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Abstract. Classical mechanics, or, as we like to call it, Mechanics in Physical
Space, is the body of knowledge which is concerned with equilibrium and mo-
tion of objects which possess mass and which are placed in the Euclidian space.
The recognition that materials, on some scale, cannot regarded as perfect con-
tinua, but rather contain a variety of defects, which can move within the body
through several mechanisms can lead to the construction of a whole edifice of
knowledge called Mechanics in Material Space. A far-reaching duality exists
between Newtonian (physical) and Eshelbyan (material) mechanics. Some ex-
amples of those dualities are given in the introduction. The main focus of this
Lecture Notes is on the establishment of material conservation and balance
laws within the tree-dimensional theory of elasticity and its applications. The
mathematical basics as Noether’s theorem and the Neutral-Action method are
introduced, and specialized to the one-dimensional bar theory. The ensuing
conservation laws are applied to a hole/dislocation-interaction problem, and
possible applications in fracture mechanics are discussed.
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1 Introduction

The subject of Newtonian Mechanics, or, as we would like to call it, Mechanics
in Physical Space, is the description and the in-advance estimate of motions
and deformations of material bodies. Also the physical forces connected with
those movements are of interest. For example, we might be interested in the
trajectory of a body under given forces and initial conditions, in the deflection
of a bridge, in the vibration of a machine, etc. The description by physical
conservation and balance laws are well established thanks to the ingenious
advances of Galileo, Newton, Euler, Lagrange, Hamilton and others.

Dual to Newtonian Mechanics, a whole edifice of an Eshelbyan Mechanics
has been constructed during recent years [1] - [4]. The subject of this Mechan-
ics in Material Space (or Configurational Mechanics) is the description of the
motion of defects within the surrounding material. Defects might be missing
atoms in a lattice, a dislocation, a hole, a crack, etc.; motion might be dislo-
cation movement or climbing, self-similar expansion of a hole, crack extension,
etc.; and mechanisms might be diffusion, melting or accretion, fracture etc.

In his pioneering work, Eshelby [5] advanced the notion of a force on an
elastic singularity (i.e., a defect). This force, which has later been called also
material force, configurational force, thermodynamic force or driving force, is
calculated from the change of the total elastic energy due to a (infinitesimal)
material translation, i.e., a change of configuration. Other notions frequently
used in mechanics like trajectories, stability, reciprocity, etc. can be simi-
larly adopted within the Mechanics of Material Space. It may be intriguing,
therefore, to juxtapose the Mechanics in Physical Space and Material Space
exemplarily.

Figure 1: Mass under gravity (left) and defect in a body under load (right)

In order to calculate the total energy of both systems depicted in Fig. 1,
we need three ingredients. A characteristic of the object under consideration,
an applied field and some distance. In physical space, this is the mass m of
the mass point, which could be called (quite pompously) an inhomogeneity in
the otherwise empty physical space; the gravity field g (without the gravity
field, the mass point would not have any potential); and the height above
some arbitrarily fixed reference plane P . In material space, the object A, i.e.,
a defect, may be characterized by some parameters ai ,e.g., by the Burgers
vector of a dislocation, the stiffness difference with respect to the surrounding
material of an inclusion, a crack length, etc., the applied load characterized
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by σ (without the applied field, the defect would not experience any driving
force); and the distance from some boundary. Thus

Π = mgx, Π = Π(ai, σ, x) , (1.1)

and the physical force F as the well as the material force J are calculated from
the negative gradient with respect to x

F = −∂Π

∂x
= −mg, J = −∂Π

∂x
. (1.2)

A change of x in Newtonian Mechanics is the change of the placement of the
mass point within the physical space, whereas the change of x in Eshelbyan
Mechanics is the change of the configuration of the defect within its surround-
ing material.

In anticipation of the following, we could already discuss conservation laws,
path-independent integrals and balance laws in physical and material space.
Let us consider a body B of volume V surrounded by a surface S of area A
with unit outward normal vector n as depicted in Fig. 2.

Figure 2: Body in the absence of body forces, i.e., physical homogeneity (left) and body
in the absence of defects, i.e., material homogeneity (right)

In the absence of body forces, i.e., physical homogeneity, the local physical
homogeneous equilibrium equations written in terms of the Chauchy-stress
tensor σij are satisfied and establish a conservation law given in equation (1.3
left). Whereas in the absence of defects, i.e., material homogeneity, the local
material homogeneous equilibrium equations written in terms of the Eshelby-
stress tensor bij are given in equation (1.3 right) and deliver also a divergence-
free relation

σij,i = 0, bij,i = 0. (1.3)

The Eshelby-stress tensor will be specified later.
Integration over the body B and implying the divergence theorem leads to

Fj =

∫
S

σijnidA = 0, Jj =

∫
S

bijnidA = 0. (1.4)

In physical space, it follows merely that the external tractions have to be self-
equilibrated, in material space, it can be concluded from the material tractions
along the boundary of the body that the body is homogeneous.
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Figure 3: Body loaded by a point force F (left) and body with point defect (right)

The situation is changed as soon as the body contains either a physical or
a material inhomogeneity as depicted in Fig. 3.
The surface integrals do not vanish anymore. Instead they deliver now the
resulting physical force F acting on the body and the resulting material force
J acting on the defect

Fj =

∫
S

σijnidA ̸= 0, Jj =

∫
S

bijnidA ̸= 0.. (1.5)

Both integrals are path independent: As long as the integration contour sur-
rounds one and the same (physical or material) defect, the values of the inte-
grals are equal.

Let us also introduce the notion of physical and material translations. To
this extent, we consider in Fig. 4 a linear spring with spring constant c ex-
tended by an amount u due to an applied force F . The potential of internal
energy Πi and of outer forces Πa are given by

Πi =
1

2
cu2, Πa = −Fu, (1.6)

respectively. Keeping the value of F fixed, we apply a virtual (physical) trans-
lation δu. The total potential energy of the system Π = Πi + Πa is changed.
According to the virtual work theorem [6], this first variation δΠ has to vanish,
i.e.,

δuΠ =
∂Π

∂u
δu = (cu− F ) δu = 0. (1.7)

Since this must hold for arbitrary variations δu, we can calculate the displace-
ment u as

u =
F

c
(1.8)

Using (1.8), the total potential Π is modified to

Π = Πi +Πa =
1

2
cu2 − Fu =

1

2
cu2 − cu2 = −1

2
cu2 = −Πi (1.9)

(Clapeyron’s theorem, cf., e.g., [7]).
Now, instead, we apply a material translation δx, i.e., we change the con-

figuration of the system (under the applied load) moving the fixed support of
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Figure 4: Linear spring, spring constant c (a), extended by force F by an amount u (b),
virtual (physical) displacement δu under fixed force F (c), material translation δx and
material force B.

the spring. The work of the material force B has also been taken into account
leading with du

dx
= u/ to

δxΠ = −δxΠi +Bδx

= −1

2
c
[
(u(x+ δx))2 − (u(x))2

]
+Bδx

= −1

2
c

[(
u(x) +

du

dx
δx+ ...

