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Abstract. In this talk I consider deformations of algebraic structures. The
notion of 1-parameter deformation is due to Gerstenhaber. Here I give a gener-
alization of the classical notion by considering deformations with a commuta-
tive algebra base, and define the miniversal formal deformation. This notion is
necessary to describe non-equivalent deformations with the same infinitesimal
part, and to find singular nontrivial deformations with zero infinitesimal part.
I use the example of a vector field Lie algebra to demonstrate the computation.
Another example which underlines the importance of such general deforma-
tions is to consider moduli spaces of Lie algebras. This I also demonstrate on
an example.

Key words and phrases: Lie algebra, moduli space, miniversal deformation,
orbifold

2000 Mathematical Subject Classification: 17B40, 17B55, 17B65, 16S80

Alice Fialowski
Institutes of Mathematics
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1 Introduction

Deforming a given mathematical structure is a tool of fundamental impor-
tance in most parts of mathematics and physics. The theory of deformations
originated with the problem of classifying all possible pairwise non-isomorphic
complex structures on a given differentiable real manifold. The fundamen-
tal idea, which should be credited to Riemann, was to introduce an analytic
structure.

The notion of local and infinitesimal deformations of a complex analytic
manifold first appeared in the work of Kodaira and Spencer (1958). In particu-
lar, they proved that infinitesimal deformations can be parametrized by a cor-
responding cohomology group. The deformation theory of compact complex
manifolds was devised by Kuranishi (1965) and Palamodov (1976). Shortly
after the work of Kodaira and Spencer, algebro-geometric foundations were
systematically developed by M. Artin (1960) and Schlessinger (1968). For-
mal deformations of arbitrary rings and associative algebras, as well as the
related cohomology questions, were first investigated by Gerstenhaber (1964-
1968). The notion of deformation was applied to Lie algebras by Nijenhuis
and Richardson (1966-68).

In this talk I consider deformations of Lie algebras – although my general
theory can be applied and is already applied to other categories like Leib-
niz algebras, associative algebras, infinity algebras, dialgebras, algebras over
quadratic operad etc.

Deformation is one of the tools used to study a specific object, by deform-
ing it into some families of “similar” structure objects. This way we get a
richer picture of the original object itself. But there is also another question
approached via deformation. Roughly speaking, it is the question, can we
equip the set of mathematical structures under consideration (may be up to
certain equivalence) with the structure of a topological or geometric space. In
other words, does there exist a moduli space for these structures. If so, then
for a fixed object deformations of this object should reflect the local structure
of the moduli space at the point corresponding to this object.

Example 1. Consider the Lie algebra of 2×2 matrices over a field K with the
usual bracket operation: [A,B] = AB −BA. Let A0 denote the 2× 2 identity
matrix. Define

At =

[
1 0
0 1

]
+ t

[
0 1
0 0

]
.

We can say that {At, t ∈ K} is a deformation family of A0.

Example 2. Define the (solvable) 3-dimensional complex Lie algebra with
generators e, f, h having nonzero brackets [h, e] = e and [h, f ] = −f . Define
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the following deformation:

[h, e]t = e+ tφ1(h, e),
[h, f ]t = −f + tφ1(h, f),
[e, f ]t = tφ1(e, f),

where
φ1(h, e) = 0, φ1(h, f) = 0, φ1(e, f) = 2h.

The resulting Lie algebra is isomorphic to sl2(C), for any non-zero t.

Example 3. Consider the following four parameter family of 7-dimensional
Lie algebras G(α, β, γ, δ). The non-zero Lie products of G(α, β, γ, δ) are defined
by:

[e1, ei] = ei+1 , 2 ≤ i ≤ 6 [e2, e5] = (α− δ)e7
[e2, e3] = αe5 + βe6 + γe7 [e3, e4] = δe7
[e2, e4] = δe6 + βe7 .

