action (37). Then the operators

Opy(asing)(λ) : Ws
comp(R

q,Ks,β(X∧)) → Ws−µ
loc (Rq,Ks−µ,β−µ(X∧)). (44)

are continuous for all s.
The spaces (26) of the edge operator calculus consist of (families of) operators

A(λ) := ωglobAsing(λ)ω
′
glob + (1− ωglob)Aint(λ)(1− ω′′

glob) + C(λ) (45)

for global cut-off functions ω′′
glob ≺ ωglob ≺ ω′

glob on B that are ≡ 1 in a small

neighborhood of Y and vanish off another neighborhood of Y. In (45) we assume
Aint(λ) ∈ Lµcl(B \ Y ;Rdλ). The definition implies that

A(λ) : Hs,β(B) → Hs−µ,β−µ(B) (46)

is continuous for every s, cf., remarks on the involved spaces below. In this con-
nection we employ that Asing(λ) is locally close to the edge Y a pseudo-differential
operator (90)
The edge calculus is already a complicated structure. and also the weighted

Sobolev spaces Hs,β(B) deserve separate consideration. By definition those spaces
locally close to Y coincide with

Ws(Rq,Ks,β(X∧)) (47)

referring to (37), and we have Hs,β(B)|B\Y ⊂ Hs
loc(B \ Y ). Recall that the latter

property is just a consequence of the special choice of the group action (37) on
the involved Kegel spaces, in particular, of the exponent (n + 1)/2 of δ on the
right-hand side of (37) where n = dimX, cf. also corresponding information in [37,
Proposition 3.1.21].

In addition let L−∞(B, b) be the space of all operators C which induce continuous
operators

C : Hs,β(B) → H∞,β−µ+ε(B), C∗ : Hs,−β+µ(B) → H∞,−β+ε(B) (48)

for all s ∈ R and some ε > 0 and set

L−∞(B, b;Rdλ) := S(Rdλ, L−∞(B, b)) (49)

which are specific smoothing elements of the edge pseudo-differential calculus
Lµ(B, b;Rdλ). In (26) we assume C(λ) ∈ .L−∞(B, b;Rdλ)
The contributions Aint(λ) in (45) are parameter-dependent classical pseudo-

differential operators on B \ Y and C(λ) are smoothing operators of the edge
calculus, characterized by their mapping properties, including those of formal ad-
joints.
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Remark 1 : In connection with (26) it makes sense also to consider the chain of
subspaces

L−∞(B, b;Rdλ) ⊂ Lµ
G
(B, b;Rdλ) ⊂ Lµ

M+G
(B, b;Rdλ) ⊂ Lµ(B, b;Rdλ), (50)

where Lµ
M+G

and Lµ
G
are locally close to Y determined by symbols g

M+G
(y, η, λ) and

g
G
(y, η, λ), respectively, up to globally smoothing remainders in L−∞, cf. notation

around (40), (41), (83).

The space B ∈ M1 has the sequence of strata

s(B) = (s0(B), s1(B)), s0(B) = B \ Y, s1(B) = Y. (51)

Elements A of (26) then have a tuple of parameter-dependent principal symbols

σ(A) = (σ0(A), σ1(A)), σ0(A)(x, ξ, λ) := σψ(A|B\Y )(x, ξ, λ),

σ1(A)(y, η, λ) := Op
β−n/2
M (h0)(y, η, λ) + σ1(M +G)(y, η, λ)),

(52)

where σ1(M + G) := g(µ)(y, η, λ), (η, λ) ̸= 0, G = Opy(g), and σ0(A)(x, ξ, λ) is
homogeneous of order µ for (ξ, λ) ̸= 0 with ξ being the covariable of the cotangent
bundle of the smooth manifold B \ Y, moreover,

h0(r, y, w, η, λ) := h̃(0, y, w, rη, rλ), (53)

σ1(A)(y, η, λ) : Ks,β(X∧) → Ks−µ,β−µ(X∧), (54)

(η, λ) ̸= 0. The operator family σ1(A)(y, η, λ) is twisted homogeneous in (η, λ) ̸= 0
of order µ, cf., generalities on spaces of operator-valued symbols in [37, 38].

Remark 2 : Ellipticity of A is a bijectivity condition on both symbol compo-
nents when we have in mind operators of “upper left corner” type. Otherwise a
more complete concept of edge operators refers to 2× 2 block matrices with extra
conditions expressed by trace and potential contributions and an element in the
lower right corner which is a parameter-dependent pseudo-differential operator of
order µ on Y. Such a structure is rather similar to Boutet de Monvel’s calculus
where the half-axis R+ plays the role of X∧, and spaces Hs(R+) are considered
rather than Kegel spaces on X∧. The edge calculus for dimX = 0 corresponds to
a calculus of BVPs under violated transmission property, see also Eskin’s book [9].
Originally such phenomena have been initiated by [36] where the present kind of
edge theory has been created, also using [28–30], and then developed in [33–35]
and [10, 11].

