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Abstract. Our aim is to discuss the boundedness of multilinear integral
operators (multilinear fractional integrals, multisublinear maximal operators
etc) in weighted Lebesgue spaces. In particular, we present criteria governing
weighted inequalities for these operators. We are also focused on general mul-
tisublinear operators generated by quasi-concave functions between weighted
Banach function lattices. These operators, in particular, generalize the Hardy–
Littlewood and fractional maximal functions playing an important role in Har-
monic Analysis. We show that under some general geometrical assumptions
on Banach function lattices two-weight weak type and also strong type es-
timates for these operators are true. To derive the main results the strong
type estimate for a variant of multilinear averaging operators is characterized.
As special cases the boundedness results for fractional maximal operators in
concrete function spaces are provided.

The talk is based on the research carried our jointly with V. Kokilashvili
and M. Mastyło.
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1 Introduction
Recently, much attention has been paid to the study of the boundedness of
various types of operators between weighted Lp-spaces playing an important
role in analysis, in particular, in harmonic analysis and its applications in
partial differential equations (PDE). For this purpose the Hardy-Littlewood
maximal function defined for any f ∈ L1

loc(Rn) by

M f(x) = sup
Q∋x

1
∣Q∣ ∫Q

∣f(y)∣dy, x ∈ Rn,

where the supremum is taken over all cubes with sides parallel to the coordinate
axes, has proved to be a tool of great importance. One of the important related
operators is the so-called fractional maximal function Mα (0 < α < n) defined
by

Mαf(x) = sup
Q∋x

1
∣Q∣1−α/n ∫Q

∣f(y)∣dy, x ∈ Rn

for any f ∈ L1
loc(Rn).

It is well-known that Mα is deeply connected to the Riesz potential operator
Iα (0 < α < n), given by

Iαf(x) = ∫
Rn

f(y)
∣x − y∣n−α

dy, x ∈ Rn,

which play an important role in the theory of Sobolev’s embeddings.
Multisublinear maximal operators appeared naturally in connection with

multilinear Calderón-Zygmund theory.

M (
Ð→
f )(x) = sup

Q∋x

m

∏
i=1

1
∣Q∣ ∫

Q

∣fi(yi)∣dyi,

A multisublinear maximal operator that acts on the product of m-Lebesgue
spaces and is smaller than the m-fold product of the Hardy–Littlewood maxi-
mal function was studied by A. K. Lerner, S. Ombrosi, C. Perez, R. H. Torres
and R. Trujillo-Gonzalez [6]. It was used to obtain a precise control on mul-
tilinear singular integral operators of Calderón-Zygmund type and to build
a theory of weights adapted to the multilinear setting.

For the boundedness and other properties of multisublinear fractional max-
imal operators:

Mα(
Ð→
f )(x) = sup

Q∋x

m

∏
i=1

1
∣Q∣1−α/(nm) ∫

Q

∣fi(yi)∣dyi, 0 ≤ α <mn.

in (weighted) Lebesgue spaces we refer to the papers by K. Moen (2009), G.
Pradolini (2010), X. Chen and Q. Xue (2010), V. Kokilashvili, M. Mastylo and
A. Meskhi (2014-2015).
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2 Preliminaries
Let us recall some definitions and well-known facts regarding the boundedness
results of multilinear integral operators in (weighted) Lebesgue spaces.

2.1 Lebesgue space
Let w be a weight, i.e., w is an a.e. positive locally integrable function on Rn

and let 1 ≤ p <∞. We denote by Lp
w(Rn) the weighted Lebesgue space which

is the class of all measurable functions f ∶ Rn → R for which

∥f∥Lp
w(Rn) = (∫

Rn

(∣f(x)∣w(x))pdx)
1/p

<∞.

If w ≡ const, then we denote Lp
w(Rn) by Lp(Rn).

For a weight w on Rn, we denote

w(E) ∶= ∫
E

w(x)dx,

where E is a measurable set in Rn.

