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Abstract. In this work the author studies some of the principal questions connected
with the equation of the form

∆nU + a1∆
n−1U + ...+ anU = 0, (A)

where a1, ..., an are constants, ∆ is Laplace’s operator in the Euclidean p-space
(p ≥ 2). The regular solution of this equation is called an n-metaharmonic function.
In particular, the regular solution of the equation

∆U + λ2U = 0 (λ2 = const) (M)

is called a metaharmonic function.
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Introduction of the Editor

Nowadays, it is well known that the problem of scattering by a bounded ob-
stacle (or obstacles) in free space is well posed provided the scattering surface
satisfies certain smoothness conditions. That is, there exists a unique solution
that is stable with respect to changes in boundary data. Mathematically the
problem is to find a solution to the Helmholtz equation

(∇2 + k2)u(x) = 0 for x ∈ Rn \Di, (1)

where x = (x1, x2, · · · , xn) denotes a position vector in Rn, n is the dimension
of the space, Di denotes a bounded, simply connected domain (or a finite
number of such domains) with boundary S and Di = Di ∩ S denotes the
closure of Di. The surface S is assumed to be smooth enough to permit the
use of the Gauss-Green theorems.

When k is real, the scattered field u(x) is required to satisfy a boundary
condition on S and in order to establish uniqueness additional restrictions are
needed which have been formulated first time by A.Sommerfeld in 1912 [Som],∣∣∣r n−1

2 u(x)
∣∣∣ = O(1) as r = |x| → ∞, (2)

∂u(x)

∂r
− i k u(x) = o

(
r−

n−1
2

)
as r = |x| → ∞. (3)

The first condition is the so called finiteness or boundedness condition, while
the second one is the well known Sommerfeld radiation condition.

The literature on the Helmholtz equation and radiation conditions is vast
(see e.g., [CK], [Nat], [KA] and the references therein).

We would like to treat here only some historical notes concerning the two
very important and fundamental papers by F.Rellich [Rel] and I.Vekua [Vek]
which appeared simultaneously in 1943.

In both papers it is shown that the Sommerfeld radiation condition (3)
implies the boundedness condition (2) and, what is very important and fun-
damental in the theory of Helmholtz equation, it is proved first time that any
solution of homogeneous equation (1) satisfying the condition

lim
R→∞

∫
Σ(R)

|u(x)|2dΣ(R) = 0, (4)

where Σ(R) is the surface of a ball of radius R, identically vanishes in Rn \Di.
This lemma plays a crucial role in both the direct and inverse problems.

The lemma had been known in the western literature as Rellich’s lemma since
many authors were unacquainted with the paper by I.Vekua which have been
published in Russian with an extended summary. Only recently appeared
the term Rellich-Vekua lemma (and sometimes even Vekua-Rellich lemma, see
[KA]).
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Beside the uniqueness theorems for the basic exterior Dirichlet and Neu-
mann boundary value problems (BVP) which are proved with the help of the
fundamental lemma, in the above mentioned paper, I.Vekua studied the exis-
tence of solutions by reduction of the BVPs to Fredholm type integral equa-
tions. Unfortunately, these equations have countable spectrum with respect
to the oscillation parameters. Therefore, the boundary integral equations ob-
tained are not equivalent to the original BVPs for all values of the oscillation
parameter. Such types of situations always appear when the direct method is
employed, i.e. when the solutions are sought in the form of either a single-
or a double-layer potential. To investigate the solvability of the above in-
tegral equations one needs to find all eigenvalues and eigenfunctions of the
corresponding homogeneous integral equations and their adjoint ones, which
is inefficient from the practical point of view. In 1965 this disadvantage has
been overcome by several authors simultaneously (see [BW], [Leis], [Pan]) and
the BVPs have been reduced to equivalent uniquely solvable integral equa-
tions with simple kernel functions explicitly written in terms of fundamental
solution of the Helmholtz equation.
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Introduction

The present paper deals with a number of problems connected with the equa-
tion

∆nU + a1∆
n−1U + · · ·+ anU = 0 (A)

where a1, · · · , an are in general complex constants, ∆ is the Laplace operator
in Euclidean space of p dimensions Ep, i.e. in Cartesian coordinates,

∆ ≡ ∂2

∂x2
1

+
∂2

∂2
2

+ · · ·+ ∂2

∂x2
p

, p ≥ 2,

∆m ≡ ∆(∆m−1), ∆0 ≡ 1.

Let T be a domain in Ep. The function U(X) of a point X of the domain T ,
taking, in general, complex values, will be called a n-metaharmonic function or
regular solution of equation (A), if it is single-valued and continuous together
with its partial derivatives up to and including the 2n-th order and satisfies
equation (A) in the domain T . The coefficients a1, · · · , an of (A) will be called
the parameters of the n-metaharmonic function.

When ak = 0 (k = 1, · · · , n) the n-metaharmonic function will be said to
be n-harmonic. In the case n = 1 we describe the n-metaharmonic function
as simply metaharmonic, and the n-harmonic function as harmonic.

The paper contains 6 sections, and is divided into two parts. The first part
(§§1 − 4) is devoted to the study of basic properties of the solutions of the
metaharmonic equation

∆U + λ2U = 0 (λ = const.), (M)

and the second part (§§5− 6) is devoted to the problems concerning the equa-
tion (A) with n > 1.

Some elementary solutions of equation (M) and their properties are dis-
cussed in § 1.

In §2, Green’s formulae are derived, giving the integral representations of
metaharmonic functions both in finite and infinite domains. In this connection
the so-called ”Sommerfeld conditions” are stated in a generalized form.

In §3, the expansions of metaharmonic functions into series in Hankel and
Hyperspherical functions are given. To make things easier for the reader, the
section starts with a detailed treatment of the basic properties of hyperspher-
ical functions. The section ends with proofs of a number of results on the

In §4, the Dirichlet and Neumann problems are solved for equation (M)
in the case of an infinite domain. The existence and uniqueness of solutions
of these problems are proved for any boundary data, provided the so-called
Sommerfeld conditions are satisfied at infinity.
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In §5, the general representation of all solutions of equation (A) is obtained
in terms of metaharmonic functions.

In §6, the results in §§4, 5 are used to solve the so-called Riquier problem
for equation (A) in the cases of both a finite and an infinite domain.

1 Some Fundamental Properties of Metahar-

monic Functions

This part of our paper will be devoted to a study of some fundamental prop-
erties of solutions of the equation

∆U + λ2U = 0, (M)

where λ is in general a complex-valued constant. In accordance with our
introductory remarks, every regular solution of this equation will be called a
metaharmonic function with the parameter λ.

§ 1. Elementary solutions of equation (M)

1. In our paper very important role will be played in what follows by the
so-called elementary solutions of equation (M). We will therefore discuss some
of them in this section.

We introduce the polar coordinates

x1 = r sin θp−1 sin θp−2 · · · sin θ2 cos θ1

x2 = r sin θp−1 sin θp−2 · · · sin θ2 sin θ1

x3 = r sin θp−1 sin θp−2 · · · cos θ2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

xp−1 = r sin θp−1 cos θp−2

xp = r cos θp−1

(1)

where
r ≥ 0, 0 ≤ θ1 < 2π, 0 ≤ θk ≤ π (k = 2, 3, · · · , p− 1).

For brevity, we will denote the point with polar coordinates r, θ1, · · · , θp−1

by (r,Θ), and the function f(r, θp−1, · · · , θ1) by f(r,Θ). In particular, we will
denote a point on the unit hypersphere r = 1, (1,Θ) simply by Θ, and a
function of this point by f(Θ).

As is well known, equation (M) in polar coordinates takes the form

∂2U

∂r2
+

p− 1

r

∂U

∂r
+

1

r2
ΛU + λ2U = 0, (M ′)
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where

ΛU =
1

h

p−1∑
i=1

∂

∂θi

(
h

hi

∂U

∂θi

)
, (2)

and

hp−1 = 1, hp−2 = sin2 θp−1, · · · , h1 = sin2 θp−1 sin
2 θp−2 · · · sin2 θ2,

h = sinp−2 θp−1 sin
p−3 θp−2 · · · sin θ2.

(3)

Notice that the operator Λ is self-adjoint on the unit hypersphere Σ1 with
the centre at the origin, i.e. for any two functions U(Θ) and V (Θ) of the point
Θ on the unit hypersphere, continuous along with their partial derivatives of
the first two orders, we have∫

Σ1

UΛV dΣ1 =

∫
Σ1

V ΛUdΣ1. (4)

It can be proved very simply by integrating by parts and using the formula

dΣ1 = hdθp−1dθp−2 · · · dθ1, (5)

for an element of the area of the unit hypersphere 1.
Let τp and σp be respectively the volume and surface area of the unit

hypersphere in the space Ep. Using (3) and (5), we can easily find that

τp =
1

p
σp, σp =

2π
p
2

Γ(p
2
)
. (6)

2. Let us now find the solutions of equation (M) that depend only on r.
All such solutions obviously satisfy the equation

d2U

dr2
+

p− 1

r

dU

dr
+ λ2U = 0.

Consequently, they will have the general form

αr−qH(1)
q (λr) + βr−qH(2)

q (λr)

(
q =

p− 2

2

)
, (7)

where α, β are arbitrary constants, and H
(1)
q , H

(1)
q are Hankel functions, which

are connected with the Bessel and Neumann functions by the relations,

H(1)
ν (x) = Jν(x) + iNν(x), H(2)

ν (x) = Jν(x)− iNν(x). (8)

It is well known that

Jν(x) =
∞∑

m=0

(−1)m
(x
2
)2m+ν

m!Γ(m+ ν + 1)
, (9)

1It may easily be seen that (4) also holds for any hypersphere concentric with
∑

1.
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and

Nν(x) =
Jν(x) cos νπ − J−ν(x)

sin νπ
, for ν ̸= n, (10)

where n is a non-negative integer. If ν = n, then

πNn(x) = 2Jn(x) log
x

2
−

n−1∑
s=0

(n− s− 1)!

s!