)2

− (u(x))2
]
+Bδx

= −1

2
c
[
u2(x) + 2u(x)u/δx+O

(
(δx)2

)
−
(
u2(x)

)]
+Bδx

= −cuu/δx+Bδx+O ((δx)2)

= −
(
Fu/ −B

)
δx

!
=0.

(1.10)

The magnitude of the material force B turns out to be

B = Fu/. (1.11)

Note that the material force B is acting also in Fig. 4 b and c, but contributes
neither to the energy nor to the virtual work since its application point is not
moved.

A similar example is given in Fig. 5. We consider a beam of span ℓ with
bending stiffness EI (Fig. 5). Due to the applied load F at ℓ/2 the beam
experiences a transverse displacement w(x).
The virtual work theorem (see, e.g., [8]) yields

w(ℓ/2) =
Fℓ3

48EI
, (1.12)
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Figure 5: Beam of span ℓ and bending stiffness EI (a), bent by a force F applied at ℓ/2
resulting in a transverse displacement w(x) (b), virtual displacement δw (c) and material
displacement (d)

whereas the change in total energy due to the material translation delivers
with the supporting force A = F/2 and the slope w/ = dw

dx
(see [9]-[11])

B = −Aw/(0) = − F 2ℓ2

32EI
. (1.13)

Note that material forces are also present at the load application point and at
the right support but do not contribute to our considerations here.
Further dualities between the mechanics in physical and material space will be
discussed later.

2 Three-dimensional linear theory of elasto-

statics and one-dimensional bar theory

The aim of this section is to recollect the basic equations of the linear theory
of elastostatics in cartesian coordinates and to introduce the notation. Details
may be found in any textbook on linear elasticity. In addition, the equations
of the one-dimensional theory of bars in tension/compression are assembled.

The equations of equilibrium connect the divergence of the symmetric
Chauchy-stress tensor σij with the applied body forces pj

σij,i + pj = 0, σij = σji. (2.1)

The summation convention is applied for repeated indices and a comma de-
notes partial differentiation with respect to the coordinate indicated. Within
the geometrical linearized theory, the components of the strain tensor εij are
calculated from the symmetric part of the displacement gradient ui,j

εij =
1

2
(ui,j + uj,i), εij = εji. (2.2)

41

R. Kienzler. Material Conservation and Balance Laws in Linear Elasticity...



The generalized Hooke’s law combines stresses with strains by the fourth-rank
elasticity tensor Eijkℓ

σij = Eijkℓεkℓ. (2.3)

For isotropic material, the components of Eijkℓ depend on two material con-
stants only, e.g., on the Lamé constants λ and µ, and may be given with the
Kronecker symbol of unity δij as

Eijkℓ = λδijδkℓ + 2µδikδjℓ. (2.4)

With three equations of equilibrium (2.1), six kinematic relations (2.2) and
the six equations of the material law (2.3), we have 15 equations for the 15
unknowns, i.e., six stresses σij, six strains εij and three displacements ui. By
replacing the stresses σij via (2.3) and (2.4) by the strains and introducing (2.2)
we arrive at the Navier-Lamé equations for isotropic, homogeneous materials

µui,jj + (λ+ µ)uj,ji + pi = 0, (2.5)

i.e., three equations for the three unknown displacements ui. The loads pi
and Lamé constants λ and µ are assumed to be given. Boundary conditions
have to be specified in order to arrive at unique solutions for specific boundary
value problems. At each print of the boundary S = Su ∪ St of the body under
consideration, either displacements ûi or tractions t̂j = σijni are prescribed

ui |Su = ûi

tj
∣∣
St = σijni |St = t̂j .

(2.6)

In the following, we will need the strain-energy density W and the potential
of external forces V defined by

W =
1

2
σijεij =

1

2
Eijkℓεkℓεij,

V = −piui,
(2.7)

from which constitutive equations are derived

∂W

∂εij
=

∂W

∂ui,j

= σji,

∂V

∂ui

= −pi.
(2.8)

Note that (2.8.a) and (2.3) are equivalent.
The Lagrange function is defined as difference between the kinetic-energy

density T and the sum of W +V . In elastostatics the kinematic energy has no
contribution. Thus we have merely

L = −(W + V ). (2.9)
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Finally, the action integral is the integral of the Lagrangian over the body B
with volume V as

A =

∫
B

L dV. (2.10)

The transition from the three-dimensional equations of the linear theory
of elasticity to the one-dimensional equations of linear bar theory is straight
forward

σij → σ11A = N,
pi → p1A = n,
ui → u1 = u,
εij → ε11 = ε,
(),j → (),1 = ()/.

(2.11)

N is the normal force, n is the load in axial direction per unit of length and
A is the cross-sectional area.

Thus the equations far bars in tension/compression become
equilibrium: N/ + n = 0,

kinematics ε = u/,

Material law N = EAε,

Navier-Lamé equation EAu// + n = 0,

displacement boundary u |Su = û,

traction boundary N |St = N̂ ,

strain-energy per unit length Ŵ = 1
2
Nε = 1

2
EAε2 = 1

2
EAu/2, (2.12)

potential of external forces V̂ = −nu, ∂V̂
∂u

= −n,

constitutive equation ∂Ŵ
∂ε

= ∂Ŵ
∂u/ = N,

Lagrangian per unit of length L̂ = −1
2
EAu/2 + nu,

action integral A =
∫ ℓ

0
L̂ dx.

The product of Young’s modulus E and cross-sectional area A is called
axial stiffness EA.