Consider the deformation G(1, 0, 0, t) of G(1, 0, 0, 0) parametrized by k[[t]]. If
G(α, β,
γ, δ) is isomorphic to G(α′, β′, γ′, δ′), then α′−δ′

α′ = α−δ
α
. It follows that G(1, 0, 0, δ)

is not isomorphic to G(1, 0, 0, δ′) if δ ̸= δ′, so this deformation family of
G(1, 0, 0, 0) has nonequivalent elements for each δ. On the other hand, the
family G(µ, µ, µ, µ) consists of Lie algebras isomorphic to G(1, 1, 1, 1), and so
the Lie algebra G(t, t, t, t) over k[[t]] is a deformation parameterized by k[[t]]
of G(0, 0, 0, 0) with all the nonzero members of the family being isomorphic to
each other.

2 Basic definitions

In my talk I will consider Lie algebras which are widely used in mathematical
physics.

Let L be a Lie algebra with Lie bracket µ0 over a field K.

a) Intuitive definition. A deformation of L is a one-parameter family Lt of Lie
algebras with the bracket (possibly infinite series)

µt = µ0 + tφ1 + t2φ2 + . . .

where φi are L-valued 2-cochains, i.e. elements of HomK(Λ
2L,L) = C2(L;L),

and Lt is a Lie algebra for each t ∈ K. Two deformations, Lt and L′
t are

equivalent if there exists a linear automorphism ψ̂t = id + ψ1t + ψ2t
2 + . . . of

L where ψi are linear maps over K, i.e. elements of C1(L,L) such that

µ′
t(x, y) = ψ̂−1

t

(
µt

(
ψ̂t(x), ψ̂t(y)

))
for x, y ∈ L.

The Jacobi identity for the algebras Lt implies that the 2-cochain φ1 is indeed
a cocycle, i.e. d2φ1 = 0. (Here di is the differential in the cochain complex.) If
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φ1 vanishes identically, the first non-vanishing φi will be a cocycle. If µ′
t is an

equivalent deformation with cochains φ′
i, then

φ′
1 − φ1 = d1ψ1,

hence every equivalence class of deformations defines uniquely an element of
H2(L,L). This definition was introduced by Nijenhuis and Richardson [12].
We call a Lie algebra rigid, if it has no nontrivial deformations.

b) General definition. Consider now a deformation Lt not as a family of Lie
algebras, but as a Lie algebra over the algebra K[[t]]. The natural generaliza-
tion is to allow more parameters, or to take in general a commutative algebra
over K with identity as base of a deformation. Let us fix an augmentation
ε : A→ K, ε(1) = 1, and set Ker ε = m, which is a maximal ideal.

Definition 1. [2] A deformation λ of L with base (A,m) is a Lie A-algebra
structure on the tensor product A⊗K L with bracket [ , ]λ such that

ε⊗ id : A⊗ L → K⊗ L = L

is a Lie algebra homomorphism.

Two deformations of a Lie algebra L with the same base A are called
equivalent (or isomorphic) if there exists a Lie algebra isomorphism between
the two copies of A⊗ L with the two Lie algebra structures, compatible with
ε⊗ id.

A deformation with base A is called local if the algebra A is local, and it
is called infinitesimal if, in addition to this, m2 = 0. For general commutative
algebra base, we call the deformation global.

c) Formal deformations. Let A be a complete local algebra (completeness

means that A =
←−−
lim
n→∞

(A/mn), where m is the maximal ideal in A). A formal

deformation of L with base A is a Lie A-algebra structure on the completed

tensor product A⊗̂L =
←−−
lim
n→∞

(
(A/mn)⊗ L

)
s.t.

ε⊗̂id : A⊗̂L → K⊗ L = L

is a Lie algebra homomorphism.
The previous notion of equivalence can be extended to formal deformations

in an obvious way.