An operator family A(λ) ∈ Lµ(B, b;Rdλ) is called parameter-dependent elliptic if
σ0(A)(x, ξ, λ) ̸= 0 for (ξ, λ) ̸= 0 and (54) is bijective for (η, λ) ̸= 0. We then have

Theorem 4.2 : Let B ∈ M1 and dimY > 0. Let A(λ) ∈ Lµ(B, b;Rdλ) be
parameter-dependent elliptic. Then there is a parameter-dependent parametrix

P (λ) ∈ L−µ(B, b−1;Rdλ) (55)
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for weight data b−1 := (β − µ, β), such that

P (λ)A(λ)− 1 = CL(λ), A(λ)P (λ)− 1 = CR(λ) (56)

for remainders CL(λ) ∈ L−∞(B, bL;Rd), CR(λ) ∈ L−∞(B, bR;Rd) where bL =
(β, β), bR = (β − µ, β − µ). In addition for compact B the operators (46) are
Fredholm and for d > 0 there is a constant c > 0 such that (46) is a family of
isomorphisms for |λ| > c.

The proof is a consequence of the edge pseudo-differential calculus, developed in
[36], [10, 11].

Remark 3 : The family of operators (54) on the infinite stretched cone X∧ has
a conormal symbol

σcn(asing)(y, w) := h̃(0, y, w, 0, 0) + f(y, w) : Hs(X) → Hs−µ(X), s ∈ R. (57)

In the present case (57) is a family of isomorphisms. However, this property only
entails the Fredholm property of (54) for every fixed y and (η, λ) ̸= 0. In such a
case we have to add extra edge conditions along Y. This requires more formalism in
the sense of elliptic edge conditions, analogies of elliptic boundary conditions in the
case dim s1(B) = 1. We do not deepen this aspect here. Concerning K-theoretic
structures in connection with families of Fredholm operators, cf. also [17], or [13,
Subsection 3.3.4]. Other generalizations of the edge calculus concern operators,
acting between spaces of distributional sections in (say, complex ) vector bundles.

Let us now pass to a space M ∈ M2 with s2(M) = Z of dimension l > 0.
Assume that M close to Z is modeled on B∧ × Z for a compact B ∈ M1 with
Y = s1(B) of dimension q > 0. Local edge variables of B∧ × Z ∈ M1 are varying
on Rt,+×s1(B)×Z. The (stretched) model cone of local wedges is X∧ for compact
X ∈ M0. Let us now consider operator families

p̃(t, z, τ̃ , ζ̃) ∈ C∞(R+ × Rlz, L
µ(B, b;R1+l

τ̃ ,ζ̃
)) (58)

and pass to the edge-degenerate form

p(t, z, τ, ζ) := p̃(t, z, tτ, tζ). (59)

Later an extra multiplicative factor t−µ will also be included. The motivation is
similar to the case of closed X ∈ M0 rather than B ∈ M1, where conical singu-
larities of X△ involved in the “closed edge” calculus over X△ × Rq are translated
to the corresponding degenerate behavior in covariables. Also here we pass to a
Mellin representation, modulo adequate smoothing (here edge-Green) remainders,
cf., [10, 11]. In other words in the present situation we pass to Lµ(B, . . . )-valued
holomorphic Mellin symbols. Let Mµ

Ov
(B, b;Rl

ζ̃
) defined to be the space of all

h̃(v, ζ̃) ∈ A(Cv, L
µ(B, b;Rl

ζ̃
)) (60)
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such that

h̃(v, ζ̃)|Γα×Rl
ζ̃
∈ Lµ(B, b; Γα × Rl

ζ̃
) (61)

for every α ∈ R, uniformly in compact α-intervals. We employ here the Mellin
transform on the t half-axis R+. Recall that parameter dependence on the right-
hand side of (61) means that the parameters range over Im v×Rd

ζ̃
for the weight line

Γα ∋ v, where “uniformly” means that the associated operators run over a bounded
set in the Fréchet topology of the chosen subspace of elements when (v, ζ̃) varies
over Γα × Rl

ζ̃
for α in any compact interval. Consider

h̃(t, z, v, ζ̃) ∈ C∞(R+ × Rlz,M
µ
Ov

(B, b;Rl
ζ̃
)) (62)

and then set

h(t, z, v, ζ) := h̃(t, z, v, tζ). (63)

The way of constructing h in terms of p is close to the corresponding method in
[10], cf., also [6]. Precise formulations on the nature of remainders depend on (more
or less straightforward but voluminous) details of weighted corner Sobolev spaces,
to be employed later on, see, considerations below. In any case, when a Mellin
symbol h is associated with p we say that h is a Mellin quantization of p, and a
consequence is that

Opt(p)(z, ζ)−OpΞM (h)(z, ζ) ∈ C∞(Rlz, L
−∞(B, b;Rlζ)), (64)

where

OpΞM (h)(z, ζ)u(t, ·) :=
∫
ΓN+1

2
−Ξ

∫ ( t
t′
)−v

h(t, z, v, ζ)u(t′, ·) dt′d̄v

for d̄v = (2πi)−1dv, N := dimB and any weight Ξ ∈ R. The method is to fix some
φ ∈ C∞