(
2

x

)n−2s

−
∞∑
s=0

(−1)s
(x
2
)2s+n

s!(s+ n)!

[
Γ′(s+ 1)

Γ(s+ 1)
+

Γ′(s+ n+ 1)

Γ(s+ n+ 1)

]
, (11)

where it should be remembered that, when n = 0, the first (finite) sum will be
absent.

It is easily seen from equations (8)-(11) that (7) represents a metaharmonic
function throughout all space, with the exception of the origin when α ̸= β.
In this latter case (7) has a singularity at the origin, of the form

1

rp−2
or log

1

r
,

depending on whether p > 0 or p = 2. Thus functions of type (7) with α ̸= β
belong to the class of so-called elementary solutions (Hadamard’s terminology)
of equation (M). The point where an elementary solution has a singularity of
the above kind is usually called a pole of the solution. Any elementary solution
of (M) that has a single pole at the origin must be of the form (7), except for
possibly an added term which is a regular solution of (M) throughout all space.

We now consider the elementary solution of the form

Ω(X,X0) = KR−qZq(λR), (12)

where R is the distance between the points X and X0,

K =
i

4(α− β)

λq

(2π)q

(
q =

p− 2

2

)
, (13)

Zq(x) = αH(1)
q (x) + βH(2)

q (x); (14)

moreover, it is obviously assumed here that α ̸= β, Zq is the so-called cylindri-
cal function of order q.

By passing to the limit in (12) with p > 2 as λ → 0 we get

Γ(q)

4π1+q

1

R2q
≡ 1

(p− 2)σp

1

Rp−2
.

This is the elementary solution of the Laplace equation when p > 2. For p = 2
we first subtract from Ω(X,X0) the function (2/π)J0(λR) log λ

2
, which is a

regular solution of equation (M). The function obtained will obviously again
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be an elementary solution of this equation. If we now pass to the limit in this
function as λ → 0, we get

1

2π
log

1

R
,

i.e. we have the elementary solution of the Laplace equation in two dimensions.
In what follows, we will denote these elementary solutions of the Laplace

equation by Ω0(X,X0), i.e.

Ω0(X,X0) =


1

(p− 2)σp

1

Rp−2
for p > 2,

1

2π
log

1

R
for p = 2.

(15)

If we now put α = 1, β = 0 in (12), or α = 0, β = 1 we obtain the
elementary solutions

Ω1(X,X0) =
iλq

4(2π)q
R−qH(1)

q (λR), (16)

Ω2(X,X0) =
q

4i(2π)q
R−qH(2)

q (λR), (17)

respectively.
Close to the pole, the elementary solutions Ω, Ω1 and Ω2 behave exactly

like the elementary solution Ω0 of the Laplace equation, but far from the pole
their behaviour is essentially different.

In fact, using the asymptotic formulae

H(1)
ν (z) =

√
2

πz
ei(z−

νπ
2
−π

4
)[1 +O(z−1)], 2 (18)

when −π < arg z < 2π and

H(2)
ν (z) =

√
2

πz
e−i(z− νπ

2
−π

4
)[1 +O(z−1)], (19)

for −2π < arg z < π and

Ω1(X,X0) = K1e
iλRR−q− 1

2 [1 +O(R−1)], (20)

Ω2(X,X0) = K2e
−iλRR−q− 1

2 [1 +O(R−1)], (21)

2Let us recall the definitions of Landau’s symbols O, o,O(xn)(or o(xn)) denotes a mag-
nitude whose ratio to xn remains bounded (or tends to zero) as x→ ∞. In particular, O(1)
respectively, denotes a bounded magnitude, and o(1) denotes an infinitesimal.
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where

K1 =
i

4π

(
λ

2π

)q− 1
2

e−
1
2
iπ(q+ 1

2
),

K2 =
1

4πi

(
λ

2π

)q− 1
2

e
1
2
iπ(q+ 1

2
).

(22)

Comparison of (20) and (21) with (15) shows that, at infinity, the ele-
mentary solutions Ω1 and Ω2 of equation (M) behave quite differently to the
elementary solution of Laplace’s equation.

We will show below that, in general, the behaviour at infinity of the entire
class of metaharmonic functions is quite different to that of harmonic functions.

The following formulae also immediately follow

dΩ1

dR
− iλΩ1 = eiλRO(R−q− 3

2 ), (20a)

dΩ2

dR
+ iλΩ2 = e−iλRO(R−q− 3

2 ). (21a)

§ 2. Green’s formulae. The Sommerfeld conditions

1. The present section is concerned with deriving Green’s formula, giving
the integral representations of the metaharmonic functions. The derivation of
these formulae presents no difficulty at all if the domain of the metaharmonic
functions is finite; if the domain is infinite, however, a difficulty arises because
of the fact that the behaviour of the metaharmonic functions at infinity is
essentially different from that of the harmonic functions. The point is that, as
we know, the condition

U = O(r−p+2) (23)

is sufficient for the representation of harmonic functions by means of Green’s
formula in the case of an infinite domain. However, as will be shown below,
this condition does not in general hold in the case of metaharmonic functions.
Instead, in the case of metaharmonic functions we will deal with conditions of
the type

L1(U) =
dU

dr
− iλU = eiλro(r−q− 1

2 ) for Im(λ) ≥ 0, (I)

L2(U) =
dU

dr
+ iλU = e−iλro(r−q− 1

2 ) for Im(λ) ≤ 0. (II)

When λ is real, these conditions obviously become

L1(U) =
dU

dr
− iλU = o(r−q− 1

2 ), (I0)
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or

L2(U) =
dU

dr
+ iλU = o(r−q− 1

2 ). (II0)

These latter conditions, in the cases p = 2, 3, were first established from
physical consideration by Sommerfeld [6, 7]. In the sequel, therefore, we will
refer to the conditions (I0) or (II0), and also to the more general (I) and (II),
as Sommerfeld conditions.

2. Before turning to the derivation of Green’s formulae, it is reasonable to
introduce some preliminary definitions and concepts concerning the domains
and functions with which we will be predominantly concerned later in this
section, and in particular, in § 4.

Let S be a closed hypersurface in Ep
3. Let there exist a finite num-

ber of connected pieces of S : S1, · · · , Sm, satisfying the following conditions:
1) every point of S is an interior point of at least one of the Sj(j = 1, · · · ,m), 2)
every Sj(j = 1, · · · ,m) is mapped one-to-one and continuously into a definite
domain of space Ep−1 by equations of the type

xk = xk(u1, u2, · · · , up−1) (k = 1, 2, · · · , p),

where the functions

fk and
∂fk
∂ui

(i = 1, · · · , p− 1; k = 1, · · · , p)

are continuous, 3) the functional determinants

D(f1, · · · , fi−1, fi+1, · · · , fp)
D(u1, u2, · · · , up−1)

(i = 1, · · · , p)

do not vanish simultaneously.
Following Lichtenstein [23], if a hypersurface satisfies the above conditions,

we say that it belongs to class A. A hypersurface for which the derivatives
∂fk/∂ui are also continuous in Hölder’s sense, 4 will be said to belong to class
Ah.

A hypersurface of class A for which the second derivatives ∂2fk/∂ui∂uj are
continuous is said to belong to class B. If, in addition, these derivatives are
continuous in Hölder’s sense, the hypersurface is said to belong to class Bh.

Let T be a domain in Ep. If its boundary consists of a finite number of
hypersurfaces of class A having no common points, we say that the domain T
is of class A. Domains of classes Ah,B,Bh are similarly defined.

3When p = 2, 3, S will be respectively a plane closed curve and an ordinary closed
surface.

4A function f(x) of a point of set M is said to be continuous in Hölder’s sense on this
set, given any two points X1, X2 of M, |f(x1)−f(x2)| < Mrλ12, where M and λ are positive
numbers independent of the choice of the points X1, X2, λ ≤ 1 and r12 is the Euclidean
distance between X1andX2.
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In the sequel, we will always denote the boundary of a domain by S. We
will denote by CT the complement of T + S with respect to the set Ep

5.
Obviously, CT is an open set, which is in general not connected, but con-

sists of a finite number of simply-connected domains. The boundary of CT is
obviously S.

Let T be a domain of one of the above-mentioned classes, and let S be its
boundary. We will later denote by X, Y, · · · points lying outside S, and by
x, y, · · · points of the boundary S. Let F (X) be a given function of the point
X, defined throughout all space and continuous outside S.

If F (X) has a limit as the point X approaches a boundary point x along
any path lying in T , we will denote this limit by the symbol F+(x), or simply
by F+. If F+(x) = F (x) everywhere on S and the convergence to the limit is
uniform, it may easily be shown that F (X) is continuous in T + S.

Now let the point X approach the boundary point x along any path lying
in CT . The limit of the function F (X), if it exists, will now be denoted by
F−(x). If F−(x) = F (x) everywhere on S and the convergence to the limit is
uniform, it is easily shown that F (X) is continuous in CT + S.

Assume now that F (X) has continuous partial derivatives of the first order
outside S. Let n denote the normal to S, directed inwards into the domain T ;
when necessary, we will denote the normal to S at the point x by nx. We now
consider the derivative

d

dnx

F (X).

If this derivative has a limit when X approaches x along nx, we will denote it
by one of the symbols

dF+(x)

dnx

,
d

dn
F+(x),

dF+

dn
.

We define
dF−

dnx

similarly, when the point X approaches x along nx from

CT .
We now introduce some terminology for the classes of functions with which

we will be mainly concerned in what follows.
If the function F (X) is continuous on some point set M, we say that F (X)

belongs to class C on this set and write this symbolically as: F ∈ C on M.
If the function is continuous in Hölder’s sense, we say that it belongs to class
Ch. Naturally, we use the similar notation: F ∈ Ch on M, in this case.