3 Euler-Lagrange equations

As soon as a Lagrange function for a problem of linear elasticity is postulated,
the equilibrium equations and even the Navier-Lamé equations are predeter-
mined by the principle of minimal energy (stationary of the action integral)

δA = 0, (3.1)

i.e., the first variation of the action integral vanishes. The Lagrange function
(2.9) is due (2.7) and (2.2) a function of the displacements ui and the dis-
placement gradients ui,j. It may also explicitly depend on the independent
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variables xi, if the material is inhomogeneous. This will not be considered in
the following.

Thus
L = L(ui, uj,k). (3.2)

Without knowledge of the specific form of L, i.e., its specific dependence on ui

and uj,k, the variation δA of A can be calculated by varying ui and ui,k under
the integral sign according to

ui → ui + δui,
ui,j → δui,j,

(3.3)

but doing nothing to xi. The variations δui and δui,j have to be kinemat-
ical admissible, i.e., they vanish along the boundary S, fulfill the kinematic
constraint

δui |s = 0,
δ(ui,j) = (δui),j.

(3.4)

and they are assumed to be small in the sense that a Taylor series

f(ui + δui) = f(ui) +
df

duk

δuk +
1

2!

∂2f

∂uk∂uℓ

δukδuℓ + ... (3.5)

may be truncated after the linear term, i.e., terms of the order δu2
i , δuiδuk,ℓ,

(δuk,ℓ)
2 , and higher order products, abbreviated by O(δ2), are neglected. A

one-dimensional sketch is given in Fig. 6

Figure 6: Function u and its variation δu, δu is fixed at a and b during the variation

The variation of the action integral results with (3.4), (3.5), integration by
parts and application of the divergence theorem in

δA =

∫
B

L(ui + δui, ui,j + δui,j)dV −
∫
B

L(ui, ui,j)dV

=

∫
B

L(ui, ui,j) +
∂L

∂ui

δui +
∂L

∂ui,j

δui,j − L(ui, ui,j)dV +O(δ2)

= −
∫
B

∂L

∂ui

+

(
∂L

∂ui,j

δui

)
,j

−
(

∂L

∂ui,j

)
,j

δuidV

=

∫
B

(
∂L

∂ui

−
(

∂L

∂ui,j

)
,j

)
δuidV +

∫
S

∂L

∂ui,j

δuinjdA.

(3.6)
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Since δui vanishes by definition along S, the surface term vanishes, and since
the variation δui is arbitrary within B, the first variation of the action integral
vanishes if the Euler-Lagrange equations of the variational problem (δA = 0)
are satisfied

∂L

∂ui

−
(

∂L

∂ui,j

)
,j

= 0. (3.7)

The reader interested in details of the variational calculus may be referred,
e.g., to [12].

The operator

Ei () =

(
∂

∂ui

−
(

∂

∂ui,j

)
,j

)
() (3.8)

is referred to as the Euler operator, which is always acting on the Lagrangian
L. Thus

Ei (L) = 0 (3.9)

may be written for short as Euler-Lagrange equation (3.7).
By use of (2.9) and (2.8) it is easily shown that (3.9) and (2.1) are equiv-

alent. By additional use of (2.2) - (2.4), (3.9) resembles also the Navier-Lamé
equations (2.5).

In the one-dimensional setting (2.11), the Euler operator is given as

E () =

(
∂

∂u
−
(

∂

∂u/

)/
)
() ,

and E
(
L(u, u/)

)
delivers with (2.12 g and h) the equilibrium equation (2.12 a),

or, with (2.12 b and c) the Navier-Lamé equation (2.12 d) for the bar problem.

4 Noether’s theorem

We return to the action integral (2.10) and do something which is usually not
done within a standard course of study in engineering science or in applied
mechanics, namely, we subject the Lagrangian L to an infinitesimal transfor-
mation of both the independent and dependent variables, i.e., we pass from the
usual quantities xi, ui to starred quantities x∗

i , u
∗
i according to the prescription

xi → x∗
i = xi + εξi (xj, uk) ,

ui → u∗
i = ui + εφi (xj, uk) .

(4.1)

Here, the single constant parameter ε is supposed to be small in the sense,
that the ensuing terms without ε and linear in ε will be retained, while terms
with ε2 and higher powers will be omitted. The functions ξi and φi with the
arguments indicated are completely arbitrary.
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The transformed action integral shall be called A∗ and reads

A∗ =

∫
B∗

L
(
x∗
i , u

∗
j , u

∗
k,ℓ

)
dV ∗. (4.2)

Note that due to the transformation (4.1), the integration domain is also
changed from B to B∗. We next wish to express all the starred quantities
in terms of the original unstarred ones. This means in particular, that the
transformed domain B∗ will be expressed in terms of the original domain B
and the differential volume element can be expressed by dV . Using the trans-
formation prescription (4.1 a) we find

dV ∗ = dx∗
1 dx

∗
2 dx

∗
3

= (1 + ε ξ1,1)dx1(1 + ε ξ2,2)dx2(1 + ε ξ3,3)dx3

= dx1dx2dx3 + ε
(
ξ1,1 + ξ2,2 + ξ3,3dx1dx2dx3 +O(ε2)

)
(4.3)

= (1 + ε ξi,i)dV.

The term u∗
k,l∗ transforms accordingly to

du∗
k

∂x∗
ℓ

=
∂ (uk + εφk)

∂xm

∂xm

∂x∗
ℓ

= (uk,m + εφk,m)
∂

∂x∗
l

(x∗
m − εξm)

= (uk,m + εφk,m)

(
δml − ε

∂ξm
∂xl

+O(ε2)

)
= uk,l + ε(φk,l − ukmξml) +O(ε2). (4.4)

Now we develop the action integral (4.2)

A∗ =
∫
B
L (xi + εξi, uj + εφj, uk,ℓ + ε(φk,ℓ − uk,mξm,ℓ))

(1 + εξi,i)dV
(4.5)

into a Taylor series and obtain after some lengthy algebra, which may be
pursued in detail in [3],

A∗ =
∫
B
L (xi, uj, uk,ℓ)

+ε

[
ξi

∂

∂xi

+ φj
∂

∂uj

+

(
dφk

dxℓ

− uk,m
dξm
dxℓ

)
∂

∂uk,ℓ

+ξi,i

]
L+O(ε2)dV.