2.2 Multilinear fractional integrals
Historically, multilinear fractional integrals were introduced in the papers by
L. Grafakos (1992), C. Kenig and E. Stein (1999), L. Grafakos and N. Kalton
(2001). In particular, they deal with the operator

Bα(f, g)(x) = ∫
Rn

f(x + t)g(x − t)
∣t∣n−α

dt, 0 < α < n,

where f and g are defined on Rn.
In the mentioned papers it was proved that if 1

q =
1
p −

α
n , where 1

p =
1
p1
+ 1

p2
,

1 < p1, p2, q <∞, then Bα is bounded from Lp1 ×Lp2 to Lq.
The latter boundedness follows from the pointwise estimate

Bα(f, g)(x) ≤ Iα(f r)1/rIα(gs)1/s,

where r = p1/p, s = p2/p, f, g ≥ 0 and Iα is the Riesz potential operator. In
this case r, s > 1, 1

r +
1
s = 1. This inequality follows from the Hölder inequality.

Consequently, applying again Hölder’s inequality we have

∥Bα(f, g)∥Lq(Rn) ≤ ∥[Iα(f r)]1/r[Iα(gs)]1/s∥Lq(Rn)

≤ (∫
Rn

Iα(f r)qdx)
1

qr

(∫
Rn

Iα(gs)qdx)
1

qs
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≤ C∥f∥Lp1(Rn)∥g∥Lp2(Rn).

In the latter inequality we used Sobolev inequalities (Lp → Lq bounded-
ness).

As a tool to understand Bα, the operators

Iα(
Ð→
f )(x) = ∫

(Rn)m

f1(y1)⋯fm(ym)
(∣x − y1∣ +⋯ + ∣x − ym∣)mn−α

dÐ→y ,

where x ∈ Rn, 0 < α < nm,
Ð→
f ∶= (f1,⋯, fm), Ð→y ∶= (y1,⋯, ym), were studied as

well. The corresponding maximal operator, as we mentioned above, is given
by

Mα(
Ð→
f )(x) = sup

Q∋x

m

∏
i=1

1
∣Q∣1−α/(nm) ∫

Q

∣fi(yi)∣dyi, 0 ≤ α <mn.

It can be immediately checked that

Iα(
Ð→
f )(x) ≥ cnMα(

Ð→
f )(x), x ∈ Rn, fi ≥ 0, i = 1,⋯, m,

for the positive constant cn depending only on n.
In the sequel the following notation will be used:

Ð→p ∶= (p1,⋯, pm), Ð→w = (w1,⋯, wm),
Ð→
f = (f1,⋯, fm),

where pi are constants (0 < pi < ∞), fi are functions and wi are weights on
Euclidean space.

It will be also assumed that

1
p
=

m

∑
i=1

1
pi

, 1 < pi <∞, i = 1,⋯, m.

2.3 Vector Muckenhoupt class. The one-weight prob-
lem

Definition (Muckenhoupt type condition). Let 1 < pi <∞ for i = 1,⋯, m.
Let wi be weights on Rn, i = 1,⋯, m. We say that Ð→w ∈ AÐ→p (Rn) (or simply
Ð→w ∈ AÐ→p ) if

sup
Q
( 1
∣Q∣ ∫

Q

m

∏
i=1

w
p/pi

i )
1/p m

∏
i=1
( 1
∣Q∣ ∫

Q

w
1−p′i
i )

1/p′i
<∞,

where the supremum is taken over all cubes in Rn. When pi = 1, ( 1
∣Q ∫

Q

w
1−p′i
i )

1/p′i

is understood as ( infQ wi)
−1.
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In the linear case (m = 1) the class AÐ→p coincides with the well- known
Muckenhoupt class Ap.

It is well-known (see [6]) that if 1 < pi <∞ with p > 1, then the one–weight
inequality

(∫
Rn

(∣M (
Ð→
f )(x)∣

m

∏
i=1

wi(x))
p

dx)
1/p

≤ C
m

∏
i=1
(∫
Rn

(∣fi(yi)∣wi)
pi

dyi)
1/pi

,

holds if and only if Ð→w ∈ AÐ→p (Rn).
Definition (Muckenhoupt-Wheeden type condition). Let 1 ≤ pi <∞

for i = 1,⋯, m. Suppose that p < q <∞. We say that Ð→w = (w1,⋯, wm) satisfies
AÐ→p ,q(Rd) condition (Ð→w ∈ AÐ→p ,q) if

sup
Q
( 1
∣Q∣ ∫

Q

(
m

∏
i=1

wi)
q

)
1/q m

∏
i=1
( 1
∣Q∣ ∫

Q

w
−p′i
i )

1/p′i
<∞.