0 (R+) which is equal to 1 in a neighborhood of 1. Then we form

Opt((1− φ
( t′
t

)
)p)(z, ζ) (65)

containing a cut-off operation at t = t′, and this is at the same time a cut-off close
to the diagonal with respect to all variables. This causes the smoothing behaviour
of (65). The Mellin symbol h is obtained via the same method as in [10, Theorem
2.3] and it is directly constructed from

Opt(φ
( t′
t

)
p)(z, ζ). (66)

In fact, we have

Opt(p)(z, ζ) = Opt(φ
( t′
t

)
p)(z, ζ) + Opt((1− φ

( t′
t

)
)p)(z, ζ)
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and

Opt(φ
( t′
t

)
p)(z, ζ) = OpΞM (h)(z, ζ)

for some h̃(t, z, v, ζ̃) ∈ C∞(R+ × Rlz,M
µ
Ov

(B, b;Rl
ζ̃
)), cf., (62), (63), and

Opt((1− φ
( t′
t

)
)p)(z, ζ) ∈ C∞(Rlz, L

−∞(B, b;Rlζ)) (67)

which explains relation (64). The computation may be performed first for a special
weight, say Ξ = 1

2 , but then because of the holomorphy of h in the complex variable
v as a consequence of Cauchy’s theorem, we just conclude that

Op
1

2

M (h)(z, ζ) = OpΞM (h)(z, ζ). (68)

The nature of the remainder (67) plays a role in connection with smoothing prop-
erties of

σ1(t)(1− ω1(t[ζ]))Opt(p)(z, ζ)σ2(t)(1− ω2(t[ζ])) (69)

for some cut-off functions σ2 ≺ σ1 and ω2 ≺ ω1. The factors σi(t)(1−ωi(t[ζ])), i =
1, 2, localize operators close to t = 0 and also produce ζ-dependent localizations
off t = 0 both in variables t and t′ ∈ R+. Similar observations may be applied in
the case of higher singularities.

From now on we pass again to formulating the calculus including parameters,
i.e., we replace everywhere ζ by (ζ, λ) ∈ Rl+d. Clearly the constructions so far have
an obvious parameter-dependent version and those will be applied. Similarly to
(26) we now study spaces of parameter-dependent corner operators

Lµ(M, b, g;Rdλ) (70)

of order µ ∈ R on a space M ∈ M2 with corner Z := s2(M) of dimension l > 0
and weight data

b := (β, β − µ), g := (γ, γ − µ). (71)

Because of the extent of auxiliary material in most general form we focus on op-
erators of the type of upper left corners. The general case, i.e., including trace,
and potential operators is analogous, though we would have to take care of the
orders of the involved trace and potential operators. Structures of this kind have
been discussed in [13, Subsection 5.4.2]. Recall that the edge space B ∈ M1 locally
close to Y = s1(B) of dimension q > 0 is modeled on X△ × Rq for a compact
X ∈ M0, dimX = n

Similarly to (34) we first consider corner amplitude functions

asing(z, ζ, λ) := σ1(t)t
−µOp

γ− dimB

2

Mt
(h)(z, ζ, λ)σ0(t)

+ (1− σ1(t))t
−µOpt(pint)(z, ζ, λ)(1− σ2(t)) + g

M+G
(z, ζ, λ)

(72)
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where the Mellin symbol h is given by (63) which is associated with (59). Moreover,

pint(t, z, τ, ζ, λ) ∈ C∞(Rt,+ × Rlz, L
µ(B, b;R1+l+d

τ,ζ,λ ))

is assumed to satisfy the condition

pint = σpintσ̃ (73)

for some cut-off functions σ(t), σ̃(t), cf. relation (33) The space (70) is defined as
the set of all families of operators

A(λ) = ωglobAsing(λ)ω
′
glob + (1− ωglob)Aint(λ)(1− ω′′

glob) + C(λ) (74)

where Asing(λ) is a locally close to Z determined by

Opz(asing(z, ζ, λ)) (75)

Moreover, recall the fact that the corner space M ∈ M2 is locally close to Z
modeled on B△ × Rl for a compact manifold B ∈ M1, dimB = N, with edge
Y := s1(B) of dimension q > 0.

The following notation will employ spaces

Lµ(2M, b,Rd)) (76)

with M being the stretched manifold belonging toM ∈ M2 and its double 2M ∈ M1,
i.e., 2M has an edge, cf., (11), such that notation (26) works. Let us set

Lµint(M, b;Rd) := Lµ(2M, b;Rd)|M\VO(M). (77)

In (74) we assume

Aint(λ) ∈ Lµint(M, b;Rd). (78)

Denote the space of operators C(λ) in (74) by

L−∞(M, b, g;Rd) (79)

For convenience we assume M to be compact; otherwise we have to work with
several variants of “comp” or “loc” Sobolev spaces. In the compact case we employ
weighted Sobolev spaces over M , cf. [42], denoted by

Hs,β,γ(M) (80)

of smoothness s ∈ R and with weights β, γ from the involved weight data. The
complete definition of (79) contains global smoothing operators, expressed in terms
of mapping properties between spaces (80), where C ∈ L−∞(M, b, g) is asked to
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induce continuous operators

C : Hs,β,γ(M) −→ H∞,β−µ+ε,γ−µ+ε(M) (81)

for all s and some ε > 0, and the formal adjoint C∗ with respect to the scalar
product of H0,0,0 induces continuous operators

C∗ : Hs,−β+µ,−γ+µ(M) −→ H∞,−β+ε,−γ+ε(M) (82)

for some ε > 0. The operators are compact in the sense C : Hs,β,γ(M) →
Hs−µ,β−µ,γ−µ(M), and C∗ : Hs,−β+µ,−γ+µ(M) → Hs+µ,−β,−γ(M). Then C(λ) ∈
S(Rdλ, L−∞(M, b, g)).