Example 3. Consider the following four parameter family of 7-dimensional
Lie algebras G(α, β, γ, δ). The non-zero Lie products of G(α, β, γ, δ) are defined
by:

[e1, ei] = ei+1 , 2 ≤ i ≤ 6 [e2, e5] = (α− δ)e7
[e2, e3] = αe5 + βe6 + γe7 [e3, e4] = δe7
[e2, e4] = δe6 + βe7 .
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Consider the deformation G(1, 0, 0, t) of G(1, 0, 0, 0) parametrized by k[[t]]. If
G(α, β,
γ, δ) is isomorphic to G(α′, β′, γ′, δ′), then α′−δ′

α′ = α−δ
α
. It follows that G(1, 0, 0, δ)

is not isomorphic to G(1, 0, 0, δ′) if δ ̸= δ′, so this deformation family of
G(1, 0, 0, 0) has nonequivalent elements for each δ. On the other hand, the
family G(µ, µ, µ, µ) consists of Lie algebras isomorphic to G(1, 1, 1, 1), and so
the Lie algebra G(t, t, t, t) over k[[t]] is a deformation parameterized by k[[t]]
of G(0, 0, 0, 0) with all the nonzero members of the family being isomorphic to
each other.

d) Versal formal deformations. It is known that in the category of algebraic
varieties the quotient by a group action does not always exist [10]. Specifically,
there is no universal deformation in general of a Lie algebra L with a commu-
tative algebra base B with the property that for any other deformation of L
with base A there exists a unique homomorphism f : B → A that induces an
equivalent deformation. If such a homomorphism exists (but not unique), we
call the deformation of L with base B versal.

The classical one-parameter deformation theory is not satisfactory for study-
ing the versal property of deformations.

For a more general deformation theory of Lie algebras let us introduce the
notion of a deformation with base and define a formal versal deformation of a
Lie algebra.

Definition 2. [2, 3] A formal deformation η of a Lie algebra L with a complete
local algebra base B is called miniversal, if

i) for any formal deformation λ of L with any complete local base A there
exists a homomorphism f : B → A s.t. the deformation λ is equivalent to the
push-out of η by f ;

ii) if A satisfies m2 = 0, then f is unique.

In the past decades, much attention has been paid to infinite dimensional
Lie algebras, mainly because of their applications in mathematical physics.
There are basically two kinds of infinite dimensional objects which are inten-
sively studied: Lie algebras of geometric origin, like vector fields on a smooth
manifold, and the so called Kac-Moody algebras, the theory of which is closely
related to the theory of finite dimensional semisimple Lie algebras. Among the
infinite dimensional Lie algebras - as in finite dimension - the hardest to deal
with are the nilpotent ones. Any classification, cohomology or deformation
result for those is really valuable.

Formal deformations are deformations with a complete local algebra base.
A deformation with a commutative (non-local) algebra base gives a much richer
picture of deformation families, depending on the augmentation of the base
algebra. If we identify the base of deformation – which is a commutative
algebra of functions – with a smooth manifold, an augmentation corresponds
to choosing a point on the manifold. So choosing different points should in
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general lead to different deformation situations. In infinite dimension there is
no tight relation between global and formal deformations.

In finite dimension global deformations coincide with formal deformations,
so we can use cohomology theory. Here cohomology and versal deformations
make it possible to get a geometric description of the moduli space of a certain
type of algebraic objects in a given dimension. This feature is completely new
and underlines the importance of those invariants.

3 Applications of deformation theory in physics

In physics, the mathematical theory of deformations is a powerful tool to
construct new theories of physical reality from known ones. The concepts
of symmetry and deformations are considered to be two fundamental guid-
ing principles for further developing physical theory. Nowadays the infinite-
dimensional case is in the center of interest, and also deformations of higher
algebraic structures play a prominent role.

Some examples:

Quantum groups, deformation of Hopf algebras, q-deformed physics, fuzzy
spaces, quantum systems as deformations of classical systems.