(4.6)

Note that the total differential operator d/dxℓ is

d

dxℓ

=
∂

∂xℓ

+
∂

∂uj

uj,ℓ +
∂

∂uk,m

uk,mℓ. (4.7)
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As a side remark, the operator ξi∂/∂xi + φj∂/∂uj is referred to as the infinites-
imal generator w of a Lie group in the space xi, uj

w= ξi
∂

∂xi

+ φj
∂

∂uj

, (4.8)

and the operator

pr (1)w = w +

(
dφk

dxℓ

− uk,m
dξm
dxℓ

)
∂

∂uk,ℓ

(4.9)

is referred to as the first prolongation pr (1)w of the group into the jet bundle
space xi, uj, uk,ℓ. These designations belong to the theory of continuous Lie
groups, whose knowledge is not essential for us and which we simply use here.
But to explore this background, the reader is referred to, e.g., [13].

Thus we can write

A∗ = A+ ε

∫
B

(
pr (1)w + ξi,i

)
L dV. (4.10)

The first term in the integrand above describes the change of L to L∗ in the
domain B and is a differential operator, while the second term is a factor which
describes the change of domain from B to B∗.

By use of (4.7), application of the product role and rearrangements (details
may be found again in [3]), (4.10) may be written as

A∗ = A+ ε

∫
B

Pi,i +QjEj(L)dV (4.11)

where the characteristics Qj and the current Pi are given, respectively, as

Qj = φj − ξiuj,i,

Pi = φj
∂L

∂uj,i

+ ξj

(
Lδij −

∂L

∂ui,k

uk,j

)
.

(4.12)

Ej(L) are the Euler-Lagrange equations as defined in (3.7), (3.9).
We now seek for transformations ξi and φj which leave the action integral

invariant, i.e.,

δ∗A = A∗ − A = 0. (4.13)

The transformation functions are determined from the invariance condition
(4.10) (

pr (1)w + ξi,i
)
L = 0, (4.14)

which leads with (4.8) and (4.9) to an overdetermined system of partial differ-
ential equations for these functions. Once ξi and φj are known, the character-
istics Qj (4.12a) and the currents Pi (4.12b) are determined.
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Along solutions of a boundary value problem, all Euler-Lagrange equations
should vanish

Ej(L) =
∂L

∂uj

− d

dxi

(
∂L

∂uj,i

)
= 0, (4.15)

and δ∗A = 0 delivers with (4.11) a conservation law. With the divergence
theorem we have ∫

B

Pi,idV =

∫
S

PinidA = 0, (4.16)

provided that B is simply connected and does not contain singularities. The
local form of (4.16) reads

Pi,i =
dPi

dxi

= div P = 0. (4.17)

In combination with (4.12), this is, in essence, Emmy Noether’s theorem [14].
In order to give a first physical interpretation, we introduce the definition (2.9)
and the constitutive law (2.8a) into (4.12b) yielding

−Pi = φjσij + ξj ((W + V )δij − σikuk,j)

= φjσij + ξjbij.
(4.18)

The tensor σij is the physical momentum tensor or Cauchy-stress tensor, and

bij = (W + V )δij − σikuk,i (4.19)

is the material momentum tensor or Eshelby-stress tensor, which both have
been used already in the introduction.

If we recall the transformations (4.1) and take as transformations constant
(physical) transformations (cf. the virtual translations δu in the introduction),
i.e., φi = cj const. and ξj = 0, the physical momentum is conserved in the
absence of body forces (pi = 0)

Pi,i = 0 ⇒ σij,i = 0. (4.20)

On the other hand, if we take constant coordinate transformations, or material
translations (cf. δx in the introduction), i.e., ξj = cj =const. and φj = 0, the
material momentum is conserved in the absence of body forces (V = 0)

Pi,i = 0 ⇒ bij,i = 0 (4.21)

which is easily verified by insertion.
Both conservation laws give rise to path-independent integrals [3]. In gen-

eral, φj and ξj have to be determined from the condition (4.14).

48

Lecture Notes of  TICMI, vol. 17, 2016Lecture Notes of  TICMI, vol. 17, 2016



5 Neutral-Action method

If a Lagrangian function is not available, and the system is given only by some
set of partial differential equations

∆i(xj, uk, uk,ℓ) = 0, (5.1)

the Neutral-Action (NA) method [15] might be used to advantage. Firstly, we
need the notion of a “null Lagrangian”. If a Lagrange function L̃ is expressible
as a divergence of a vector-valued function gi(xj, uk, uk,ℓ) then it follows [13]

L̃ = gi,i ⇔ Ej(L̃) ≡ 0⇔ δÃ = 0, (5.2)

i.e., the action integral Ã =
∫
L̃dV is insensitive (or behaves neutrally with

respect) to a (classical) variation δ of only the dependent variables ui, and we
arrive at a so-called trivial variational principle, which is valid independent of
whether uk are solutions of the governing differential equations or not.

Now, instead of the characteristics Qi being specified by the transformation
functions ξj and ϕi (cf. (4.12a), we determine Qi, employing the symbol −fi
instead (in order to avoid confusion), such that the product fi∆i forms a null
Lagrangian

fi∆i = Pi,i. (5.3)

The functions fi, therefore, have to be determined from

Ej(fi∆i) = 0. (5.4)

As soon as suitable characteristics fi are found from (5.4), the conserved cur-
rents Pi follow from (5.3), and due to (5.1), conservation laws in the form
(4.16) are established.

It may be mentioned that the NA method to construct conservation laws
might be applied also to systems possessing a Lagrangian. In that case, it
leads to the same result as long as a unrestricted version of Noether’s theorem
[16] is employed together with the Bessel-Hagen extension [17].