Definition 4.3: We define spaces of operator-valued symbols RνcornerG(R
l
z×Rlζ×

Rdλ; (β, γ, β̃, γ̃)ε0,ε) for β̃ := β − µ, γ̃ := γ − µ,

g(z, ζ, λ) ∈
∩

s,s′,e,e′∈R

Sνcl(R
l
z × Rlζ × Rdλ;Ks,β,γ;e(B∧),Ks′,β̃+ε0,γ̃+ε;e′(B∧)), (83)

g∗(z, ζ, λ) ∈
∩

s,s′,e,e′∈R

Sνcl(R
l
z×Rlζ×Rdλ;Ks,−β̃,−γ̃;e(B∧),Ks′,−β+ε0,−γ+ε;e′(B∧)) (84)

for some ε > 0. Moreover, let RµcornerG(R
l
z ×Rlζ ×Rdλ; (β, γ, β̃, γ̃)ε0,∞ be the space of

those g(z, ζ, λ) such that (83) and (84) hold for all ε > 0.

Furthermore, RµcornerM+G(R
l
z × Rlζ × Rdλ; (β, β̃, γ, γ̃)ε0,ε) is defined to be the set of

all operator families of the form

g
M+G

(z, ζ, λ) = g
M
(z, ζ, λ) + g

G
(z, ζ, λ) (85)

for

g
M
(z, ζ, λ) = ω(t[ζ, λ])t−µOp

β−N/2
M (f)(z)ω′(t[ζ, λ]), (86)

N = dimB, for some cut-off functions ω(t), ω′(t) and f(z, v) ∈ C∞(Rl,M−∞
As (B))

and

g
G
(z, ζ, λ) ∈ RµcornerG(R

l
z × Rlζ × Rdλ; (β, γ, β̃, γ̃)ε0,ε). (87)

Remark 4 : In connection with (70) it makes sense also to consider the chain of
subspaces

L−∞(B, b;Rdλ) ⊂ Lµ
G
(B, b;Rdλ) ⊂ Lµ

M+G
(B, b;Rdλ) ⊂ Lµ(B, b;Rdλ), (88)

where Lµ
M+G

and Lµ
G
are locally close to Y determined by symbols g

M+G
(y, η, λ) and

g
G
(y, η, λ), respectively, up to globally smoothing remainders in L−∞, cf. notation

around (85), (86), (87).
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We use the fact that

asing(z, ζ, λ) ∈ Sµ(Rlz × Rl+dζ,λ ;K
s,β,γ(B∧),Ks−µ,β−µ,γ−µ(B∧)), (89)

for the symbols (72), between weighted Kegel spaces Ks,β,γ(B∧) and
Ks−µ,β−µ,γ−µ(B∧), respectively, both equipped with the group action

(κδu)(t, ·) := δ
N+1

2 u(δt, ·), δ ∈ R+.

Then the operators

Opz(asing)(λ) : Ws
comp(R

l,Ks,β,γ(B∧)) → Ws−µ
loc (Rl,Ks−µ,β−µ,γ−µ(B∧)) (90)

are continuous for all s.

Definition 4.4: An A(λ) ∈ Lµ(M, b, g;Rdλ) on M ∈ M2 is called parameter-
dependent elliptic of order µ if

A(λ)|M\VO(M)

is elliptic of order µ on M \ VO(M) ∈ M1 in the space Lµ(M \ VO(M), b;Rdλ) and if
in addition

σ2(asing)(z, ζ, λ) = t−µOp
γ− dimB

2

Mt
(h0)(z, ζ, λ) + σ2(gM+G

)(z, ζ, λ) (91)

for h0(t, z, v, ζ, λ) := h̃(0, z, v, tζ, tλ) and induces a family of isomorphisms

σ2(asing)(z, ζ, λ) : Ks,β,γ(B∧) −→ Ks−µ,β−µ,γ−µ(B∧) (92)

for all z ∈ Z and all (ζ, λ) ̸= 0.

Note that the bijectivity of (92) entails conormal ellipticity, namely, that

σ2,cn(asing)(z, v) := h̃(0, z, v, 0, 0) + f(z, v) (93)

induces a family of isomorphisms

σ2,cn(asing)(z, v) : H
s,β(B) → Hs−µ,β−µ(B) (94)

for all s and z ∈ Z, v ∈ Γ(N+1)/2−γ .