(1) The deformation quantization of symplectic and Poisson manifolds, in
particular also the question to find subalgebras for which the deformation
quantization converges, furthermore the behaviour of deformation quantiza-
tions under reduction by a group action, Drinfeld associators.

(2) Deformed Geometry and Gravity, with the help of fuzzy space geome-
tries, large N limits of Yang-Mills matrix models, Anti-de-Sitter space time.

(3) Quantum Field Theory, in particular the deformation of the local ob-
servable algebra, renormalisation and regularisation of QFT, family of Dirac
operators.

4 Versal formal deformations

Using Schlessinger’s general set-up (1968, [13]) one can prove, that for complete
local algebra base deformations, under some minor restriction, there exists a
miniversal deformation:

Theorem 1 [3] Let L be a Lie algebra. Assume that the space H2(L,L) is
finite-dimensional. Then there exists a versal formal deformation of L, and
the base of this versal deformation is formally embedded into H2(L,L), i.e. it
can be described in H2(L,L) by a finite system of formal equations.
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Another question is how to construct such a deformation. I underlined a
construction for the versal deformation in [2], using Harrison cohomology of
commutative algebras [11]. The construction is parallel to the general construc-
tions in deformation theory, like Palamodov, Illusie, Laudal, Goldman-Millson,
Kontsevich. The procedure needs a proper theory of Massey operations in the
cohomology, and an algorithm for computing all the possible ways for a given
infinitesimal deformation to extend to a formal deformation.

There is a confusion in the literature when one tries to describe all nonequiv-
alent deformations of a given Lie algebra. There were several attempts to work
out an appropriate theory for solving this basic problem in deformation the-
ory, but none of them were completely adequate. In particular, the following
questions remained open:

1) How many non-equivalent deformations have the same infinitesimal
part?

2) Are there any singular nontrivial deformations, i.e. deformations with
zero infinitesimal part?

The versal deformation theory answers both questions.

Let W pol =W1 be the Lie algebra of vector fields on the line with polyno-
mial coefficients f(x) d

dx
. This Lie algebra has an additive algebraic basis

ei = xi+1 d

dx
, i ≥ −1.

In this basis the bracket operation is

[ei, ej] = (j − i)ei+j.

Let us introduce the subalgebra Li, i ≥ 0 ofW which is generated by the basis
elements {ei, ei+1, . . . }. Let us investigate the subalgebra L1, the Lie algebra
of polynomial vector fields in C with trivial 1-jet at 0. The Lie algebra L1 is
naturally graded, the weight of ei equals i. With this grading Lpol

1 is a graded

Lie algebra: Lpol
1 =

∞⊕
m=1

L
(m)
1 .

Using Feigin-Fuchs spectral sequence [1], some results of Feigin and Fuchs
on cohomology with coefficients in tensor field modules and Goncharova’s result
on trivial coefficient cohomology [9], I was able to compute the 1- and 2-
dimensional cohomology space of L1:

Theorem 2 [3] For q > 0, Hq
(m)(L1;L1) ∼= Hq−1

(m) (L2;C). The cohomology

space Hq(L1;L1) has dimension 2q− 1 and is generated by elements of weight

−3q2−q
2

+ i where i = 1, 2, . . . , 2q − 1.
In particular, the cohomology space H1(L1;L1) is of dimension 1 and has

weight 0; the space H2(L1;L1) is three-dimensional with generators α, β, γ of
weight −2,−3 and −4, while dimH3(L1;L1) = 5 with generators of weight
−7,−8,−9,−10 and −11.
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Identifying explicit cocycles, we can compute the Massey products of those.
They are responsible for extending a deformation to higher order. The result
is the following:

Theorem 3 [3] In the case of L1 the Massey products ⟨α, α, . . . , α⟩︸ ︷︷ ︸
i

are zero

for all i, the brackets [β, β], [α, β] and [α, γ] are trivial, while [γ, γ] and [β, γ]
are not. The only nontrivial 3-products are ⟨β, β, β⟩ and ⟨α, β, β⟩. The higher
operations are either not defined or they are trivial.