If m = 1, then this condition coincides with the classical Muckenhoupt-
Wheeden condition.

Theorem ([7]). Let 1 < p1,⋯, pm < ∞, 0 < α < mn, 1
m < p < n

α . Suppose that
q is an exponent satisfying the condition 1

q =
1
p −

α
n . Suppose that wi are a.e.

positive functions on Rn such that wpi

i are weights. Then the inequality

(∫
Rn

(∣Nα(
Ð→
f )(x)∣

m

∏
i=1

wi(x))
q

dx)
1/q

≤ C
m

∏
i=1
(∫
Rn

(∣fi(yi)∣wi)
pi

dyi)
1/pi

,

holds, where Nα is either Iα or Mα, if and if Ð→w ∈ AÐ→p ,q(Rn).

This is a generalization of the Muckenhoupt-Wheeden classical theorem to
multilinear case.

3 The two–weight problem for Riesz poten-
tials

Let us recall some well-known results regarding the boundedness of Iα in
(weighted) Lebesgue spaces.

The classical Hardy-Littlewood-Sobolev inequality says that if 1 < p < ∞,
0 < α < n/p and q ∶= np

n−αp , then there is a positice constant C such that for all
f ∈ Lp(Rn),

∥Iαf∥Lq(Rn) ≤ C∥f∥Lp(Rn).

In 1958 E. Stein and G. Weiss established the two–weight inequality for
power weights (∣x∣β, ∣x∣γ).
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In 1972 D. Adams characterized the trace inequality (Lp → Lq
v boundedness)

for the case p < q);
In 1984-1989 E. Sawyer established two-weight criteria under the conditions

involving the operator itself.
In 1995 V. Maz’ya and I. Verbitsky characterized the trace inequality in

the diagonal (p = q) case under the pointwise condition involving the operator
itself.

In 1988 M. Gabidzashvili and V. Kokilashvili gave a complete character-
ization for the Lp

w to Lq
v boundedness under integral–type conditions in the

non-diagonal (p < q) case.

Our result regarding the trace inequality characterization for the multilin-
ear fractional integral Iα and the appropriate fractional maximal operator Mα

reads as follows:

Theorem ([4]). 1 < pi < ∞, i = 1,⋯, m. Assume that 0 < α < n/p and
p < q < ∞. Let Nα be either Iα or Mα. Then the following conditions are
equivalent:

(i) ∥vNα(
Ð→
f )∥Lq(Rnk) ≤ C∏m

i=1 ∥fi∥Lpi(Rn);

(ii) v({x ∈ Rn ∶ ∣Nα(
Ð→
f )(x)∣ > λ})

1/q
≤ C

λ ∏
m
i=1 ( ∫

Rnk

∣fi(x)∣
pi

dx)
1/pi

;

(iii) supQ ( ∫
Q

vq(x)(x)dx)
1/q

∣Q∣α−n/p < ∞, where the supremum is taken

over all cubes Q ⊂ Rn with sides parallel to the coordinate axes.

4 Multilinear maximal operators in weighted
Banach lattices

4.1 Banach lattices
A Banach (function) lattice (X, ∥ ⋅ ∥X) on (Ω, Σ, µ) is an ideal of L0(µ), which
is complete with respect to the norm ∥ ⋅ ∥X . We also assume that the support
of the space X is Ω (supp(X) = Ω), that is, there is an element u ∈ X with
u > 0 µ-a.e. on Ω.

Let X be a Banach lattice. X is called minimal if the closed linear span
{χA; µ(A) < ∞} is dense in X, where χA is the characteristic function of a
set A. It is said that X has the Fatou property (or X is maximal) if for any
f ∈ L0, fn ∈ X+ such that fn ↑ f a.e. and sup ∥fn∥X < ∞, we have that f ∈ X
and ∥fn∥X → ∥f∥X . We say that X has the weak Fatou property whenever if
fn, f ∈X+, fn ↑ f a.e., then ∥fn∥X → ∥f∥X .

The Köthe dual space X ′ of a Banach lattice X on (Ω, Σ, µ) is the space of
all f ∈ L0(µ) such that ∫Ω ∣fg∣dµ < ∞ for every g ∈ X. It is a Banach lattice
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on (Ω, Σ, µ) when equipped with the norm

∥f∥X′ = sup
∥g∥X≤1

∫
Ω
∣fg∣dµ, f ∈X ′.