Now let DjU denote the partial derivatives of the function U of order
j (j = 0, 1, 2, · · · ). We say that U belongs to class G in the domain T if the
following conditions hold: 1) U is continuous in T + S, while D1U and D2U
are continuous in T , 2) dU(X)/dn is bounded in T , 3) dU+/dn exists almost
everywhere on S and is a bounded Lebesgue integrable function.

5Notice that we denote by Ep the set of all points of space whose Cartesian coordinates
are finite numbers.
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In particular, we say that U belongs to class G0(or Gh) if it belongs to
class G and in addition dU+/dn belongs to class C(or Ch) on S.

Functions of class G will play an extremely important role for us in what
follows, since the following Green’s formula holds for them:∫

T

(U∆V − V∆U)dT = −
∫
S

(
U
dV

dn
− V

dU

dn

)
dS, (24)

where T is a finite domain of class B and U, V are arbitrary functions of class
G in T (see [23], p. 211, in this connection where detailed references can be
found).

3. We now turn to deriving Green’s formulae for metaharmonic functions.
We first consider the case of a finite domain.

Let T be a finite domain of class B 6. We assume that U(X) is a metahar-
monic function in the domain T of class G. In this case, we can easily show in
the usual way from (24) that

U(X) =

∫
S

(
U+dΩ(X, y)

dny

− Ω(X, y)
dU+

dny

)
dSy (X ∈ T ), (25)

where Ω is the elementary solution of equation (M) defined by (12). Obvi-
ously, the constants α, β in this formula can take completely arbitrary values,
provided only that α ̸= β. In particular we can take Ω1 or Ω2 as Ω. Notice
that the right-hand side of (25) vanishes identically when the point X belongs
to CT , i.e. when X lies outside S + T .

We will call (25) Green’s formula for metaharmonic functions in the case
of a finite domain.

It follows at once from (25) that a metaharmonic function is analytic in
the domain where it is metaharmonic.

4. Now let us turn to the case of an infinite domain. Here, we have the
following theorem.

Theorem 1. Let T be an infinite domain of class B, and let U be a
metaharmonic function of class G in this domain, satisfying at infinity one of
the following conditions

L1(U) ≡ dU

dr
− iλU = eiλro(r−q− 1

2 ) for Im(λ) ≥ 0, (I)

or

L2(U) ≡ dU

dr
+ iλU = e−iλro(r−q− 1

2 ) for Im(λ) ≤ 0, (II)

6We restrict our discussion to domains of class B because such domains will be our
exclusive concern in § 4. Obviously, many of the results of the present section still remain
in force for domains of a wider class, say of class A.
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Then

U(X) =

∫
S

(
U+dΩ1(X, y)

dny

− Ω1(X, y)
dU+

dny

)
dSy, X ∈ T, (26)

or

U(X) =

∫
S

(
U+dΩ2(X, y)

dny

− Ω2(X, y)
dU+

dny

)
dSy, X ∈ T, (27)

depending on whether condition (I) or (II) holds.
Proof. We will assume for definiteness that condition (I) holds. The

theorem will obviously be proved if we can show that∫
ΣR

(
U
dΩ1(R)

dR
− Ω1(R)

dU

dR

)
dΣ = 0, (28)

where ΣR is the hypersphere with centre at the point X and sufficiently large
radius, and

Ω1(R) =
i

4

λq

(2π)q
R−qH(1)

q (λR).

Condition (28) is obviously equivalent to the condition

Ω′
1(R)

∫
Σ1

U(R,Θ)dΣ− Ω1(R)
d

dR

∫
Σ1

U(R,Θ)dΣ = 0, (29)

where Σ1 is the unit hypersphere with centre at the point X.
We will see below that∫

Σ1

U(R,Θ)dΣ = A1R
−qH(1)

q (λR) + A2R
−qH(2)

q (λR), (30)

where A1, A2 are constants, independent of R. We now show that A2 = 0. In
fact, if we apply the operator L1 to both sides of (30) and take into account
condition (I) and formulae (18) and (19), we have

A2e
−2iλR[1 +O(R−1)] = o(1).

Hence, since Im(λ) ≥ 0 it follows at once that A2 = 0. Thus (30) becomes∫
Σ1

U(R,Θ)dΣ = A1R
−qH(1)

q (λR). (30a)

On substituting this in the left-hand side of (29), we will see that this latter
equation holds. The second part of the theorem may be proved in exactly the
same way.
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5. We will call a function U as being of category I (or II) if it is meta-
harmonic in a domain T , containing the exterior of some hypersphere, and
representable by formula (26) (or (27)).

As we showed above, every function, metaharmonic outside some hyper-
sphere and satisfying condition (I) or (II), belongs respectively to category I
or II; but the converse does not in general follow. However, the following facts
are obvious: if Im(λ) ≥ 0 and the function U is of category I, then U satisfies
condition (I) at infinity. This is an immediate consequence of (26) taken in
conjunction with (20a). It may similarly be shown that, if Im(λ) ≤ 0, and U
is of category II, then U satisfies condition (II) at infinity.

We obtain respectively from (26) and (27), on the basis of (20) and (21):

U = eiλrO(r−q− 1
2 ), (31)

U = e−iλrO(r−q− 1
2 ). (32)

These formulae give the asymptotic behaviour of metaharmonic functions
of categories I and II, respectively. Let

τ = Re(λ), σ = Im(λ), i.e. λ = τ + iσ.

It will be assumed that σ > 0. Formulae (31) and (32) show that, now,

functions of category I are decreasing at infinity at the same rate as e−σrr−q− 1
2 ,

and of category II are increasing at the same rate as eσrr−q− 1
2 .

Now suppose that λ is a real number (σ = 0). Conditions (31) and (32)
now become

U = O(r−q− 1
2 ). (33)

This condition was designated by Sommerfeld the ”finiteness condition”. It
figures in Sommerfeld’s work (see, e.g., [6] as an independent condition, along
with condition (I0) or (II0), in the derivation of Green’s formula in the case of
an infinite domain. We have obtained this condition as a corollary of Green’s
formula, without making any use of it in deriving the formula 7.

§ 3. Hyperspherical functions. Expansion of metahar-
monic functions

In this section we will obtain expansions of the metaharmonic functions into
Bessel (Hankel) and hyperspherical functions. To facilitate reading of the
present article we will start with a fairly detailed treatment of some funda-
mental properties of hyperspherical functions. More detailed information can
be found in [5].

7A similar result was also obtained later (1948) by W. Magnus [1949].
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1. Let Um(x1, x2, · · · , xp) be a homogeneous harmonic polynomial of degree
m in the variables x1, x2, · · · , xp. Passing to polar coordinates (1), we get

Um(x1, x2, · · · , xp) = rmYm(θ1, θ2, · · · , θp−1). (34)

The functions Ym(θ1, θ2, · · · , θp−1), or more briefly, Ym(Θ|p) are termed hyper-
spherical functions of order m. By substituting (34) in equation (M ′), we see
that the hyperspherical functions Ym(Θ|p) satisfy the differential equation

ΛY +m(m+ p− 2)Y = 0 (m = 0, 1, 2, · · · ). (35)

Hence using (4), we get∫
Σ

Ym(Θ|p)Yn(Θ|p)dΣ = 0 for (m ̸= n), (36)

where Σ is a hypersphere with centre at the origin.
Let

Y (1)
m (Θ|p), · · · , Y (km)

m (Θ|p) (m = 0, 1, 2, · · · ). (37)

be a complete system of linearly independent hyperspherical functions of order
m. It is well known (see, e.g., [24], p. 462) that the number of these functions
is

km =
(m+ p− 2)!

(p− 2)!m!

(
1 +

m

m+ p− 2

)
(m = 0, 1, 2, · · · ). (38)

In the case p = 2 this system is the same as the ordinary system of trigono-
metric functions:

1, cos θ, sin θ, . . . , cosmθ, sinmθ, . . . , (39)

while with p = 3 we have the system of Laplace spherical functions:

Pm(cosϑ), Pm,k(cosϑ) cos kφ, Pm,k(cosϑ) sin kφ, (40)

(m = 0, 1, 2, . . . ; k = 1, 2, . . . ,m).

Let
r, θp−1, · · · , θ1 and ρ, ϑp−1, · · · , ϑ1

be the coordinates of the points X,X0 respectively. We denote by Γ the angle

between the vectors
−−→
OX and

−−→
OX0, where O is the origin. We will assume that

p > 2. In this case, we have with r < ρ:

R−p+2 = (r2 − 2rρ cos γ + ρ2)−q =
∞∑
n=0

rn

ρn+2q
Pn(cos γ|P ), (41)

where

Pn(cos γ|p) =
≤ 1

2
n∑

k=0

(−1)k
Γ(q + n− k)

(k!(n− 2k)!Γ(q)
(2 cos γ)n−2k, (42)
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(n = 0, 1, 2, · · · ; q =
(p− 2)

2
).

The polynomials Pn(x|p) are a generalization of the ordinary Legendre
polynomials Pn(x), with which they coincide for p = 3 (see [21], p. 451; see
also [20], p. 127).

It is easy to show that rnPn(cos γ|p) is a homogeneous harmonic polynomial
of degree n in the variables x1, x2, . . . , xp. Hence, Pn(cos γ|p) is a hyperspher-
ical function of order n in the arguments θ1, θ2, . . . , θp−1.