Proposition 4.5: Let M ∈ M2 be compact, and let l = dimZ > 0. Then
operators of upper left corner type

A(λ) ∈ Lµ(M, b, g;Rd) (95)

for any fixed λ induce continuous maps

A(λ) : Hs,β,γ(M) → Hs−µ,β−µ,γ−µ(M) (96)
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for all s, except for a discrete system of exceptional weights γ, determined by the
poles of the involved (meromorphic) Mellin symbols.

Theorem 4.6 : Let M ∈ M2, and let A(λ) in (95) be parameter-dependent
elliptic of order µ. Then there is a parameter-dependent parametrix

P (λ) ∈ L−µ(M, b−1, g−1;Rd) (97)

with weight data b−1 := (β − µ, β), g−1 := (γ − µ, γ), such that

P (λ)A(λ)− 1 = CL(λ), A(λ)P (λ)− 1 = CR(λ) (98)

for remainders

CL(λ) ∈ L−∞(M, bL, gL;R
d), CR(λ) ∈ L−∞(M, bR, gR;R

d) (99)

where bL = (β, β), gL = (γ, γ), bR = (β−µ, β−µ), gR = (γ−µ, γ−µ). In addition
For compact N the operators (96) are λ-wise Fredholm and for d > 0 there is a
constant c > 0 such that (96) is a family of isomorphisms for |λ| > c.

5. Singular Boundary Value Problems

The iterative approach of studying pseudo-differential boundary value problems
BVPs on a singular space N ∈ Nl is of similar structure as the calculus of degener-
ate operators developed before on a space M ∈ Mk concerning the closed case. As
noted in the beginning we refer to the work of Boutet de Monvel [1] concerning the
smooth case N ∈ N0 and to a series of joint papers, especially, [19], [22], [21], [7].
Known structures from the closed case, see the references in [7], give an impression
on the complexity of operator structures to be established in terms of algebras,
symbols and quantizations, for preparing the program of constructing parametri-
ces, say, in the elliptic case. It is just the main idea of the present considerations
to consolidate the respective structures. Using the approach on closed M from the
preceding sections we will pass to the case of spaces N with boundary by replacing
parameter-dependent operators in

Lµcl(X;Rdλ), L
µ(B, b;Rdλ), L

µ(M, b, g;Rdλ), L
µ(P, b, g,k;Rdλ), . . . , (100)

for X ∈ M0, B ∈ M1, M ∈ M2, P ∈ M3, . . . by corresponding parameter-
dependent spaces of BVPs, see, formulas (101) below.
First note that the dimension d of the space of parameters λ in sequences (100)

depends on the corresponding reference linksX, B, M, P, . . . . However, for brevity,
we avoid additional notation such as d(X), d(B), . . . , or some numeration, and the
relation would be d(X) = 1 + dim s2(M) + d(B), d(B) = 1 + dim s3(P ) + d(M),
etc. In other words, we keep in mind the position of the respective singular calculus
according to the reached step of iteration. In BVPs we have the operator spaces

Bµ,a(D;Rdλ), Bµ,a(E, b;Rdλ), Bµ,a(F, b, g;Rdλ), Bµ,a(Q, b, g,k;Rdλ), . . . , (101)

for D ∈ N0, E ∈ N1, F ∈ N2, Q ∈ N3, . . . . For the parameter dimensions in (101)
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we also keep in mind that those depend on the refernce links. Since constructions
for higher orders of singularity in BVPs are to some extent parallel to the closed
case in the sequel we mainly look at the step from Bµ,a(D;Rdλ) to Bµ,e(E, b;Rdλ).
with Bµ,a(D;Rdλ) being the space of (upper left corners) of parameter-dependent
BVPs in Boutet de Monvel’s calculus of order µ ∈ Z and type a ∈ N, while the
other operator spaces are corresponding spaces of BVPs of order µ and type a, also
being upper left corners of a more general operator block-matrix set-up. Clearly the
full operator block matrices require much more machinery and we hope to come
back to those questions with a corresponding calculus. Also here we abbreviate
notation for involved dimensions.
Recall from the closed case, i.e., operator spaces in (100), the starting point have

been spaces of holomorphic operator functions associated with

Lµcl(X;R1+q+d

ρ̃,η̃,λ̃
)|(ρ̃,η̃,λ̃)=(rρ,rη,rλ) , L

µ(B, b;R1+l+d

τ̃ ,ζ̃,λ̃
)|(τ̃ ,ζ̃,λ̃)=(tτ,tζ,tλ) , . . . . (102)

We also consider spaces

C∞(R+ × Rqy, L
µ
cl(X;R1+q+d

ρ̃,η̃,λ̃
))|(ρ̃,η̃,λ̃)=(rρ,rη,rλ) , (103)

C∞(R+ × Rlz, L
µ(B, b;R1+l+d

τ̃ ,ζ̃,λ̃
))|(τ̃ ,ζ̃,λ̃)=(tτ,tζ,tλ) . (104)

Via Mellin quantizations from the latter operator families we obtain spaces

C∞(R+ × Rqy,M
µ
Ow

(X;Rq+d
η̃,λ̃

)) ∋ h̃X(r, y, w, η̃, λ̃), (105)

C∞(R+ × Rlz,M
µ
Ov

(B, b;Rl+d
ζ̃,λ̃

)) ∋ h̃B(t, z, v, ζ̃, λ̃), (106)

cf., relations (30), (62). Then we set

hX(r, y, η, λ)) = h̃X(r, y, w, rη, rλ), hB(t, z, v, ζ, λ) = h̃B(t, z, v, tζ, tλ). (107)

Subscripts at Mellin symbols indicate the links of involved model cones. In sections
before we outlined the structure of operator classes (102). Recall that those always
contain weight factors rµ, t−µ, . . . , while in Mellin symbols (62) they are added in
the corresponding Mellin operators.