6 Conservation laws of linear elasticity

We adopt the Navier-Lamé equations for a three-dimensional body made of a
homogeneous isotropic material (Lamé constants λ and µ) in the absence of
body forces

∆i = µui,jj + (λ+ µ)uj,ji = 0 (6.1)

(cf. eq. (2.5)). We restrict the characteristics fi to depend on the indepen-
dent variables xj, the dependent variables, i.e., the displacements uk and the
displacement gradients uℓ,m

fi = fi(xj, uk, uℓ,m). (6.2)
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Application of the Neutral-Action method leads to equations to determine fk
as

Ek(fi∆i) ≡ 0⇒ µfk,jj + (λ+ µ)fj,jk. (6.3)

It turns out that the fk are governed by the same differential equations as
the displacements ui (6.1) are, which is not surprising since the Navier-Lamé
operator (6.1) is self-adjoint. If we consider two boundary-value problems {1}
and {2} for the same body B with the solutions

ui =
{1}
ui , fi =

{2}
ui , (6.4)

then from (5.3), Betti-Maxwell’s reciprocity relations in physical space are
recovered as ∫

∂B

{1}
σji nj

{2}
ui dA =

∫
∂B

{2}
σji nj

{1}
ui dA (6.5)

(cf. [3]) with the Cauchy stress tensors
{1}
σji and

{2}
σji of problem {1} and {2},

respectively.
In order to reach further conclusions, the characteristics (6.2) are inserted into
(6.3) and the differentiations have to be carried out in detail. We arrive at
equations involving second- and third-order derivatives of the displacement
fields. Since the characteristics fi depend on derivatives up to the first order
only, the coefficients of higher derivatives have to vanish. The results indicate
(cf. [18], [19]) that fi are linear in the displacements and the displacement
gradients

fi = f 1
imn(xj)um,n + f 2

im(xj)um + f 3
i (xj). (6.6)

Preceding further along this line of reasoning, the functional dependence of fi
can be restricted to

f 1
ijk = a(xℓ)εijk + bk(xℓ)δij + cm(xℓ) [(λ+ 2µ)δjkδim + µδikδjm] (6.7)

The scalar- and vector-valued quantities a and bk, cm, respectively, are func-
tions of the independent variable xℓ and will be further restricted by comparing
equal coefficients of terms involving different orders of derivatives of ui (εijk is
the completely screw-symmetric permutation tensor).

The conservation laws resulting from a (xℓ) will be dealt with elsewhere
and will not be considered further in what follows. We also discharge the
quantities f 3

i (xj). They lead to physical conservation laws, which have been
thoroughly discussed in [18]. Considering, for the moment, only the bk-term,
equation (6.6) reads as follows

fi = bk(xℓ)ui,k + f 2
ikuk. (6.8)

Comparing (6.8) with (4.12a) (fi = − Qi) we can identify

ξk(xℓ, um) = bk(xℓ),

ϕi(xℓ, um) = −f 2
ik(xℓ)uk,

(6.9)
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i.e., bk describe material transformations (see (4.1a)). From the one-dimensional
theory of elasticity, i.e., tension and compression of bars, we know (cf. [3]) that
these functions involve constant linear and quadratic terms in xℓ. Guided by
this knowledge, we investigate the functional dependence of bk = bk(xℓ) further,
and it can be shown (cf. [18]) that the characteristic (6.6) has the following
appearance

f 1
ijk = δijbk

= δij(β
(0)
k + εnmkxmβ

(1)
n + xkβ + (2xkxm − δkmxnxn)β

(2)
m ),

f 2
ij = εijkβ

(1)
k +

n− 2

2
δijβ + (n− 2)δijxmβ

(2)
m . (6.10)

The integer n designates the dimensionality of the problem, whether we treat
a three-dimensional (n = 3), a two-dimensional (plane strain, n = 2) or a
one-dimensional (tension and compression of a bar, n = 1) body.

The terms β
(0)
k , β

(1)
n , β

(2)
m and β are vector-valued and scalar-valued con-

stants, respectively.
Before we precede to the corresponding conservation laws, let us interpret

the material translations in geometrical terms. Obviously, β
(0)
k describe mate-

rial translations (see Fig. 7a and the comments before eq. (4.21))

xk 7→ x∗
k = xk + εβ

(0)
k ,

uk 7→ u∗
k = uk.

(6.11)

For reasons of clarity we sketch the transformations in the (x1, x2)-plane only

(β
(0)
3 = 0).

Obviously again, β
(1)
n describe material rotations

xk 7→ x∗
k = xk + εεnmkxmβ

(1)
n ,

uk 7→ u∗
k = uk + εεnmkumβ

(1)
n

(6.12)

whilst the displacement field is co-rotated. In the (x1, x2)-plane, β
(1)
n has only

one possible component β
(1)
3 = ω, see Fig. 7b.

The constant β describes scaling (see Fig. 7c)

xk 7→ x∗
k = xk + εβxk,

uk 7→ u∗
k = uk + εn−2

2
βuk.

(6.13)

Due to this transformation the body under consideration is expanded (or
shrunk) self-similarly and translated (cf. Fig. 7c). The corresponding dis-
placement transformation depends on the dimension of the problem. For plane
strain (n = 2), uk is not changed.

51

R. Kienzler. Material Conservation and Balance Laws in Linear Elasticity...



Figure 7: Material transformations: (a) translation, (b) rotation, (c) scaling, (d) inversion.

The transformation described by β
(2)
m is rather strange. If we introduce the

length of the vector x⃗ = xie⃗i by |x⃗| = (xnxn)
1/2 and introduce unit vectors by

nk = xk/ |x⃗|, the transformation reads as

xk 7→ x∗
k = xk + ε |x⃗|2 (2nknm − δkm)β

(2)
m ,

uk 7→ u∗
k = uk + ε(n− 2)ukxmβ

(2)
m .

(6.14)

The matrix Wkm = 2nknm − δkm is proper orthogonal

W −1 = W T , detW = +1, (6.15)

and rotates the vector β⃗(2) = β
(2)
m e⃗m around the position vector x⃗ by an angle of

π (cf. [20], [21]). In addition, the vector is scaled by |x⃗|2. This transformation

is called “inversion” (cf. [22]). Fig. 7d shows a qualitative sketch for β
(2)
1 = 1

and β
(2)
2 = 3 in the (x1, x2) plane.

The four transformations β
(0)
j , β

(1)
n , β and β

(2)
m lead to the four conservation

and balance laws [18], respectively

Translation β
(0)
j ̸= 0 : bij,i = [Wδij − σikuk,j],i = 0,

Rotation β
(1)
n ̸= 0 : εnkj [xkbij + ukσij],i = 0,

Scaling β ̸= 0 :
[
xjbij +

2−n
2
ujσij

]
,i
= 0,

Inversion β
(2)
m ̸= 0 : [(2xmxk − xℓxℓδmk)bik

+(2xkum + (2− n)xmuk − 2xℓuℓδmk) σik

+nµ
(
umui +

1
2
uℓuℓδmi

)]
,i

= (nλ+ (4 + n)µ)uℓ,ℓum.