Let us remark that the Köthe dual X ′ of X is a maximal Banach lattice on
(Ω, µ), as for a number of classical spaces such as Lebesgue spaces Lp, 1 ≤ p ≤∞,
Orlicz spaces or more general Musielak-Orlicz spaces. It is well known that a
Banach lattice X is maximal if and only if X = X ′′ ∶= (X ′)′ with equality of
norms (see, e.g., [3]).

In what follows we will use the following well-known fact that the Köthe
dual X ′ identified in a natural way with a subspace of the Banach dual X∗ is
a norming subspace, i.e.,

∥f∥X = sup
∥g∥X′≤1

∣∫
Ω

fg dµ∣, f ∈X,

if and only if X has the weak Fatou property (see [3]).
If X is a Banach lattice on (Ω, Σ, µ) and w ∈ L0(µ) is strictly positive

a.e., then we define X(w) to be the Banach lattice of all f ∈ L0(µ) such that
fw ∈ X, equipped with the norm ∥f∥X(w) = ∥fw∥X . In what follows we will
use the following easily verified formula, which holds with equality of norms

X(w)′ =X ′(w−1).

If T ∶X → Y is a bounded operator between Banach spaces, then we say
that T is of strong type (or has strong type). Let X be a Banach space and let
Y be a Banach lattice on (Ω, µ). Then a map T ∶X → L0(µ) is said to be of
weak type (X, Y ) (or has weak type (X, Y ) ) if there exists a constant C > 0
such that for all λ > 0,

∥χ{ω∈Ω; ∣T x(ω)∣>λ}∥Y ≤ Cλ−1∥x∥X , x ∈X.

In what follows if X is a Banach space and Y is a Banach lattice on (Rn, µ)
and S is a map from a subspace E of X to Y . We put ∥S∥X→Y ∶= sup{∥Sx∥Y ; x ∈
X ∩ E, ∥x∥X ≤ 1}. If ∥S∥X→Y < ∞ and there is no misunderstanding, we say
for short that S is a bounded operator from X to Y . Note that in the paper
we consider the case E = ∏m

k=1 L1
loc and X = ∏m

k=1 Xk equipped with the norm
∥(x1, . . . , xm)∥X ∶= max1≤k≤m ∥xk∥Xk

, where X1, . . . , Xm are Banach latices on
(Rn, µ) and S∶E → L0(Rn, µ) is a multi(sub)linear operator.

4.2 Maximal and avaraging operators
Let B denote the family of all cubes in Rn with edges parallel to the coordinate
axes.

We denote by P the set of all increasing functions φ∶ [0,∞)→ [0,∞) with
φ(0) = 0.

12

Lecture Notes of  TICMI, vol. 17, 2016



For an m tuple φ⃗ ∶= (φ1, . . . , φm) ∈Pm and subfamily Q̄ = {Qi} in B, we
define the multilinear averaging operator TQ̄ and the maximal operator Mφ⃗ by

TQ̄f⃗ =∑
i

(
m

∏
k=1

1
φk(∣Qi∣) ∫Qi

fk dµ)χQi
,

and

Mφ⃗f⃗(x) = sup
Q∋x

m

∏
k=1

1
φk(∣Q∣) ∫Q

fk dµ, x ∈ Rn

respectively, where f⃗ = (f1, . . . , fm) ∈ ∏m
k=1 L1

loc. Note that if φj(t) = t for
every t ≥ 0 and each 1 ≤ j ≤m, we obtain the multisublinear Hardy-Littlewood
maximal operator M .

4.3 Mutlilinear G-property
A pair (X, Y ) of Banach lattices on (Rn, µ) is said to have the property G(B)
((X, Y ) ∈ G(B) for short ) if there is a constant C1 = C1(B, X, Y ) such that

∑
i

∥xχQi
∥X∥yχQi

∥Y ′ ≤ C1∥x∥X∥y∥Y ′ , (x, y) ∈X × Y

for any family {Qi; Qi ∈B} of disjoint cubes. If the above inequality holds for
any family {Qi} of pairwise disjoint Lebesgue measurable sets, then we write
(X, Y ) ∈ G.