Moreover, in the case of BVPs (101) we consider compact spacesD ∈ N0, E ∈ N1

and we form operator functions

C∞(R+ × Rqy, Bµ,a(D;R1+q+d

ρ̃,η̃,λ̃
))|(ρ̃,η̃,λ̃)=(rρ,rη,rλ) , (108)

C∞(R+ × Rlz, Bµ,a(E, b;R1+l+d

τ̃ ,ζ̃,λ̃
))|(τ̃ ,ζ̃,λ̃)=(tτ,tζ,tλ) . (109)
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Then Mellin quantization gives us spaces

C∞(R+ × Rqy,BM
µ,a
Ow

(D;Rq+d
η̃,λ̃

)) ∋ h̃D(r, y, w, η̃, λ̃), (110)

C∞(R+ × Rlz,BM
µ,a
Ov

(E, b;Rl+d
ζ̃,λ̃

)) ∋ h̃E(t, z, v, ζ̃, λ̃). (111)

For

hD(r, y, w, η, λ) := h̃D(r, y, w, rη, rλ), hE(t, z, v, ζ, λ) := h̃E(t, z, v, tζ, tλ), (112)

we set

hD,0(r, y, w, η, λ) := h̃D(0, y, w, rη, rλ), hE,0(t, z, v, ζ, λ) := h̃E(0, z, v, tζ, tλ).
(113)

Similarly to (34) symbols of the edge pseudo-differential calculus of BVPs locally
close to the edge Y have the form

aD,sing(y, η, λ) = σ1(r)r
−µOp

β−n

2

Mr
(hD)(y, η, λ)σ0(r)

+ (1− σ1(r))r
−µOpr(pD,int)(y, η, λ)(1− σ2(r))

+ g
D;M+G

(y, η, λ),

(114)

The corresponding analogies of (72) for corner amplitude functions of BVPs locally
close to the edge Z are

aE,sing(z, ζ, λ) := σ1(t)t
−µOp

γ−N

2

Mt
(hE)(z, ζ, λ)σ0(t)

+ (1− σ1(t))t
−µOpt(pE,int)(z, ζ, λ)(1− σ2(t)) + g

E;M+G
(z, ζ, λ).

(115)

The meaning of the other ingredients such as cut-off functions in the corresponding
context, or pD,int, gD;M+G

and pE,int, gE;M+G
is similar to the corresponding operator

functions in (34) and (72), respectively.

To be more precise forD ∈ N0 we employ here edge Green symbols g
D,G

(y, η, λ) ∈
BRµ,aedgeG

(Rqy×Rqη×Rdλ; (β, β̃)ε) of order µ and type a for ˜β := β − µ and some ε > 0.

Those are operator-valued symbols

g
D,G

(y, η, λ) ∈
∩

s>a−1/2,s′,e,e′∈R

Sµcl(R
q
y × Rqη × Rdλ;Ks,β;e(D∧),Ks′,β̃+ε;e′(D∧)), (116)

with additional “dual” properties coming from standard manipulations in terms of
Green symbols in Boutet de Monvel’s calculus of BPVs. Moreover, let BRµ,aedgeG

(Rqy×
Rqη×Rdλ; (β, β̃)∞) be the space of those g

D,G
(y, η, λ) belonging to the former spaces

for all ε > 0.

Remark 1 : The above-mentioned “dual” properties of operator functions (120)
already occur in symbols of Green operators in upper left corners of 2 × 2 block-
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matrices on a manifold with smooth boundary when they are of type a > 0. The
notion “dual” here is a substitute of properties of pointwise formal adjoints to be
imposed when a = 0. The case a > 0 is characterized by the presence of involved
derivatives in the variable transversal to ∂D of order m = 1, . . . ,a composed with
Green symbols of type zero and of order µ−m, see, for instance material around
[25, Propositon 2.2.28] concerning the nature of Green symbols on the level of
boundary symbols close to a smooth boundary. Similar descriptions may be found
in other systematic descriptions of Boutet de Monvel’s calculus, also in connection
with trace entries of 2×2 block-matrices. The full story requires several voluminous
details. Therefore, here we simply talk about correspondig “dual” requirements.