Let U(r, θ1, . . . , θp−1) or more briefly, let U(r,Θ) be a harmonic function
inside the unit hypersphere

∑
1, continuous right up to

∑
1. Then, as is will

known, the value of this function at a point (r,Θ) inside
∑

1, is given by the
Poisson integral

U(r,Θ) =
Γ(q)

4π1+q

∫
Σ1

U(r, ϑ)

(
d

dρ
G(X,X0)

) ∣∣∣ dΣ
ρ=1

(43)

where G is the Green function for the unit hypersphere, which has the form

G(X,X0) = (1− 2rρ cos γ + r2ρ2)−q − (r2 − 2rρ cos γ + ρ2)−q. (44)

On substituting this in (43) and expanding the integrand into a Maclaurin
series in powers of r, we get

U(r,Θ) =
∑
n=0

(n+ q)Γ(q)

2πq+1
rn

∫
Σ1

UPn(cos γ)|p)dΣ. (45)

If we now replace U by harmonic functions

rmYm(Θ|p) (m = 0, 1, 2, . . .),

we obtain the formulae:∫
Σ1

Pn(cos γ|p)Ym(ϑ|p)dΣϑ = 0, for n ̸= m, (46)

Yn(Θ|p) = Γ(q)(q + n)

2πq+1

∫
Σ1

Pn(cos γ|p)Yn(ϑ|p)dΣϑ (n = 0, 1, 2, . . . , ). (47)

It may thus be seen that the hyperspherical functions are solutions of the inte-
gral equation (47). We will show below that the complete system of solutions
of this equation is the same as the complete system of linearly independent
hyperspherical functions of order n.

We now prove that the system of hyperspherical functions

{Y (k)
m (Θ|p)}
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is complete, i.e. there exists no continuous function of a point of the hyper-
sphere which is orthogonal to all the functions of system (37) and does not
vanish identically.

Assume now the contrary: suppose Ψ(Θ) is a function, continuous on the
hypersphere of unit radius, which does not vanish identically and satisfies the
conditions

∫
Σ1

Ψ(ϑ)Y (k)
m (ϑ|p)dΣ = 0, (m = 0, 1, 2, . . . ; k = 1, 2, . . . , km). (48)

Let U(r,Θ) be a harmonic function inside the hypersphere Σ1, satisfying
the boundary condition

lim
r→1

U(r,Θ) = Ψ(Θ). (49)

We now have, by (45)

U(r,Θ) =
∞∑
n=0

rnYn(Θ|p), (50)

where

Yn(Θ|p) = (n+ q)Γ(q)

2π1+q

∫
Σ1

Ψ(ϑ)Pn(cos γ|p)dΣ.

We find from (50), using (48) that∫
Σ1

U(r,Θ)Ψ(Θ)dΣ = 0 (51)

for all r, 0 ≤ r < 1. But on passing to the limit as r → 1 in (51) and using
(49), we obtain ∫

Σ1

Ψ2(Θ)dΣ = 0,

i.e.
Ψ(Θ) ≡ 0,

which contradicts our hypothesis. Our assertion is thus proved.
We have carried out the above arguments for the cases p > 2. But it

may easily be seen that the results still hold when p = 2. In this case we
are concerned with the ordinary trigonometric system of functions (39), and
instead of (43) we have the Poisson integral on the plane.

It is now easy to prove that the complete system of solutions of equation
(47) is in fact the same as the system of functions (37). For, if there existed
a solution of (47), linearly independent of functions (37), it could be chosen
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to be orthogonal to the system of functions{Y (k)
m }, which is impossible, as we

have seen.
2. We now take any analytic function

U(r,Θ) ≡ U(r, θ1, · · · , θp−1)

in the domain bounded by two hyperspheres Σa and Σb with common centre
at the origin and radii a, b respectively (a < b).

We prove the following lemma:
Lemma 1. A function U(r,Θ), analytic in the domain a < r < b, can be

expanded into the series

U(r,Θ) =
∞∑
n=0

Yn(r,Θ|p), (52)

where 8

Yn(r,Θ|p) = (q + n)Γ(q)

2π1+q

∫
Σ1

U(r, ϑ)Pn(cos γ|p)dΣ, n = 0,∞, (53)

and Σ1 is the unit hypersphere with centre at the origin.
This series is absolutely and uniformly convergent in any domain of the

type a′ ≤ r ≤ b′, where a′, b′ are arbitrary numbers satisfying the condition
a < a′ < b′ < b. In addition, series (52) can be termwise differentiated any
number of times, both with respect to r and the variables θ1, · · · , θp−1.

Proof. We have, by (35)

Pn(cos γ|p) = − 1

n(n+ p− 2)
ΛPn(cos γ|p) (n = 1, 2, · · · ). (54a)

In view of this, we obtain from (53), using (4)

Yn(r,Θ|p) = − (q + n)Γ(q)

2π1+q(n+ p− 2)

∫
Σ1

ΛU · Pn(cos γ|p)dΣ

(n = 0, 1, 2, . . .).

(54)

Since U is analytic, we can repeat this procedure any number of times. We
thus obtain

Yn(r,Θ|p) = (−1)k
(q + n)Γ(q)

2π1+qnk(n+ p− 2)k

∫
Σ1

ΛkU · Pn(cos γ|p)dΣ

(n = 0, 1, 2, . . .),

(55)

8We have in mind the case p ≥ 3. All our future results will obviously be completely
general, however, and remain in force for the case p = 2, when (52) becomes an ordinary
Fourier series.
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where k is any positive integer. Hence, applying Schwartz’s inequality, we get

|Yn(r,Θ|p)| ≤ (q + n)Γ(q)

2πq+1nk(n+ p− 2)k

[ ∫
Σ1

(ΛkU)2dΣ1

] 1
2
[ ∫
Σ1

(P 2
n(cos γ|p)dΣ1

]1/2
(n = 0, 1, 2, · · · ).

(56)
We know (see e.g. [24], pp. 459-460) that∫
Σ1

P 2
n(cos γ|p)dΣ =

2πq+1

Γ(q)Γ(2q)

Γ(n+ 2p)

n!

1

n+ q
(n = 0, 1, 2, · · · ). (57)

Hence we have from (56)

|Yn(r,Θ|p)| ≤ Qk

√
(n+ q)(n+ p− 3)(n+ p− 4) · · · (n+ 1)

nk(n+ p− 2)k
, (58)

where

Qk =

√
Γ(q)

2πq+1Γ(2q)
max
a′≤r≤b′

[ ∫
Σ1

(ΛkU)2dΣ
] 1

2
. (59)

If we now take k > 1
4
p, it can easily be shown from (58) that series (52) is in

fact absolutely and uniformly convergent in the domain a′ ≤ r ≤ b′. Besides,
since the system of hyperspherical functions is complete, we can easily show
that the sum of series (52) is U(r,Θ), whatever the r, a < r < b.

We now show that series (52) can be differentiated term by term with
respect to r. In fact, on expanding the function dsU/drs(s ≥ 1) into a series
of the form (52), we have

dsU(r,Θ)

drs
=

∞∑
n=0

Ỹn(r,Θ|p), (60)

Ỹn(r,Θ|q) = (q + n)Γ(q)

2π1+q

∫
Σ1

dsU(r,Θ)

drs
Pn(cos γ|p)dΣ (n = 0, 1, 2, · · · ).

Hence we obviously get

Ỹn(r,Θ|p) = ds

drs
Yn(r,Θ|p) (n = 0, 1, 2, · · · ), (60a)

which proves our assertion.
There is no great difficulty in showing that series (52) can be differentiated

term by term any number of times with respect to θ1, . . . , θp−1. Let us show,
for instance, that the operation Λ can be carried out term by term on series
(52).
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On expanding the function ΛU into a series of the form (52), we get

ΛU(r,Θ) =
∞∑
n=0

Y ∗
n (r,Θ|p), (60b)

where, from (53)

Y ∗
n (r,Θ|p) = (q + n)Γ(q)

2πq+1

∫
Σ1

ΛU · Pn(cos γ|p)dΣ.

Hence we have, by (4), (54a), (53) and (35):

Y ∗
n (r,Θ|p) = ΛYn(r,Θ|p) (n = 0, 1, 2, · · · ).

i.e

ΛU(r,Θ) =
∞∑
n=0

ΛYn(r,Θ|p), (60c)

which proves our assertion.
3. We now suppose that U satisfies equation (M), i.e.

∂2U

∂r2
+

p− 1

r

∂U

∂r
+

1

r2
ΛU + λ2U = 0, for a < r < b. (M ′)

If we define ΛU from this and substitute in (54), we can easily show, using (53),
that Yn(r,Θ|p), as a function of r, satisfies the ordinary differential equation

d2Yn

dr2
+

p− 1

r

dYn

dr
+

(
λ2 − n(n+ p− 2)

r2

)
Yn = 0 (n = 0, 1, 2, . . .). (61)

These functions consequently have the form

Yn(r,Θ|p) = r−qH
(1)
q+1(λr)Y

′
n(Θ|p) + r−qH

(2)
q+n(λr)Y

′′
n (Θ|p)

(n = 0, 1, 2, . . .),
(62)

where Y ′
n and Y ′′

n are hyperspherical functions which are independent of r.
If we use the formula

H(1)
ν (x)

d

dx
H(2)

ν (x)−H(2)
ν (x)

d

dx
H(1)

ν (x) =
4

iπx
, (63)

together with (62) and (53), we easily find that

Y ′
n(Θ|p) =

∫
Σ1

M′
n(U)Pn(cos γ|p)dΣ, (64)
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Y ′′
n (Θ|p) =

∫
Σ1

M′′
n(U)Pn(cos γ|p)dΣ, (65)

where

M′
n(U) ≡ (q + n)Γ(q)

2π1+q
rp−1

[
r−qH

(2)
q+n(λr)

dU

dr
− U

d

dr
(r−qH

(2)
q+n(λr))

]
, (66)

M′′
n(U) ≡ (q + n)Γ(q)

2πq+1
rp−1

[
r−qH

(1)
q+n(λr)

dU

dr
− U

d

dr
(r−qH

(1)
q+n(λr))

]
(67)

(n = 0, 1, 2, · · · ).
Notice that, when n = 0, (53) and (62) give us the formula (30) which we

used in the previous section, since in this case P0(cos γ|p) = 1, while Y ′
0 , Y ′′

0

are constants.
On substituting (62) in (52), we obtain

U(r,Θ) =
∞∑
n=0

r−qH
(1)
q+n(λr)Y

′
n(Θ|p) + r−qH

(2)
q+n(λr)Y

′′
n (Θ|p), (68)

where Y ′
n and Y ′

n are hyperspherical functions defined by (64) and (65).
We have thus proved the following:
Theorem 2. If U is a metaharmonic function in the domain a < r < b,

it can be expanded into a series of the form (68), which is uniformly and
absolutely convergent in any domain of the form a < a′ ≤ r ≤ b′ < b. This
series can be differentiated term by term any number of times.