The proof of this Theorem follows from computing all the defined Massey
brackets and showing that some of them are nontrivial, while others are not.
The nontrivial Massey brackets give the equations for the parameter space of
the versal deformation.

This way we can give the complete description of all nonequivalent formal
deformations for the Lie algebra L1.

Let us now define three real deformations of the Lie algebra L1 with the
brackets

[ei, ej]
1
t = (j − i)(ei+j + tei+j−1);

[ei, ej]
2
t =

{
(j − i)ei+j if i, j > 1,

(j − i)ei+j + tjej, if i = 1;

[ei, ej]
3
t =

{
(j − i)ei+j if i, j ̸= 2

(j − i)ei+j + tjej, if i = 2.

These deformations have infinitesimal deformations of weight −1,−1 and −2.
Denote the three Lie algebra families by L

(1)
1 , L

(2)
1 and L

(3)
1 .

Theorem 4 [3] The Lie algebra families L
(1)
1 , L

(2)
1 and L

(3)
1 are nontrivial and

pairwise non-isomorphic.

Later we analized the case L2 with Post [7] and computed all deformations.

Based on my versal deformation construction and on my example L1, Fuchs
and I worked out a detailed straightforward form of the construction of versal
deformation, convenient for explicit computations in [4].

The starting point in the construction is to explicitly give the universal
infinitesimal deformation, which we then extend step by step, with the help
of Massey operations. In the one-dimensional base extensions we use Harrison
cohomology of commutative algebras. In [4] we also provide a scheme for
computing the base of a miniversal deformation of a Lie algebra convenient for
practical use.

c) Moduli space of Lie algebras
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In finite dimension, cohomology and versal deformations make it possible
to get a geometric description of the moduli space of a certain type of algebraic
objects in a given dimension. This feature is completely new and underlines
the importance of those invariants.

Let me give an example. Consider the variety of 4-dimensional Lie alge-
bras on C4. It turnes out that the moduli space of this variety is essentially an
orbifold given by the natural action of the symmetric group Σ3 on the complex
projective space P2(C). In addition, there are two exceptional complex projec-
tive lines, one of which has an action of the symmetric group Σ2. Finally, there
are 6 exceptional points. The moduli space is glued together by the miniversal
deformations, which determine the elements that one may deform to locally,
so deformation theory determines the geometry of the space. The exceptional
points play a role in refining the picture of how this space is glued together.
By orbifold, we mean essentially a topological space factored out by the action
of a group. In the case of Pn, there is a natural action of Σn+1 induced by the
natural action of Σn+1 on Cn+1. An orbifold point is a point which is fixed by
some element in the group. In the case of Σn+1 acting on Pn, points which have
two or more coordinates with the same value are orbifold points, but there are
some other ones, such as the point (1 : −1) = (−1 : 1).

We get similar, but of course, simpler picture for 3-dimensional complex
Lie algebras [5]

In the classical theory of deformations, a deformation is called a jump de-
formation if there is a 1-parameter family of deformations of a Lie algebra
structure such that every nonzero value of the parameter determines the same
deformed Lie algebra, which is not the original one. There are also deforma-
tions which move along a family, meaning that the Lie algebra structure is
different for each value of the parameter. There can be multiple parameter
families as well.

In the picture we assembled, both of these phenomena arise. Some of the
structures belong to families and their deformations simply move along the
family to which they belong. If there is a jump deformation from an element
to a member of a family, then there will always be deformations from that
element along the family as well, although they will typically not be jump
deformations. In addition, there are sometimes jump deformations either to
or from the exceptional points, so these exceptional points play an interesting
role in the picture of the moduli space.