Furthermore, BRµ,aedgeM+G
(Rqy × Rqη × Rdλ; (β, β̃)ε) is defined to be a set of operator

families of the form

g
D,M+G

(y, η, λ) = g
D,M

(y, η, λ) + g
D,G

(y, η, λ) (117)

for

g
D,M

(y, η, λ) = ω(r[η, λ])r−µOp
β−n/2
M (fD)(y)ω

′(r[η, λ]) (118)

for some cut-off functions ω(r), ω′(r) and fD(y, w) ∈ C∞(Rq,BM−∞,a
As (D)) and

g
D,G

(y, η, λ) ∈ BRµ,aedgeG
(Rqy × Rqη × Rdλ; (β, β̃)ε). (119)

The space BM−∞,a
As (D) consisting of y-wise values of Mellin symbols fD in w is

formed in terms of families B−∞,a(D; Γ(n+1)/2−β) for n = dimD which extend
to the complex w-plane to an operator-valued function, meromorphic in simplest
cases or with continuous asymptotic types of a similar kind as is described in
corresponding chapters in [18]. Such smoothing Mellin symbols also occur in the
closed case and are studied in detail in [37]. Subscript “As” just indicates this
situation.

We also define spaces of corner Green symbols g
E,G

(z, ζ, λ) ∈ BRµ,acornerG(R
l
z×Rlζ×

Rdλ; (β, γ, β̃, γ̃)ε0,ε) for β̃ := β − µ, γ̃ := γ − µ. These are operator functions

g
E,G

(z, ζ, λ) ∈
∩

s>a−1/2,s′,e,e′∈R

Sµcl(R
l
z × Rlζ × Rdλ;Ks,β,γ;e(E∧),Ks′,β̃+ε0,γ̃+ε;e′(E∧)),

(120)
together with specific properties of duals, similarly as before for edge Green symbols
in (120). Moreover, BRµ,acornerG(R

l
z×Rlζ×Rdλ; (β, γ, β̃, γ̃)ε0,∞) for β̃ := β−µ, γ̃ := γ−µ

is the space of all those symbols with the mapping properties in (120) and also of
their duals for all ε > 0. Furthermore, BRµcornerM+G(R

l
z × Rlζ × Rdλ; (β, β̃, γ, γ̃)ε0,ε) is

defined to be the set of all operator families of the form

g
E,M+G

(z, ζ, λ) = g
E,M

(z, ζ, λ) + g
E,G

(z, ζ, λ) (121)

for

g
E,M

(z, ζ, λ) = ω(t[ζ, λ])t−µOp
γ−dimE/2
M (fE)(z)ω

′(t[ζ, λ]), (122)
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for some cut-off functions ω(t), ω′(t) and fE(z, v) ∈ C∞(Rl,BM−∞,a
As (E)) and

g
E,G

(z, ζ, λ) ∈ Rµ,acornerG(R
l
z × Rlζ × Rdλ; (β, γ, β̃, γ̃)ε0,ε). (123)

Let N ∈ N1, and let B−∞,a(N, b) be the space of all operators C which induce
continuous operators

C : Hs,β(N) → H∞,β−µ+ε(N), (124)

for all s > a− 1/2 and some ε > 0 and satisfying a corresponding dual condition,
associated with the involved type a (via standard structures in BVPs). Let us set

B−∞,a(N, b;Rdλ) := S(Rdλ,B−∞,a(N, b)) (125)

which are global smoothing elements of the edge pseudo-differential calculus. In
addition let M ∈ N2 and let B−∞,a(M, b, g) be the space of all operators C which
induce continuous operators

C : Hs,β,γ(M) → H∞,β−µ+ε,γ−µ+ε(M), (126)

for all s > a− 1/2 and some ε > 0 and satisfying a corresponding dual condition,
associated with the involved type a. Let us set

B−∞,a(M, b, g;Rdλ) := S(Rdλ,B−∞,a(M, b, g)) (127)

which are global smoothing elements of the edge pseudo-differential calculus.

We now consider the space of (families of) edge BVPs of order µ ∈ Z and type
a and weight data b = (β, β − µ) on a space N ∈ N1 with edge Y of dimension
q > 0 and local model cones D△ for D ∈ N0, denoted by

Bµ,a(N, b;Rdλ), (128)

The space (128) is defined as follows: it consists of all

A(λ) := ωglobAsing(λ)ω
′
glob + (1− ωglob)Aint(λ)(1− ω′′

glob) + C(λ) (129)

for global cut-off functions ω′′
glob ≺ ωglob ≺ ω′

glob on N that are ≡ 1 in a small
neighborhood of Y and vanish off another neighborhood of Y, where Asing locally
close to Y is determined by amplitude functions (114). Moreover, in (129) we
assume Aint(λ) ∈ Bµ,a(N \ Y ;Rdλ) and C(λ) ∈ BL−∞,a(N, b;Rdλ). The definition
implies that

A(λ) : Hs,β(N) → Hs−µ,β−µ(N) (130)

is continuous for every s > a− 1/2.

Remark 2 : For N ∈ N1 we have a chain of subspaces

B−∞,a(N, b;Rdλ) ⊂ Bµ,a
G

(N, b;Rdλ) ⊂ Bµ,a
M+G

(N, b;Rdλ) ⊂ Bµ,a(N, b;Rdλ), (131)
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where Bµ,a
M+G

(N, b;Rdλ) and Bµ,a
G

(N, b;Rdλ) are locally close to Y determined by sym-
bols g

D,M+G
(y, η, λ) and g

D,G
(y, η, λ), respectively, up to globally smoothing remain-

ders in B−∞,a(N, b;Rdλ), cf., also notation around (117), (118), (119).