If a = 0 and the function U is regular at the origin, series (68) is easily
seen to become

U(r,Θ) =
∞∑
n=0

r−qJq+n(λr)Yn(Θ|p). (69)

4. We will now consider the form taken by series (68) for b = ∞, if U is
subjected to one of the Sommerfeld conditions (I) or (II) at infinity.

Let b = ∞. We will suppose first that U satisfies condition (I) at infinity,
i.e.

L1(U) ≡ dU

dr
− iλU = eiλro(r−q− 1

2 ), Im(λ) ≥ 0. (I)

From (62) and (53), we have

r−qH
(1)
q+n(λr)Y

′
n(Θ|p) + r−qH

(2)
q+n(λr)Y

′′
n (Θ|p)

=
(q + n)Γ(q)

2πq+1

∫
Σ1

U(r, θ)Pn(cos γ|p)dΣ (n = 0, 1, 2, · · · ). (70)

On applying the operator L1 to both sides of (70) and taking into account
condition (I) and formulae (18), (19), we easily obtain

Y ′
n(Θ|p)e−2iλr[1 +O(r−1)] = o(1) (n = 0, 1, 2, · · · ). (71)
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Hence, since Im(λ) ≥ 0, it must follow that Y ′′
n (Θ|p) = 0 (n = 0, 1, 2, · · · ).

Consequently, in this case series (68) recasts as

U(r,Θ) =
∞∑
n=0

r−qH
(1)
q+n(λr)Yn(Θ|p). (72)

We can show in exactly the same way that series (68) becomes

U(r,Θ) =
∞∑
n=0

r−qH
(2)
q+n(λr)Yn(Θ|p), (73)

if U is a metaharmonic function outside some hypersphere and obeys the con-
dition (II) at infinity.

Theorem 3. Let U(r,Θ) be a metaharmonic function outside some hyper-
sphere Σa with centre at the origin and radius a. We can now expand U(r,Θ)
for all r > a into a series of the form (72) or (73), according to whether
the function obeys condition (I) or (II) at infinity. The series in question are
absolutely and uniformly convergent in any domain of the form a′ ≤ r ≤ b′,
where a′, b′ are arbitrary numbers satisfying a < a′ < b′ < ∞. In addition,
series (72) and (73) can be differentiated term by term any number of times.

5. We now consider the series

∞∑
n=0

r−qH
(1)
q+n(λr)Y

′
n(Θ|p), (74)

∞∑
n=0

r−qH
(2)
q+n(λr)Y

′′
n (Θ|p), (75)

and suppose that they are absolute and uniformly convergent in any domain
of the form a < a′ ≤ r ≤ b′ < ∞. We will assume in addition that they can
be differentiated term by term with respect to r. We denote the sums of the
series by U1 and U2 respectively. We now show that these functions can be
represented by the integrals

U1(X) =

∫
Σa

(
U1

dΩ1(X, y)

dny

− Ω1(X, y)
dU1

dny

)
dΣy, (76)

U2(X) =

∫
Σa

(
U2

dΩ2(X, y)

dny

− Ω2(X, y)
dU2

dny

)
dΣy. (77)

We do this by using the following addition formula for cylindrical functions,
due to Gegenbauer (see, e.g., [1], p.365):

(λR)−qZq(λR) =
∞∑
n=0

(λr)−qJq+n(λr)(λρ)
−qZq+n(λρ)P

∗
m(cos γ|p), (78)
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where

P ∗
n(cos γ|p) = 2q(q + n)Γ(q)Pn(cos γ|p) for p > 3 (n = 0, 1, 2, . . .), (78a)

P ∗
n(cos γ|2) = ϵn cosnγ (ϵ0 = 1, ϵn = 2, n ≥ 1), (78b)

and we obviously assume that r < ρ, and R =
√

r2 − 2ρr cos γ + ρ2.
Series (78) is absolutely and uniformly convergent in the domain 0 ≤ r ≤

r′ < ρ, where r′ is any number less than ρ. In addition, the series can be
differentiated term by term any number of times.

Let up prove (76). The proof of the other formula (77) is exactly similar.
Introduce the notation

gn(x) = x−qJq+n(x), fn(x) = x−qH
(1)
q+n(x) (n = 0, 1, 2, · · · ). (79)

By (78), we now have on the hypersphere Σa

Ω1(X, y) =
i

4

λ2q

(2π)q

∞∑
n=0

gn(λa)fn(λr)P
∗
n(cos γ|p), (80)

d

da
Ω1(X, y) =

i

4

λ2q

(2π)q

∞∑
n=0

λg′n(λa)fn(λr)P
∗
n(cos γ|p), (80a)

where r is the radius vector of the point X, and γ is the angle between the
vectors OX and OY, y being a point on Σa.

By hypothesis, we also have on Σa

U1 =
∞∑
n=0

fn(λa)Y
′
n(Θ|p), dU1

da
=

∞∑
n=0

λf ′
n(λa)Y

′
n(Θ|p). (81)

In view of (46), (47), (78a) and (78b) we also have∫
Σa

P ∗
m(cos γ|p)Yn(Θ|p)dΣ = 0 for n ̸= m (82)

and

Yn(Θ|p) = 1

(2π)1+qap−1

∫
Σa

P ∗
n(cos γ|p)Yn(Θ|p)dΣ (n = 0, 1, 2, · · · ). (82a)

From (80a), (80), (81), (81a), (82) and (82a), we obtain∫
Σa

(
U1

d

da
Ω1(X, y)− Ω1(X, y)

dU1

da

)
dΣy

=
iπ

2
(λa)p−1

∞∑
n=0

[fn(λa)g
′
n(λa)− f ′

n(λa)gn(λa)]fn(λr)Y
′
n(Θ|p). (83)
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But, if we recall (8), we have, by (79) and (63)

f ′
n(λa)gn(λa)− fn(λa)g

′
n(λa) =

2i

π
(λa)−p+1 (n = 0, 1, 2, · · · ).

We thus obtain from (83)∫
Σa

(
U1

dΩ1

da
− Ω1

dΩ1

da

)
dΣ =

∞∑
n=0

fn(λr)Y
′
n(Θ|p).

But the right-hand side of this equation is exactly the expansion (74) of the
function U1, which proves (76).

We have thus proved that the sums U1 and U2 of the series (74) and (75)
are functions of categories I and II respectively.

It is of course easy to prove the converse, that every function of category
I or II can be expanded outside some hypersphere into a series (74) or (75)
respectively.

We can in fact express a function of, say, category I by means of (76). But
our assertion follows at once from this formula, on using (80) and (80a). The
assertion is proved similarly for functions of category II. By (20) and(21), the
following asymptotic formulae for U1 and U2, may be obtained from (76) and
(77) respectively:

U1 = eiλrO(r−q− 1
2 ), (84)

U2 = e−iλrO(r−q− 1
2 ). (85)

6. We will now prove the following
Theorem 4. Let U be a metaharmonic function outside some hypersphere.

If we have at infinity;

U = e−|σ|ro(r−q− 1
2 ) (σ = Im(λ)), (86)

then U vanishes identically everywhere.
Proof. We obtain from (70), by (18), (19) and (86)

[αn +O(r−1)]eiλrY ′
n + [βn +O(r−1)]e−iλrY ′′

n = e−|σ|ro(1) (87)

(n = 0, 1, 2, . . .),

where αn and βn are definite non-zero constants. We will assume first that
σ > 0. We now obtain from (87):

[αn +O(r−1)]Y ′
n + [βn +O(r−1)]e2σr · e−2iτrY ′′

n = o(1) (88)

(n = 0, 1, 2, . . .),

where τ = Re(λ). Hence it follows at once that Y ′
n = 0, Y ′′

n = 0 for all
= 0, 1, 2, . . . . But now, in view of (68), we have U ≡ 0, which was to be
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proved. The proof is exactly similar when σ < 0. When λ is real, condition
(86) becomes

U = o(r−q− 1
2 ). (89)

Hence it follows from the last condition that, with λ real, U ≡ 0.
Theorem 4 was proved even earlier in [4], under the assumption that U is

metaharmonic throughout all space.
We now have the following important result: there is no function U , meta-

harmonic outside some V in Ep, and not identically zero, which can decrease
at infinity faster than the function 9

e−|σ|rr−q− 1
2 . (90)

In particular, with λ real (λ ̸= 0), we find that metaharmonic functions
cannot decrease faster at infinity than

r−q− 1
2 . (91)

The behaviour of the metaharmonic functions at infinity is thus very dif-
ferent from that of the harmonic functions, since the latter are well known to
include functions which can decrease, say, the rate of

r−n, (92)

where n is an arbitrary positive integer.
7. We will now prove that the Sommerfeld conditions (I) and (II) are

equivalent to conditions (31) and (32) with Im(λ) ≶ 0 respectively, i.e. it
follows from

dU

dr
− iλU = eiλro(r−q− 1

2 ), (I)

with Im(λ) > 0 that

U = eiλrO(r−q− 1
2 ), (31)

and conversely, while from the condition

dU

dr
+ iλU = e−iλro(r−q− 1

2 ), (II)

with Im(λ) < 0 it follows that

U = e−iλrO(r−q− 1
2 ), (32)

9It must be mentioned that these properties of the solutions of equation (M) are com-
pletely analogous to the properties of the solutions of the one-dimensional differential equa-
tions u′′ + λ2u = 0, since solutions of the latter have the form

u(x) = Aeσx−iτx +Beσx+iτx.