(6.16)
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The term bij is, again, the Eshelby-stress tensor involving the strain-energy
density W . On integration over the volume V of a body B and application
of the divergence theorem, equation (6.16a) gives rise to Rice’s J-integral [23],
which describes the energy-release rate due to the translation of a material
inhomogeneity within the body. In a similar way, (6.16b) and (6.16c) resemble
the L− and M− integrals introduced in [24], but discussed much earlier in
[11]. The integrals L and M indicate the energy-release rates due to a rotation
and self-similar expansion of the inhomogeneity, respectively.

Inversion does not give rise to a conservation law but rather a (more or
less) trivial balance law. The right-hand side of (1.16d) vanishes either under
the unphysical condition (n = 3) : 3λ + 7µ = 0, i.e., Poisson’s ratio ν = 7/8
or for the special case of an isochoric deformation, i.e., uk,k = 0.

We turn back now to equation (6.7) and realize that, first of all, the trans-
formations involving cm(xℓ) follow from Noether’s theorem only, if we admit
an unrestricted or extended form of the transformation (4.1), cf. [16].

Secondly, the transformation coefficients cm are scaled with the material
constants λ and µ of the elastic body under consideration. Finally, the trans-
formations ck leading to conservation or balance laws have a similar form as
the transformations bk have, cf. (6.10), and so have the governing conservation
laws (cf. [18])

Translation γ
(0)
i ̸= 0 : cji,j = 0,

Rotation γ
(1)
i ̸= 0 : εikℓ [(λ+ µ)xkcjℓ + µ(λ+ 3µ)ukσjℓ

+ 2µ3uk (um,mδjℓ − um,ℓδjm)],j = 0,

Scaling γ ̸= 0 : [xicji + µui (σij + µ(uk,kδij − uj,i))

+µ2 (ujui,i − uiuj,i)],j

= 1
2
(nλ+ (n+ 4)µ) (λ+ 2µ)ui,iuj,j

(6.17)

Inversion γ2
ℓ ̸= 0 :

[(
xkxℓ − 1

2
xnxnδkℓ

)
cmk + µ(xkuℓ − xℓuk − xnunδkℓ)σmk

+2µ2(xmuk,kuℓ + xℓuk,muk − xnuk,kunδmℓ) + 2µ(λ+ µ)xℓuk,kum

+
2µ2(λ+ 2µ)

λ+ µ
umuℓ +

2µ3

λ+ µ
xk(uk,muℓ − uℓ,muk)

]
,m

= (nλ+ (n+ 4)µ)(λ+ 2µ)uk,k

[
1

2
xℓum,m +

µ

λ+ µ
uℓ

]
.
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with f 1
ijk and f 2

ij given in this case as

f 1
ijk = cm [(λ+ 2µ)δjkδim + µδikδjm],

cm = γ(0)
m + εknmxnγ

(1)
k + xmγ +

(
xmxℓ −

1

2
xnxnδmℓ

)
γ
(2)
ℓ ,

cm = γ(0)
m + εknmxnγ

(1)
k + xmγ +

(
xmxl −

1

2
xnxnδml

)
γ
(2)
l ,

f 2
ij =

µ(λ+ 3µ)

(λ+ µ)
εijkγ

(1)
k + µ

n− 2

2
δijγ + µ

n− 2

2
δijxmγ

(2)
m (6.18)

(Note that some minor flaws have been corrected and some terms have been
specified in comparison to [19]).

The tensor cij is given in displacement gradients as

cij =
1
2
(λ+ 2µ)(λ+ µ)uk,kuℓ,ℓδij + µ2uj,k(uk,i − ui,k)

+µ(λ+ 2µ)uk,kuj,i

(6.19)

and coincides with Qji in Olver’s paper [22]. It will be applied to a crack in
Section 9. Rotation leads again to a conservation law (6.17b), whilst scaling
(6.17c) and inversion (6.17d) yield rather balance laws, the right-hand side
being proportional to the same factor 3λ+ 7µ as discussed above.

7 Conservation laws for bars in tension / com-

pression

For later use, we complete the list of correspondence (2.11) between the three-
dimensional theory of elasticity and the one-dimensional bar theory by

µ→ 1
2
EA,

λ→ 0.
(7.1)

The material momentum tensor (Eshelby-stress tensor) bij specializes to the
material force B, which has already been mentioned in the introduction. In
the absence of a load in axial direction per unit of length n = 0, i.e., V̂ = 0,
we find

bij → B = Ŵ −Nu/. (7.2)

The conservation laws (6.16) transform with (2.11). (2.12) and (7.1) to

Translation B/ = 0,

Scaling
(
xB + 1

2
Nu
)/

= 0,

Inversion
(
x2 + xNu+ 3

4
EAu2

)/
= 5

2
EAu/u.

(7.3)
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Material rotation cannot be applied within a one-dimensional theory without
leaving a bar axis. The right-hand side of (7.3c) can be transformed to a “one
dimensional divergence” as

5

2
EAu/u =

5

4
(EAu2)/, (7.4)

and can be turned to the left-hand side, giving raise to a conservation rather
than a balance law. With (2.12), B from (7.2) can be rewritten, and abbrevi-
ations may be introduced as

B = −1
2
EAu/2,

H = −1
2
Nu = −1

2
EAu/u,

R = −1
2
EAu2.

(7.5)

Thus equations (7.3) can be transformed to

B/ = 0,

(Bx−H)/ = 0,

(Bx2 − 2Hx+R)/ = 0.

(7.6)

The conservation and balance laws (6.17) convert all to conservation laws, but
they do not provide any new information, since

cij → C = −3

2
EA B, (7.7)

and the equations (6.17) transform to (7.6) merely multiplied by −3/2EA.
It may be further mentioned that also crack interaction problems might be

easily assessed on the basis of these considerations ([25]-[27]).
The physical interpretation of the material force B and the first- and second

-order material virials H and R, respectively, are given in [3]. The application
of the conservation laws (7.6) to bars with cracks yield remarkable simple
formulae to estimate the associate stress-intensity factors. The theory can
easily extended to beams in bending and shafts in torsion. Details, further
references and several examples of application may be found in [3].