We need to define also a mutlilinear variant of G(B)-property. Let X1, . . . ,
Xm, Y be Banach lattices on (Rn, µ). We write (X1, . . . , Xm, Y ) ∈ G(m)(B)
if there exists a constant C0 = C0(B, X1, . . . , Xm, Y ) such that for any family
{Qi; Qi ∈B} of disjoint cubes,

∑
i

∥x1χQi
∥X1 ⋅ ⋅ ⋅ ∥xmχQi∥Xm∥yχQi

∥Y ′ ≤ C0∥x1∥X1 ⋅ ⋅ ⋅ ∥xm∥Xm∥y∥Y ′ (4.3.1)

holds for all xj ∈Xj (1 ≤ j ≤m) and y ∈ Y ′.
If estimate (4.3.1) holds for any family {Qi} of pairwise disjoint Lebesgue

measurable sets, then we write (X1, . . . , Xm, Y ) ∈ G(m). For example, if X1 =
Lp1 , . . . , Xm = Lpm and Y = Lr with 1 ≤ p1, . . . , pm, r <∞, then (X1, . . . , Xm, Y ) ∈
G(m) provided that 1/p1 + ... + 1/pm + 1/r′ ≥ 1, where 1/r + 1/r′ = 1.

It is easy to see that if X1, . . . , Xm and Y are Banach lattices on (Rn, µ)
such that (Xk1 , . . . , Xkn , Y ) ∈ G(n) with 1 ≤ kj < m for 1 ≤ j ≤ n, then
(X1, . . . , Xm, Y ) ∈ G(m).
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4.4 Morrey spaces
In what follows we will work with a variant of Morrey spaces. For a given
φ ∈P we denote by Mφ the space of all f ∈ L0(Rn, µ) such that

sup
Q∈B

1
φ(∣Q∣) ∫Q

∣f ∣dµ <∞.

It is easy to verify that Mφ is a Banach lattice on (Rn, µ) with the Fatou
property when equipped with the norm

∥f∥Mφ = sup
Q∈B

1
φ(∣Q∣) ∫Q

∣f ∣dµ.

Now under some conditions we give a characterization of the boundedness
of the multilinear averaging operator TQ̄ from the product of weighted Banach
lattices to weighted Banach lattices.

4.5 The boundedness of the multilinear averaging oper-
ator TQ̄

Our result regarding the two-weight boundedness of the operator TQ̄ is the
following statement:

Theorem ([5]). Let X1(w1), . . . , Xm(wm), Y (v) be weighted Banach lattices
on (Rn, µ) such that (X1, . . . , Xm, Y ) ∈ G(m)(B). Suppose that Y has the
weak Fatou property. Then the multilinear averaging operator TQ̄ generated
by φ⃗ = (φ1, . . . , φm) ∈ Pm is uniformly bounded with respect to a subfamily
Q̄ = {Qi} of B from X1(w1) × ⋅ ⋅ ⋅ ×Xm(wm) to Y (v), i.e., the inequality

sup
Q̄

∥TQ̄∥X1(w1)×⋅⋅⋅×Xm(wm)→Y (v) <∞

holds if and only if (w1, . . . , wm, v) ∈ Aφ⃗(X1, . . . , Xm, Y ), i.e.,

C1 ∶= sup
Q∈B
∥vχQ∥Y

m

∏
k=1

1
φk(∣Q∣)

∥w−1
k χQ∥X′

k

<∞.

4.6 Some examples of Banach lattices
Now we show general examples of Banach lattices X1, . . . , Xm, Y such that
(X1, . . . , Xm, Y ) ∈ G(m)(B). To do this we recall that a Banach lattice X on
(Ω, µ) is said to be p-convex (1 < p ≤ ∞), respectively, q-concave (1 ≤ q < ∞),
if there exists a constant C > 0 such that

∥(
n

∑
k=1
∣xk∣p)

1/p
∥

X
≤ C(

n

∑
k=1
∥xk∥pX)

1/p
,
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respectively,
(

n

∑
k=1
∥xk∥qX)

1/q
≤ C∥(

n

∑
k=1
∣xk∣q)

1/q
∥

X
,

for any choice of elements x1, . . . , xn in X and n ∈ N. If in the above
definitions elements x1, . . . , xn are pairwise disjoint, then X is said to be satisfy
an upper p-estimate and lower q-estimate, respectively. Clearly, p-convexity
implies upper p-estimate, and q-concavity implies lower q-estimate of a Banach
lattice X.