Obviously, for this case p = 1, i.e. q = − 1
2 .
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and vice versa.
We have already seen (§2, sec. 4) that (31) and (32) are consequences of

conditions (I) and (II) respectively. It therefore remains to show that condi-
tions (31), (32) with Im(λ) > 0 and Im(λ) < 0 imply respectively conditions
(I) and (II).

Let U be metaharmonic outside some hypersphere. We will consider first
the case Im(λ) > 0 and assume that condition (31) holds at infinity. We
expand U into the series

U(r,Θ) =
∞∑
n=0

r−qH
(1)
q+n(λr)Y

′
n(Θ|p) + r−qH

(2)
q+n(λr)Y

′′
n (Θ|p), (68)

where

r−qH
(1)
q+n(λr)Y

′
n(Θ|p) + r−qH

(2)
q+n(λr)Y

′′
n (Θ|p)

=
(q + n)Γ(q)

2πq+1

∫
Σ1

U(r, ϑ)Pn(cos γ|p)dΣ, (n = 0, 1, 2, . . .).
(70)

On multiplying both sides of (70) by e−iλrrq+
1
2 , we obtain, by (31), (18) and

(19)

Y ′
n(Θ|p)O(1) + e−2iλrY ′′

n (Θ|p) · [1 +O(r−1)] = O(1) (n = 0, 1, 2, . . .).

But this latter formula can obviously only hold when Y ′′
n (Θ|p) = 0 (n =

0, 1, · · · ), since Im(λ) > 0. Hence we obtain from (68)

U(r,Θ) =
∞∑
n=0

r−qH
(1)
q+n(λr)Y

′
n(Θ|p). (93)

But we have already seen (sec. 5) that metaharmonic functions of this type
can be represented by the integral (76). We thus obtain at once from (76), in
view of (20a)

dU

dr
− iλU = eiλrO(r−q− 3

2 ),

and this shows that U satisfies condition (I), since Im(λ) > 0. The proof of
the equivalence of conditions (32) and (II) with Im(λ) < 0 is exactly similar.

8. It is now not difficult to see the physical significance of conditions (I)
and (II), and also of functions of categories I and II.

Let U be metaharmonic in the domain T containing the exterior of some
hypersphere. Let λ = ka, a > 0. Let us consider the “complex monochromatic
wave”

Ue−ikt (94)

where t is time. Let us assume that U = U1 + U2, where U1 and U2 are
metaharmonic functions of categories I and II respectively. We now have

Ue−ikt = U1e
−ikt + U2e

−ikt. (94a)
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Consequently, by (84) and (85), the wave (94), near infinity, is the result of
superposition of waves of the form

e−ik(t+ar)O(r−q− 1
2 ), e−ik(t−ar)O(r−q− 1

2 )

propagating with velocity 1/a, the first being waves departing from infinity,
and the second being waves travelling to infinity. In physical problems (e.g. in
the theory of electromagnetic waves diffraction) cases often occur when waves
of one of these types are absent. For instance, if (94a) represents a wave
travelling towards infinity, this means that U2 ≡ 0, i.e. in this case U must be
a function of category I.

Suppose now that U satisfies the Sommerfeld condition (I). As we have
just seen, U will in this case be a function of category I, so that (94) now
represents a wave travelling towards infinity with the velocity 1/a, moreover,
if Im(k) > 0, the wave is obviously divergent as t → ∞, and if Im(k) = 0 it is
a wave of sinusoidal type with respect to time t.

Suppose that U satisfies condition (II) at infinity. In this case (94a) will
represent a wave departing from infinity; if Im(k) < 0, it is a wave that is
damped out in the course of time, while if Im(k) = 0, it is a wave of sinusoidal
type.

§ 4. Dirichlet and Neumann problems for equation (M)

In the present section we will deal with solving the Dirichlet and Neumann
problems for equation (M) in the case of an infinite domain, the discussion
being confined to domains of class B (§2, sec. 2). We will not consider the
Dirichlet and Neumann problems for equation (M) in the case of finite domains,
since these have been fully investigated in the literature (e.g. by the methods
of integral equations and of the calculus of variations; see [25]); it should be
mentioned, however, that the method described below is also suitable for these
problems in the case of a finite domain.

1. Problem De. Let T be an infinite domain in Ep of class B, and let
S be its boundary. It is required to find a function U , metaharmonic in T ,
continuous in T + S, and satisfying one of the Sommerfeld conditions (I) and
(II) at infinity, together with the boundary condition

U+ = f(x) (on S) (De)

where f(x) is a given continuous function of the point x of the boundary S.
We will call this the exterior Dirichlet problem for equation (M) and denote

it for brevity by De; and similarly, we will denote the corresponding homoge-
neous problem (f ≡ 0) by D0

e .
We next state the exterior Neumann problem.
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Problem Ne. Let T be an infinite domain of class B. It is required to
find the function U , metaharmonic in T , belonging to the class G0 (§2, sec.
2) and satisfying one of the Sommerfeld conditions (I) and (II), together with
the boundary condition

dU+

dn
= f(x), (Ne)

where f(x) is a given continuous function on S.
We will denote this problem by Ne, and the corresponding homogeneous

problem (f ≡ 0) by N0
e

As it will be seen below, the following problems are closely connected with
problems De and Ne respectively:

Problem N0
i . We need to find the function U , metaharmonic on the set

CT (= Ep − T − S), belonging to the class G0, together with the boundary
condition

dU−

dn
= 0. (N0

i )

Problem D0
i . We are required to find the function U , metaharmonic on

the set CT , belonging to class G0, together with the boundary condition

U− = 0. (D0
i )

The following results are familiar concerning problems D0
i and N0

i (see,
e.g., [25]):

1)The problem D0 only has non-trivial solutions for a discrete set of positive
values of the parameter λ2:

0 < λ2
1 < λ2

2 < · · · < λ2
n < · · · ; λ2

n → ∞, as n → ∞.

These values of λ2 are called the eigenvalues of the problem D0
i , and the

corresponding solutions are called the eigenfunctions.
A similar result holds for problem N0

i .
2) If λ2 and λ′2 are eigenvalues of problem D0

i , N
0
i respectively, then λ2 ̸=

λ′2.
2. We will first prove uniqueness of solutions of problems De and Ne. To

do this, we need the following preliminary lemma.
Lemma 2. Let U be a metaharmonic function in the domain T , belonging

to class G (§2, sec. 2) and satisfying at infinity one of the Sommerfeld con-
ditions (I) and (II). Let S ′ and S ′′ be parts of S with no common points such
that S = S ′ + S ′′, one of these parts being possibly an empty set. If U satisfies
the boundary condition

U+ = 0 on S ′, (D0
e)

dU+

dn
= 0 on S ′′, (N0

e )

where the latter condition may only hold almost everywhere on S ′′, then U = 0
everywhere in T .
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Proof. Let ΣR be a hypersphere of radius R, the interior of which contains
the entire boundary S of the domain T . We denote by TR the part of T inside
ΣR. The boundary of TR is obviously S + ΣR. We denote by U the function
which is complex conjugate to U . Since U belongs to class G by hypothesis,
U will obviously also belong to class G in T .

Suppose for definiteness that Im(λ) ≥ 0 and that condition (I) is satisfied
at infinity, i.e.

L1(U) ≡ dU

dr
− iλU = eiλro(f−q− 1

2 ). (Ī)

We show as a preliminary that U cannot be real everywhere, unless U = 0
everywhere in T . In fact, U ≡ U , we should have, by (I):

dU

dr
+ iλ̄U = eiλ̄ro(r−q− 1

2 ). (I)

Since Re(λ) ̸= 0 and Im(λ) ≥ 0, from (I) and (Ī) we obtain:

U = eiλro(r−q− 1
2 ).

But, by Theorem 4, it follows from the latter condition that U ≡ 0. Our
assertion is now proved.

Since U and U belong to class G, It follows from (24) that we are justified
in writing ∫

TR

(U∆U − U∆U)dT = −
∫

S+ΣR

(
U
dU

dn
− U

dU

dn

)
dS. (95)

But, in view of the fact ∆U = −λ2U, ∆U = −λ2U , we obtain from (95), by
virtue of conditions (D0

e) and (N0
e )

(λ̄2 − λ2)

∫
TR

UUdT =

∫
ΣR

(
U
dU

dR
− U

dU

dR

)
sΣR. (96)

Now let us first suppose that Im(λ) = σ > 0. Then we have, by condition
(I) and formula (31):

U
dU

dR
= R−p+1e−2σRO(1).

Hence ∫
ΣR

(
U
dU

dR
− U

dU

dR

)
dΣR = e−2σRO(1),

i.e. the integral on the right-hand side of (6) tends to zero as R → ∞. Con-
sequently, ∫

T

UUdT = 0,

30

Lecture Notes of  TICMI, vol. 14, 2013



i.e. U ≡ 0 in T .
We now consider the case Im(λ) = σ = 0. We now have from (96):∫

ΣR

(
U
dU

dR
− U

dU

dR

)
dΣR = 0. (97)

But, in view of the fact that U satisfies condition (I), from Theorem 3 we
have:

U(R,Θ) =
∞∑
n=0

fn(λR)Yn(Θ|p), (72)

where fn(x) denotes the function x−qH
(1)
q+n(x). On substituting this into (97),

in view of the orthogonality of the functions Yn(Θ|p) we obtain,

∞∑
n=0

[fn(λR)f ′
n(λR)− f ′

n(λR)fn(λR)]

∫
ΣR

YnY ndΣ = 0. (98)

But, by virtue of (63),

fn(λR)f ′
n(λR)− f ′

n(λR)fn(λR) =
4i

π
(λR)−p+1 (n = 1, 2, . . .).