8 Dislocation / hole interaction

As an example of a defect interaction problem let us consider an infinite plane
(x1, x2) with a circular hole (radius r0) placed into the eigenstress field of a
dislocation (Burgers-vector b). As depicted in Fig. 8, the dislocation (b1 =
0, b2 = b) is fixed at the origin of a cartesian or polar coordinate system, and
the mid-point of the circular hole is placed at an arbitrary position ξ1, ξ2 or
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Figure 8: Dislocation / hole interaction

d, ϑ, respectively (d =
√

ξ21 + ξ21) > r0).The dimensionless distance is denoted
by ρ = d/r0, L > 1.
The initial configuration is changed by material transformations, and so is
the total energy of the system. The translation of the hole (relatively to the
dislocation) in x1-direction by an amount λ1 is shown in Fig. 9a.

Figure 9: Material transformations of the hole relatively to the dislocation: material
translation in x1 and x2 directions λ1 (a) and λ2 (b), respectively, material rotation with
respect to the origin ω (c), self-similar expansion of the hole r0 → αr0 (d).

The material transformations are considered infinitesimal small but sketched
for reasons of visuality on a finite scale.

As mentioned in section 6, the negative rate of change of the total energy
is calculated by the J-integral

− ∂Π

∂λ1

= J1 =

∮
bj1

Γ

njds. (8.1)
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The line integral is performed along a contour Γ with are length s and unit out-
ward normal vector n. Since the J-Integral is path independent, any contour
Γ may be chosen which surrounds the hole (but not the inclusion) completely.

Accordingly, a material translation in x2-direction by an amount λ2 (see
Fig. 9b) yields

− ∂Π

∂λ2

= J2 =

∮
bj2

Γ

njds. (8.2)

Material rotation in the plane is possible only around the x3-axis (see Fig. 9c).
The vector-valued L-Integral has only the component L3 and is given as

− ∂Π

∂ω3

= L3 =: L⊥ =

∮
ε3kj

Γ

[xkbij + ukσij]nids. (8.3)

In the following, we will consider a rotation ω around the origin of the coor-
dinate system. In contrary, we will consider the self-similar expansion of the
hole, r0 → αr0 with respect to the center of the hole (Fig. 9d). The energy
change is described by (n = 2)

− ∂Π

∂(α− 1)
= M =: M◦ =

∮
xj

Γ

bijnids. (8.4)

The M -Integral is a material virial, i.e., a moment of the kind r • F in-
stead of an angular moment r × F . Material inversion will not be considered.
Like in strength-of-materials courses we can sketch free-body diagrams also for
material forces/moments as depicted in Fig. 10

Figure 10: Free body diagram for material quantities

Material equilibrium requires

→ : JH
1 − JD

1 = 0,

↑ : JH
2 − JD

2 = 0,

Ñ : L⊥ + ξ1J
H
2 − ξ2J

H
1 = 0,

: M◦ + ξ1J
D
1 + ξ2J

D
2 = 0.

(8.5)
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The integrals obtain a quite simple form, if we choose as integration path the
contour along the rim of the hole. The only nonvanishing stess component is
σφφ, and the (complementary) strain-energy density W is given by

W =
1

2E∗σ
2
φφ(φ). (8.6)

The constant E∗ is given with Young’s modulus E and Poisson’s ratio ν by

E∗


E

1− ν2
for plane strain

The integrals reduce to

J1 =
r0
2E∗

∫ 2π

0

σ2
φφ(φ) cosφdφ,

J2 =
r0
2E∗

∫ 2π

0

σ2
φφ(φ) sinφdφ,

M◦ =
r20
2E∗

∫ 2π

0

σ2
φφ(φ) dφ,

L? =
r0d

2E∗

∫ 2π

0

σ2
φφ(φ) sinφdφ.

(8.8)

In [28] a simple formula is derived to obtain the hoop stresses at the boundary
of a stress-free circular hole from the stress distribution that would exist along
the boundary of the hole in its absence.

We adopt the Volterra solution for the eigen-stress field of a dislocation
placed at the origin of the coordinate system of an infinite plane, which may
be found in textbooks (cf. e.g., [3]). Let σ

(0)
rr (r0, φ) and σ

(0)
φφ(r0, φ) be the

stresses calculated from the Volterra solution along the curve coinciding with
the boundary of the prospective hole (r, φ polar coordinates wich respect to

the center of the hole) and I
(0)
1 the first stress invariant at the center of the

prospective hole, i.e.,

I
(0)
1 =

(
σ
(0)
11 + σ

(0)
22

)
| x1 = ξ1
x2 = ξ2

. (8.9)

The hoop stress σφφ(φ) at the boundary of the (now present) hole due to the
applied load (in this case the eigen-stress field of the dislocation) follows from

σφφ(φ) = I
(0)
1 + 2

(
σ(0)
φφ(r0, φ)− σ(0)

rr (r0, φ)
)
. (8.10)

For the dislocation / hole interaction problem, we find (cf., e.g., [3], [28], [29])

σφφ(φ) =
bE∗

2πr0ρ

{
ξ1
r0

[
1

ρ
− 4 sin2 φ

1 + ρ cosφ

[ρ2 + 1 + 2ρ cosφ]2

]
+
ξ2
r0

sinφ

[(
ρ2 − 1

ρ2 + 1 + 2ρ cosφ

)2

− 1

]}
.

(8.11)
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With (8.8) and (8.11), the integrals can be readily evaluated as [30]

J1 = −
b2E∗

4πr0

cosϑ

ρ3(ρ2 − 1)

[
ρ2 + 2 sin 2ϑ(ρ2 − 1)

]
,

J2 = −
b2E∗

4πr0

sinϑ

ρ3(ρ2 − 1)

[
1 + 2 sin 2ϑ(ρ2 − 1)

]
,

(8.12)

or by transformation in r, ϑ-direction (see Fig. 11)

Jr = −
b2E∗

4πr0ρ

[
1

ρ2 − 1
+

sin2 ϑ

ρ2

]
,

Jϑ = +
b2E∗

8πr0ρ

sin 2ϑ

ρ2
,

(8.13)

and further

L⊥ = −b2E∗

8π

sin 2ϑ

ρ2
,

M◦ = +
b2E∗

4π

[
1

ρ2 − 1
+

sin 2ϑ

ρ2

]
.

(8.14)

The material equilibrium conditions (8.5) can easily be verified.

Figure 11: Interaction forces between circular hole and dislocation, polar directions

The closed-form analytical equations (8.12) - (8.14) can be used to study ma-
terial reciprocity relations for defect interactions [30]. Material reciprocity
relations as counterpart to the (physical) Betti-Maxwell reciprocity relations
have been introduced quite recently [31] - [33].