In classical Lie algebra theory, the cohomology of a Lie algebra is studied
by considering a differential on the dual space of the exterior algebra of the
underlying vector space, considered as a cochain complex. If V is the underly-
ing vector space on which the Lie algebra is defined, then its exterior algebra∧
V has a natural Z2-graded coalgebra structure as well. In this language,

a Lie algebra is simply a quadratic odd codifferential on the exterior coalge-
bra of a vector space [5]. An odd codifferential is simply an odd coderivation
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whose square is zero. The space L of coderivations has a natural Z-grading
L =

⊕
Ln, where Ln is the subspace of coderbluez-utilsivations determined

by linear maps ϕ :
∧n V → V . A Lie algebra is a codifferential in L2, in other

words, a quadratic codifferential.
The space of coderivations has a natural structure of a Z2-graded Lie alge-

bra. The condition that a coderivation d is a codifferential can be expressed
in the form [d, d] = 0. The coboundary operator D : L→ L is given simply by
the rule D(φ) = [d, φ] for φ ∈ L; the fact that D2 = 0 is a direct consequence
of the fact that d is an odd codifferential. Moreover, D(Ln) ⊆ Ln+1, which
means that the cohomology H(d) = kerD/ ImD has a natural decomposition
as a Z-graded space: H(d) =

∏
Hn(d), where

Hn(d) = ker(D : Ln → Ln+1)/ Im(D : Ln−1 → Ln).

The Lie algebra structures are codifferentials in L2. In order to represent
a codifferential d as a matrix, we choose the following order for the increasing
pairs I = (i1, i2) of indices:

{(1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4)},

and denote the ith element of this ordered set by S(i). Using this order and
the Einstein summation convention, we can express

d = aijφ
S(j)
i .

We summarize our results and give the Lie bracket operations in standard
terminology in the Table below.

Type Brackets
d1(λ : µ) [e2, e3] = e3, [e1, e4] = (λ+ µ)e1,

[e2, e4] = λe2, [e3, e4] = e2 + µe3
d3(λ : µ : ν) [e1, e4] = λe1, [e2, e4] = e1 + µe2, [e3, e4] = e2 + νe3
d3(λ : µ) [e1, e4] = λe1, [e2, e4] = λe2, [e3, e4] = e2 + µe3
d1 [e2, e4] = e1
d♯1 [e2, e3] = e1, [e1, e4] = 2e1, [e2, e4] = e2, [e3, e4] = e3
d∗2 [e1, e2] = e1, [e3, e4] = e2
d♯2 [e1, e2] = e1, [e3, e4] = e3
d3 [e1, e2] = e3, [e1, e3] = e2, [e2, e3] = e1
d∗3 [e1, e4] = e1, [e2, e4] = e2, [e3, e4] = e3

Table 1: Table of Lie bracket operations

In Table 2, we give a classification of the Lie algebras according to their
cohomology. Note that for the most part, elements from the same family
have the same cohomology. In fact, the decomposition of the codifferentials
into families was strongly influenced by the desire to associate elements with
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the same pattern of cohomology in the same family. This is why our family
d3(λ : µ : ν) was not chosen to be the diagonal matrices. Similar considerations
influenced our selection of the family d3(λ : µ).

In Figure 1 below, we give a pictorial representation of the moduli space.
The big family d3(λ : µ : ν) is represented as a plane, although in reality it is
P2/Σ3. The families d1(λ : µ), d3(λ : µ) and the three subfamilies d3(λ : µ : 0),
d3(λ : λ : µ) and d3(λ : µ : λ + µ) are represented by circles, mainly to reflect
that the three subfamilies of the big family

Type H1 H2 H3 H4

d3 1 0 1 1

d♯2 0 0 0 0
d1(1 : −1) 2 2 2 1
d1(1 : 0) 1 2 1 0
d1(λ : µ) 1 1 0 0

d♯1 3 3 0 0
d3(1 : −1 : 0) 3 5 5 2
d3(λ : µ : λ+ µ) 2 3 1 0
d3(λ : µ : 0) 3 3 1 0
d3(λ : µ : −λ− µ) 2 2 1 1
d3(λ : µ : ν) 2 2 0 0
d3(1 : 0) 5 7 3 0
d3(0 : 1) 6 6 2 0
d3(1 : 2) 4 5 1 0
d3(1 : −2) 4 4 1 1
d3(λ : µ) 4 4 0 0
d1 8 13 10 3
d∗2 4 6 5 2
d∗3 8 8 0 0

Table 2: Table of the cohomology

Example 1.
In Figure 1 below, we give a pictorial representation of the moduli space.