Moreover, there is the space of (families of) edge BVPs of order µ ∈ Z and type
a and weight data b = (β, β − µ), g = (γ, γ − µ) on a space M ∈ N2 with edge Z
of dimension l > 0 and local model cones E△ for E ∈ N1, denoted by

Bµ,a(M, b, g;Rdλ). (132)

The space (132) is defined as follows: it consists of all

A(λ) := ωglobAsing(λ)ω
′
glob + (1− ωglob)Aint(λ)(1− ω′′

glob) + C(λ) (133)

for global cut-off functions ω′′
glob ≺ ωglob ≺ ω′

glob on M that are ≡ 1 in a small
neighborhood of Z and vanish off another neighborhood of Z, where Asing locally
close to Z is determined by amplitude functions (114). Moreover, in (133) we
assume Aint(λ) ∈ Bµ,a(M \Z, b;Rdλ) and C(λ) ∈ B−∞,a(M, b, g;Rdλ). The definition
implies that

A(λ) : Hs,β,γ(M) → Hs−µ,β−µ,γ−µ(M) (134)

is continuous for every s > a− 1/2.

Definition 5.1: An operator family A(λ) ∈ Bµ,a(N, b;Rdλ) is called parameter-
dependent elliptic if A(λ)|N\Y is parameter-dependent elliptic in Bµ,a(N \ Y ;Rdλ)
and if

σ1(A)(y, η, λ) : Ks,β(D∧) → Ks−µ,β−µ(D∧) (135)

is a family of isomorphisms for all y and (η, λ) ̸= 0, for all s > a − 1/2 with
s− µ > a− 1/2.

Let us set ν+ = max{ν, 0} for any real ν. We then have

Theorem 5.2 : Let N ∈ N1, dimY > 0 and let A(λ) ∈ Bµ,a(N, b;Rdλ), a ≤ µ+,
be parameter-dependent elliptic. Then there is a parameter-dependent parametrix

B−µ,(−µ)+(N, b−1;Rdλ) (136)

for weight data b−1 := (β − µ, β), such that

P (λ)A(λ)− 1 = CL(λ), A(λ)P (λ)− 1 = CR(λ) (137)

for remainders CL(λ) ∈ B−∞,µ+

(N, bL;Rd), CR(λ) ∈ B−∞,(−µ)+(NbR;Rd) where
bL = (β, β), bR = (β − µ, β − µ). In addition for compact N (130) is a family of
Fredholm operators and for d > 0 there is a constant c > 0 such that (130) are
isomorphisms for |λ| > c and s, s− µ > µ+ − 1/2.

The proof is a consequence of the edge pseudo-differential calculus, developed in
[36], [10, 11], combined with information on modifications for BVPs, see also the
tools outlined in [25].



92 Lecture Notes of TICMI

Remark 3 : Note that the bijectivity of (135) entails conormal ellipticity, namely,
that

σ1,cn(aD,sing)(y, w) := h̃D(0, y, w, 0, 0) + fD(y, w) (138)

induces a family of isomorphisms

σ1,cn(aD,sing)(y, w) : H
s(D) → Hs−µ(D) (139)

for all s > max{a− 1/2,a+ µ− 1/2} and y ∈ Y,w ∈ Γ(dimD+1)/2−β.

Definition 5.3: An A(λ) ∈ Bµ,a(M, b, g;Rdλ) on M ∈ N2 is called parameter-
dependent elliptic of order µ if

A(λ)|M\VO(M)

is elliptic of order µ on M \ VO(M) ∈ N1 in the space Bµ,a(M \ VO(M), b;Rdλ) and if
in addition

σ2(A)(z, ζ, λ) := σ2(asing)(z, ζ, λ) = t−µOp
γ− dimN

2

Mt
(h0)(z, ζ, λ) + σ2(gM+G

)(z, ζ, λ)
(140)

for h0(t, z, v, ζ, λ) := h̃(0, z, v, tζ, tλ) and induces a family of isomorphisms

σ2(aE,sing)(z, ζ, λ) : Ks,β,γ(E∧) −→ Ks−µ,β−µ,γ−µ(E∧) (141)

for all z ∈ Z and all (ζ, λ) ̸= 0.

Note that the bijectivity of (141) entails conormal ellipticity, namely, that

σ2,cn(aE,sing)(z, v) := h̃E(0, z, v, 0, 0) + fE(z, v) (142)

induces a family of isomorphisms

σ2,cn(asing)(z, v) : H
s,β(N) → Hs−µ,β−µ(N) (143)

for all s > max{a− 1/2,a+ µ− 1/2} and z ∈ Z, v ∈ Γ(dimN+1)/2−γ .

The ideas of arranging corner operator theories on spaces in Mk suggest a pro-
gram of dealing with BVPs on Nk for higher k. Since the scheme is expected to be
similar, we stop here the discussion. More information on the program is given in
[7].
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