From (8.13), it can be seen that the force between the dislocation and the
hole is always a force of attraction (Jr < 0). Thus, if the hole or the dislocation
could move, the distance between them would decrease.

We would like to consider next the shape of trajectories envisaging the
possibility that the cavity, by means of some mechanism (e.g., diffusion) could
move towards the dislocation. Lacking equations of motion (of the type of New-
ton’s second law for mass points, where, in general, the force is not tangential
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to the trajectory), it is usually assumed that the material force is tangential
to the trajectory, i.e., path of motion. The trajectories of possible motion of
the cavity have thus to be determined from the differential equation

dx2

dx1

=
J2
J1

, (8.15)

or in polar coordinates
dρ

dφ
= ρ

Jr
Jφ

. (8.16)

If the distance between dislocation and hole is large, i.e., ρ > 1, the differential
equation can readily be integrated, leading to

ρ = ρ0
sinφ0

cos2 φ0

cos2 φ

sinφ
. (8.17)

Each trajectory is specified by the choice of φ0 and ρ0. Some of the trajectories,
with the restriction ρ≫ I, are sketched in Figure 12

Figure 12: Trajectories of motion of a cavity in a stress field due to a dislocation

Concluding this Section, we consider the stability of material equilibrium of
a circular hole in the stress field of two symmetric dislocations as depicted in
Figure 13.

Figure 13: Interaction of a circular hole with two dislocations

Since the theory is linear, the stress fields of the two dislocations may
be superimposed. The results for J1, J2 or Jr, Jφ , however, do not follow
from superposition, because they are quadratic forms in σφφ (8.8) and an
interaction term will occur. Due to the symmetry of the problem it can be
concluded, however, that ξ1 = ξ2 = 0 corresponds to an equilibrium position.
The material force in the x2-direction is zero and the material forces towards
the dislocations in the x1-direction are equal but opposite. If the hole is shifted
now by a small amount along the x1-axis to the right, say, the attracting force
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of the right dislocation becomes larger than that of the left. The hole will thus
move further to the right. Therefore, the equilibrium position is unstable with
respect to x1.
If the hole is shifted, on the other hand, by a small amount in the x2-direction,
the x1-components of the forces exerted by the two dislocations are still equal
and opposite. The forces, however, are now inclined with respect to the x1-
axis, both components in x2-direction add and drive the hole back into the
original position. Thus, the equilibrium position is stable with respect to x2.
The total potential energy given as function of the position of the hole Π(ξ1, ξ2)
(influence surface), therefore, possesses a saddle point at ξ1 = ξ2 = 0 and this
equilibrium position is overall unstable.

The corresponding physical stability problem is sketched in Fig. 14.

Figure 14: Mass point m on a saddle-shaped surface in a field of gravity (acting in negative
x3-direction)

9 Application in fracture mechanics

For later use, we modify the tensor cij (6.19) by a linear combination with
bij (6.16a) and a trivial conservation law tij, i.e., a conservation law which is
satisfied independently of whether or not the displacement field ui satisfies the
Navier-Lamé equations (6.1)

tij = εiℓnεjkmuk,ℓum,n

tij,i ≡ 0.
(9.1)

The resulting tensor is called dij and is defined as

dij =
λ+ µ

2(λ+ 2µ)

(
bij +

1

µ
cij + µtij

)
. (9.2)

This tensor has been derived in a different way in [34]. Replacing the Lamé
constants λ and µ by Young’s modulus E and Poisson’s ratio ν via

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
(9.3)
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and writing bij and dij in terms of displacement gradients

bij =
E

4(1 + ν)(1− 2ν)
{δij [2νuℓ,ℓum,m + (1− 2ν ) uℓ,m(uℓ,m + um,ℓ)]

−2 [2νuℓ,ℓui,j + (1− 2ν)uℓ,j (uℓ,i + ui,ℓ)]} ,

dij =
E

4(1 + ν)(1− 2ν)

{
1

2
δij

[
2(1− ν)

1− 2ν
uℓ,ℓum,m

+
1− 2ν

2(1− ν)
uℓ,m(uℓ,m − um,ℓ)

]
−
[
uℓ,ℓ(ui,j − uj,i) +

1− 2ν

2(1− ν)
(ui,ℓ − uℓ,i)(uj,ℓ − uℓ,j)

]}
,

(9.4)

it turns out that bij and dij have quite a similar appearance.
The Eshelby tensor bij serves as integrand of Rice’s J-integral as

Ji =

∫
S

bjinjdA . (9.5)

Accordingly, we introduce an N -integral in which dij serves as integrand

Ni =

∫
S

djinjdA . (9.6)

In plane fracture mechanics, the J-integral is used to calculate stress-intensity
factors KI and KII (cf., e.g., [35]). On evaluating both integrals along a path
Γ within the near-crack-tip field around a crack tip under mixed-mode-loading
conditions in plane elasticity (see Fig. 15) it turns out that the following
relations hold

J1 =
K2

I +K2
II

E∗ , N1 =
K2

I −K2
II

E∗ ,

J2 = −
2KIKII

E∗ , N2 = −
2KIKII

E∗ ,

(9.7)

with E∗, as before,

E∗ =


E for plane stress,

E

1− ν2
for plane strain.

(9.8)

As discussed in [19], linear combinations of J1 and N1 provide favorable tools
to calculate KI and KII separately

KI =
√

E∗

2
(J1 +N1),

KII =
√

E∗

2
(J1 −N1).

Also, advantages in the numerical implementation and the obtained accuracy
are reported.
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10 Conclusions

The presented lecture notes aim at creating interest in the Mechanics of Ma-
terial Space or Configurational Mechanics. Whereas configurational forces
are well established in fracture mechanics, further applications have been
dealt with quite recently, e.g., the accuracy of numerical computations can
be improved by modifying the grid in order to minimize spurious configura-
tional forces. Also the applications in damage mechanics, plasticity, phase-
transformation and phase-transition problems are of ongoing interest. Gérard
Maugin, a most active proponent of the subject put it in the following phrase:
“. . . , it contributes one of the latest and most fruitful advances in macroscopic
field theories, an area that may have considered a completely closed field of
research offering no further progress and therefore no true scientific interest,
for quite a long time” [4, page 6].
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