Hence (98) becomes
∞∑
n=0

∫
ΣR

YnY ndΣ = 0.

It is obvious from this that Yn(Θ|p) = 0 (n = 0, 1, 2, · · · ), i.e. in view of
(72) and the fact that U is analytic, we have U ≡ 0 in the domain T . Our
lemma is thus proved. The proof follows exactly similar lines in the case when
U satisfies condition (II) at infinity. 10

We now offer another proof of this lemma, which does not depend on U
being able to be expanded in a series of the form (72). We must first prove
another lemma.

Lemma 3. Let λ = τ + iσ. If a function U , metaharmonic outside some
hypersphere, satisfies the condition∫

Σ1

U(RΘ)U(RΘ)dΣ = e−2|σ|Ro(R−p+1), (99)

10This lemma was first mentioned by A. Sommerfeld [6,7] for the case p = 2, 3 and real
λ; however, he presented no strict proof. The first strict proof, somewhat different to the
above one, was given by G. Freudenthal [10], who considered for simplicity the case p = 2;
but, as remarked by the author himself (see [10], p. 223, 227), his method is quite general
and can be easily extended to the space of any dimension, as was done for the case p = 3 by
D.Z. Avazashvili (see [9]). Another method of proof of the lemma was proposed even earlier
by V. D. Kupradze (see [8]), that appeared almost without change in his book [14]. But in
this work, as was mentioned by the author himself, there are a number of ungrounded and
incorrect statements.
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where Σ1 is the unit hypersphere with centre at the origin, then U ≡ 0.
Proof. Let Y

(1)
n (Θ|p), · · · , Y (kn)

n (Θ|p) be a complete system of orthogonal
hyperspherical functions of order n (n = 0, 1, 2, · · · ). Let

ank(R) =

∫
Σ1

U(R,Θ)Y (k)
n (Θ|p)dΣ (100)

(n = 0, 1, 2, . . . ; (k = 1, 2, . . . , kn).

By Parseval’s theorem, we obtain from (99):

∞∑
n=0

∞∑
k=0

ank(R)ank(R) = e−2|σ|Ro(R−p+1).

But we obviously have from here:

Rq+ 1
2 e|σ|R|ank(R)| = o(1) (n = 0, 1, 2, . . . ; k = 1, 2, . . . , kn). (101)

On the other hand, we know that (§3, sec. 3)

ank(R) = AnkR
−qH

(1)
q+n(λR) + BnkR

−qH
(2)
q+n(λR), (102)

where Ank and Bnk are constants, independent of R.
On substituting (102) in (101) and taking (18) and (19) into account, we

obtain with σ ≥ 0:

|Ank[α+O(R−1)]eiπR +Bnk[β +O(R−1)]e−iπRe2σR| = o(1)

(n = 0, 1, 2, . . . ; k = 1, 2, . . . , kn; α ̸= 0, β ̸= 0).

Hence it follows at once that Ank = 0, Bnk = 0, i.e. ank(R) = 0 (n =
0, 1, 2, · · · ; k = 1, 2, · · · , kn). But the latter means, in view of the complete-

ness of the system {Y (k)
n (Θ|p)} that U ≡ 0, which was to be proved. The proof

follows exactly the same lines when σ < 0. 11

11In the works [8, 14], Kupradze has the following lemma: A solution of the equation
∆u+ λ2u = 0, satisfying the conditions

lim
r→∞

√
r

(
∂u

∂u
+ iλu

)
= 0 (α)

lim
r→∞

2π∫
0

(
√
ru)2dψ = 0 (β)

is identically zero. The case of positive λ and p is obviously under consideration here. Our
lemma 3 is obviously more precise than Kupradze’s, since it is clear that condition (α) is
superfluous. In addition, condition (β) is written incorrectly: the integrand should be r|u|2,
since otherwise the lemma contradicts the example U = H

(2)
n (λr)einϑ, n > 0.
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Lemma 2 is an immediate consequence of lemma 3. For, in view of condition
(I) and condition (31) that follows from it, (96) becomes (assuming that σ ≥ 0)

−4iστ

∫
TR

UUdT = 2i(τ + iσ)

∫
ΣR

UUdΣ + e−2iσRo(1).

Hence, when λ = τ + iσ ̸= 0, σ ≥ 0, we have∫
Σ1

UUdΣ = e−2σo(R−p+1). (99)

Consequently, by lemma 3, U ≡ 0, which was to be proved.
The uniqueness of the solution of problem Ne follows at once from lemma

2, i.e. we have
Theorem 5. The problem Ne cannot have more than one solution, i.e. the

homogeneous problem N o
e has only the trivial solution U ≡ 0.12

We now turn to the proof of the uniqueness of solution of the problem De.
First, we prove the following preliminary lemma.

Lemma 4. Let T be a finite or infinite domain of class B. Let U be a
metaharmonic function in the domain T, continuous in T + S and satisfying
the boundary condition

U+ = f(x) (on S), (103)

where f is a given continuous function of the point x of the boundary S. We
then have:

1. If f belongs to class Ch (§2, sec. 2) on S, then U belongs to class Ch
in T + S.

2. If f and D1f belongs to class Ch on S, then U and D1U belong to class
Ch in T + S.

3. If f , D1f and D2f belong to class Ch on S, then U , D1U and D2U
belong to class Ch in T + S.

Proof. We observe first of all that these propositions are already familiar
for harmonic functions (see e.g. [23] p. 243).

Let T be a finite domain. This assumption obviously does not restrict
generality, since the propositions of the lemma only require proof in a vicinity
of the boundary: inside T the function U is analytic, so that the lemma is
obviously true in any closed domain lying inside T .

We represent U as

U(X) = λ2P (X) + U0(X), (104)

12It is worth observing that we have proved the uniqueness of a solution of problem Ne not
only in the class G0, but also in the wider class G; besides, it is sufficient that the boundary
condition be satified almost everywhere on S with the given function f being bounded and
Lebesgue integrable on S.
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P (X) =

∫
T

Ω0(X,Y )U(Y )dT, (105)

and Ω0 is an elementary solution of Laplace’s equation given by (15), and U0 is
a harmonic function 13 in T, which satisfies, by (103), (104) and the boundary
condition

U+
0 = Ψ(X) (on S), (106)

where Ψ(x) = f(x)−λ2P (x). Since, by hypothesis, U is continuous in T +S, P
and D1P will belong (see,e.g., [21], p. 82) to the class Ch throughout space.
Hence, it f ∈ Ch or f and D1f ∈ Ch on S, we have respectively Ψ ∈ Ch or
Ψ and D1f ∈ Ch on S. But in this case, in view of the well-known properties
of harmonic functions (see [23], p. 243), we must have U0 ∈ Ch or U0 and
D1U0 ∈ Ch in T + S, respectively. The proof of the first two propositions of
the lemma now follows at once, by (104).

Now let f,D1f and D2f ∈ Ch on S. We now always have U and D1U ∈ Ch
in T +S. But we know that, in this case, the functions, P,D1P and D2P ∈ Ch
in T + S.14 Hence Ψ, D1Ψ and D2Ψ ∈ Ch on S. Therefore U0, D1U0 and
D2I0 ∈ Ch in T + S (see [23], p. 243). It now follows at once, by (104), that
U,D1U and D2U ∈ Ch in T + S, which was to be proved. The proof of the
lemma is complete.

The following is an obvious corollary of Lemma 4.
Corollary. If T is a domain of class B and U is a metaharmonic function

in T , which is continuous in T + S and vanishes on S, then U,D1U and
D2U ∈ Ch in T + S.

We now prove the uniqueness of solution of problem De. Let U1 and U2 be
two solutions of the problem. The function U = U1 − U2 will be a solution of
the homogeneous problem D0

e . Hence, by the corollary of Lemma 4, U ∈ G0,
and hence, by Lemma 2, U ≡ 0 in T , i.e. we have the theorem.

Theorem 6. The problem De has at most one solution, i.e. the homoge-
neous problem D0

e has only the trivial solution.
3. Before passing to the direct proof of the existence of solution of problems

De and Ne, we first give without proof some necessary properties of the so-

13In fact, on applying the operator ∆ to both sides of (104), and using the fact that
∆P = −U and ∆U = −λ2U , we find that ∆U0 = 0 in T .

14Indeed, let x1 · · · , xp and ξ1 · · · , ξp be the Cartesian coordinates of the points X and Y
respectively. It can easily be shown by means of Gauss’s formula that

∂P

∂xk
=

∫
T

Ω0(X,Y )
∂U

∂ξk
dT −

∫
S

Ω0(X, y)U
+ cos(n, ξk)dSy = I1(X) + I2(x)

where I1 and I2 denote the integrals over T and S respectively. Obviously, I1 and D1I1 ∈ Ch
throughout space. As regards I2, it is the harmonic potential of a simple layer with density
U+ cos(n, ξk), which obviously satisfies a Hölder condition. Hence (see [23] p. 201) I1 and
D1I1 ∈ T + S. Consequently D2P ∈ Ch in T + S which is what we wanted to show.
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called metaharmonic potentials:

V (X;µ) =

∫
S

µ(y)Ω(X, y)dSy, (107)

W (X; ν) =

∫
S

ν(y)
d

dny

Ω(X, y)dSy, (108)

where Ω is the elementary solution of equation (M) given by (12); µ and ν
are continuous functions on the boundary S; d

dny
denotes the derivative with

respect to the normal to S at the point y, directed inwards into the domain T .
The functions V (X; ν) and W (X; ν) satisfy equation (M) throughout space

except for points of S. We will call these functions the metaharmonic poten-
tials of a simple and double layer respectively, and µ and ν will be called the
densities of the respective potentials. We call Ω the kernel of the metahar-
monic potentials; in particular, we can take as the kernel the functions Ω1 and
Ω2 given by (16) and (17) respectively. Notice that, as may easily be seen
from formulae (20a) and (21a), the potentials with kernels Ω1 and Ω2 satisfy
at infinity the Sommerfeld conditions (I) and (II) respectively.