The big family d3(λ : µ : ν) is represented as a plane, although in reality it is
P2/Σ3. The families d1(λ : µ), d3(λ : µ) and the three subfamilies d3(λ : µ : 0),
d3(λ : λ : µ) and d3(λ : µ : λ + µ) are represented by circles, mainly to reflect
that the three subfamilies of the big family intersect in more than one point,
because they each represent not a single P1, but several copies of P1 which are
identified under the action of the symmetric group.

In the picture, jump deformations from special points are represented by
curly arrows. The jump deformations from the small family d3(λ : µ) to
d3(λ : λ : µ) and the jump deformations from d3(λ : µ : λ+ µ) to d1(λ : µ) are
represented by cylinders. The jump deformations from the family d3(λ : µ : 0)
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Figure 1: The moduli space of 4 dimensional Lie algebras

to d♯2 and those from d1 to the small family are represented by cones. Finally,
the jump deformations from d∗2 to the big family are represented by an inverted
pyramid shape. All jump deformations are either in an upward or a horizontal
direction.

The picture tries to capture the order of precedence of the deformations.
For example, in the picture, you can trace a path of jump deformations from
d1 to d3(1 : 0) to d3(1 : 1 : 0) to d1(1 : 0) to d♯2.

The computation of the equivalence classes of non-isomorphic Lie algebra
structures in a vector space V determines the elements of the moduli space
of Lie algebra structures on V , but is only the first step in the classification
of these structures. When classifying the algebras, there are different ways of
dividing up the structures according to families; therefore, it is desirable to
have a rationale for the division. In this paper, we have shown that there is a
natural way to divide up the moduli space into families, using cohomology as
a guide to the division, and versal deformations as a tool to refine the analysis.

The four dimensional Lie algebras can be decomposed into families, each of
which is naturally an orbifold. If one takes into account the information about
jump deformations, the division we have given is uniquely determined. The
elements of the family which contain a Lie algebra structure d are precisely
those Lie algebras which can be obtained as smooth deformations of d, but
which are not smooth deformations of any Lie algebra structure d′ which is a
jump deformation of d. This rule allows us to distinguish between the algebra
d∗3 and d3(1 : 1), for example. Even though d∗3 has smooth deformations to
the family d3(λ : µ), it also has a jump deformation to d3(1 : 1), which has
smooth deformations to the same family. Thus d3(1 : 1), which has no jump
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deformations to any element which has smooth deformations to the family, is
the element which belongs to the family.

According to this system, there is one two-parameter family, two one-
parameter families, and six singleton elements, giving rise to a two-dimensional
orbifold, two one-dimensional orbifolds, and six one-dimensional orbifolds. The
jump deformations provide maps between the families which either are smooth
maps of orbifolds (or suborbifolds as in the case of the map d3(λ : µ : λ+µ)→
d1(λ : µ)), or, in the case of some of the singletons, identify the element with
a whole family.

The cohomology of a Lie algebra determines the tangent space to the Lie
algebra, but the tangent space does not contain enough information to give a
good local description of the moduli space. The relations on the base of the
versal deformation determine the manner in which the moduli space contacts
the tangent space. It is clear that the cohomology is not sufficient to get an
accurate picture of the moduli space. Versal deformations provide important
detail that characterizes the moduli space completely.

Remark 1 In the case of real Lie algebras instead of projective spaces, one
gets spheres [6].
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