It is easy to check that if X satisfies a lower p-estimate, then the Köthe
dual X ′ satisfies an upper p′-estimate. This immediately gives the following
observation: if X1, . . . , Xm, Y are Banach lattices on (Rn, µ) such that Xk

satisfies a lower pk for each 1 ≤ k ≤m and Y satisfies an upper q-estimate with
1/p1 + ⋅ ⋅ ⋅ + 1/pm + 1/q′ ≥ 1, then (X1, . . . , Xm, Y ) ∈ G(m)(B).

Applying the well–known results on p-convex and q-concave Orlicz spaces
based on the above remark we obtain concrete general examples of Banach
lattices for which we have (X1, . . . , Xm, Y ) ∈ G(m)(B).

4.7 Weak type inequality for Mφ⃗

Below we state and prove a theorem which gives a characterization of the
generalized weak type inequality for the maximal multisublinear operator Mφ⃗

from the product of weighted Banach lattices to the weighted Banach lattice
satisfying the G(m)(B) property. In what follows if E1, . . . , Em are Banach
spaces and F is a Banach lattice on (Ω, ν). Then a mapping T ∶E1 × ⋅ ⋅ ⋅ ×Em →
L0(µ) is said to be of weak type (E1, . . . , Em, F ) if there is a positive constant
c such that

sup
λ>0

λ ∥χ{ω∈Ω; ∣T (x1,...,xn)(ω)∣>λ}∥F ≤ ∥x1∥E1 ⋅ ⋅ ⋅ ∥xm∥Em

for all (x1, . . . , xm) ∈ E1 × ⋅ ⋅ ⋅ ×Em.
Our result regarding the weak type inequality reeds as follows:

Theorem ([5]).Let X1(w1), . . . , Xm(wm), Y (v) be weighted Banach lattices
on (Rn, µ) such that (X1, . . . , Xm, Y ) ∈ G(m)(B). Then the multisublinear
operator Mφ⃗ generated by φ⃗ = (φ1, . . . , φm) ∈Pm is of weak type (X1(w1), . . . ,
Xm(wm), Y (v)) if and only if (w1, . . . , wm, v) ∈ Aφ⃗ (X1, . . . , Xm, Y ), where the
latter condition is defined in the previous theorem.

In the linear case this statement was derived by E. I. Berezhnoi [1].

4.8 The two-weight boundedness of Mφ⃗.
In the remaining part of the paper, we investigate the boundedness of a bisub-
linear maximal operator Mφ⃗. We need some definitions. If φ ∈P is such that
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exists C ≥ 1 with

φ(s + t) ≤ C (φ(s) + φ(t)), s, t > 0, (4.8.1)

then we write φ ∈ P̃. Note that the condition (4.8.1) implies that φ(t)/t ≤
Cφ(s)/s for all 0 < s < t.

Since φ is non-decreasing, the function φ̃ given by φ̃(t) ∶= infs>0(1+t/s)φ(s)
for t > 0 and φ̃(0) = 0 is concave on [0,∞) and satisfies C−1φ(t) ≤ φ̃(t) ≤ 2φ(t)
for all t ≥ 0 and so, in particular, φ̃ is a quasi-concave function on [0,∞), i.e.,
φ̃ ∈P and t↦ t/φ̃(t) is a non-decreasing function on (0,∞).

In what follows we will use the following simple observation: for any φ ∈ P̃,
then there exist γ, α ∈ (0, 1) such that for all s, t > 0

φ(s)
φ(t)

≤ γ implies
s

t
≤ α. (4.8.2)

Theorem ([5]). Let φ⃗ = (φ1, φ2) ∈ P̃ × P̃ and let X1 and Y be minimal
Banach lattices on (Rn, µ), where Y has the Fatou property. Let (X1, Y ) ∈
G. Suppose that the Hardy-Littlewood maximal operator M is bounded in the
weighted Banach lattice X1(w1). Then the Mφ⃗ is bounded from X1(w1)×Mφ2

to Y (v) if and only if (w1, v) ∈ Aφ1(X1, Y ).
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