The following fundamental properties of the metaharmonic potentials may
be proved in exactly the same way as the corresponding properties of the
harmonic potentials (see, e.g., [21]; see also [23], where detailed references to
the literature may be found).

A. Let µ(x) be a continuous function of the point x on the boundary S. In
this case the simple layer potential V (X;µ), given by (107), is a function of
class Ch throughout all space. Furthermore, dV +

dn
, dV −

dn
exist and belong to

class C on S, where

dV +

dnx

= −1

2
µ(x) +

∫
S

µ(y)
d

dnx

Ω(x, y)dSy, (109)

dV −

dnx

=
1

2
µ(x) +

∫
S

µ(y)
d

dnx

Ω(x, y)dSy, (110)

or
dV +

dnx

− dV −

dnx

= −µ(x), (111)

dV +

dnx

+
dV −

dnx

= 2

∫
S

µ(y)
d

dnx

Ω(x, y)dSy. (112)

In addition, d
dn
V (X;µ) is bounded both in T and in CT . Thus (V (X;µ)

belongs to class G0 both in T and in CT .
B. Let ν(x) be a continuous function of the point x of the boundary S.

Then the double layer potential W (X; ν), given by (108), has the following
properties:
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1)W+ and W− exist and belong to class C on S;
2) the functions given by

W ∗
e =

{
W (X; ν), when X ∈ T,

W+(X; ν), when X = x ∈ S;
(113)

W ∗
i =

{
W (X; ν), when X ∈ CT,

W−(X; ν), when X = x ∈ S,
(114)

belong to class C in T + S and in CT + S respectively, which later will be
denoted by W (X; ν) ∈ C both in T + S and in Ct+ S.

3)

W+ =
1

2
ν(x) +

∫
S

ν(y)
d

dny

Ω(x, y)dSy, (115)

W− = −1

2
ν(x) +

∫
S

ν(y)
d

dny

Ω(x, y)dSy, (116)

or
W+ −W− = ν(x), (117)

W+ +W− = 2

∫
S

ν(y)
d

dny

Ω(x, y)dSy. (118)

4) LetX ′, X ′′ be points on the normal nx at equal distances from x and
belonging respectively to T and CT . We denote by σ the distance between
the points X ′ and x. Now, for any small positive ϵ, there exists a positive η(ϵ)
independent of x such that∣∣∣∣ d

dnx

W (X ′)− d

dnx

W (X ′′)

∣∣∣∣ < ϵ, for σ < η(ϵ), (119)

for all x on S.
This is the Tauber-Lyapunov theorem. Hence it follows that, if one of the

functions dW+

dn
or dW−

dn
exists, the other exists too and

dW+

dn
=

dW−

dn
(on S). (120)

5) Let ν and D1ν ∈ Ch on S. Then W (x; ν) and D1W (X; ν) ∈ Ch both
in T + S and in CT + S. This is a sufficient condition for the existence of the
derivatives of the double layer potential on S.

4. We now turn to finding solutions of problems De and Ne. Consider first
problem Ne.
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Let us assume that condition (I) holds at infinity. Now, if problem Ne has
a solution, it can be represented in accordance with Theorem 2 by Green’s
formula

U(X) =

∫
S

U+ d

dny

Ω1(X, y)dSy −
∫
S

Ω1(X, y)
dU+

dny

dSy. (26)

The first term on the right-hand side of this formula is the metaharmonic
double layer potential with density U+, the second term on the right-hand side
is the simple layer potential with density dU+

dn
. Let us always denote in what

follows the simple and double layer potentials with kernel Ω1 and densities µ
and ν by V (X; ν) and W (X; ν) respectively.

Since, by hypothesis,

dU+

dn
= f(x) (on S), (Ne)

we can now write (26) in the alternative form

U(X) = W (X;U+)− V (X; f) (X ∈ T ). (121)

On passing to the limit as the point X approaches the boundary point x
from the domain T , we obtain by A and B3:

U+ =
1

2
U+ +W+(x;U+)− V (x; f)

or
U+ = 2W+(x;U+)− 2V (x; f). (122)

If we introduce the notation

U+ = φ(x), (123)

K(x; y) = 2
d

dny

Ω1(x, y), (124)

−2V (x; f) = g(x), (125)

equation (122) becomes

φ(x)−
∫
S

K(x, y)φ(y)dSy = g(x). (126)

We have now arrived at a Fredholm integral equation. It will be shown
below that this equation always has a solution - by means of which the solution
of our problem can be found.

Consider now the homogeneous equation corresponding to (126):

ν(x)−
∫
S

K(x, y)ν(y)dS = 0 (1260)
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and the adjoint equation

µ(x)−
∫
S

K(y, x)µ(x)dS = 0. (126′0)

Let ν1, · · · , νk and µ1, · · · , µk be complete systems of linearly independent
solutions 15 of these equations. It is easy to show that these solutions are
continuous on S.

Let us consider the potentials

V (X; νi), W (X;µi) (i = 1, 2, · · · , k).

Using (A) and (B), we obtain from equations (1260) and (126′0):

W−(x; νi) = 0 (i = 1, · · · , k), (127)

d

dn
V +(x; νi) = 0 (i = 1, · · · , k). (128)

Hence we have, using (111) and (117):

d

dn
V −(x;µi) = µi (i = 1, · · · , k), (129)

W+(x; νi) = νi(x) (i = 1, · · · , k). (130)

But, since the potentials V (X, νi) ∈ G0 both in T and in CT , and, in view of
the boundary condition (128), satisfy all the conditions of Theorem 5, we have

V (X;µi) ≡ 0 (in T ) (i = 1, · · · , k).

We obtain from here, since the functions V (X,µi) are continuous,

V −(x;µi) = 0 (i = 1, 2, · · · , k). (131)

It follows from (127) and (131) that V (X;µi) and W (X; νi)(i = 1, · · · , k)
are solutions of the problem D0

i .
Let us show that none of these functions can vanish identically in CT if the

corresponding densities (µi, νi) are non-zero. Indeed, if we had V (X,µi) ≡ 0

in CT , we should have
d

dn
V −(x;µi) ≡ 0. Hence, by (129), we get µi ≡ 0.

Suppose now that W (X; νi) ≡ 0 in CT . Then
d

dn
W−(x; νi) ≡ 0 and by

B4,
d

dn
W+(x; νi) ≡ 0. Hence, we have, by Theorem 5, W (X; νi) ≡ 0 in T .

Consequently, W+(x; νi) ≡ 0, and by (130), νi ≡ 0. Our assertion is proved.

15In what follows, under solutions of homogeneous equations or homogeneous boundary
value problems we will mean only those solutions which are not identically zero.
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We can show by exactly the same arguments that each of the systems
V (X;µi) (i = 1, · · · , k) and W (X; νi) (i = 1, · · · , k) is a linearly indepen-
dent system of functions in CT .

We now observe that V (X;µi) and W (X; νi) satisfy the conditions or the
corollary to Lemma 4 in CT . Hence

V (X;µi), W (X; νi), DjV (X;µi) and DjW (X; νi) ∈ Ch in CT + S

(i = 1, · · · , k; j = 1, 2).

If we now make use of (129), we obtain the following lemma, which will be
useful later.

Lemma 5. Let µ be a solution of equation (126′0). Then µ and D1µ ∈ Ch
on S.

We now show that each of the systems V (X;µi) (i = 1, . . . , k), W (X; νi)
(i = 1, . . . , k) is a complete system of solutions of problem D0

i .
Let U be a solution of problem D0

i . Since U− ≡ 0, by the corollary to
Lemma 4, U,D1U and D2U ∈ Ch in CT . We thus have, by Green’s formula
(25)

U(X) =

∫
S

Ω1(X, y)
dU−

dny

dS. (132)

If we now differentiate both sides of this formula with respect to the normal
direction at the point x and then take the limit, we obtain, by (110)

dU−

dnx

−
∫
S

K(y, x)
dU−

dny

dS = 0,

i.e.
du−

dn
satisfies the integral equation (126′0). Thus

dU−

dn
= α1µ1 + · · ·+ αkµk, (133)

where α1, · · · , αk are constants. On substituting (133), into (132) we get

U(X) = α1V (X;µ1) + · · ·+ αkV (X;µk),

which proves our assertion regarding the functions V (X;µi) (i = 1, · · · , k). On
recalling the linear independence of the functions W (X; νi) (i = 1, · · · , k), we
can now easily show that these latter also form a complete system of solutions
of the problem D0

i .
Consequently, the problem D0

i obviously has solution if the homogeneous
integral equation (1260) or (126′0) has solution, and vice versa.16

16By another method this statement was proved by Kupradze ([13], p. 565; [14], p. 88).
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We now show that the integral equation (126) always has a solution if its
right-hand side has the form (125).

In fact, the conditions for (126) to have a solution are∫
S

gµidS = 0 (i = 1, · · · , k). (134)

But, by (125), these conditions take the form∫
S

f(x)V −(x, µi)dS = 0 (i = 1, · · · , k),

which actually hold, in view of (131). The existence of a solution of (126) is
thus proved.

Let φ(x) be any given solution of (126). Obviously, φ(x) will be continuous
if g(x) is continuous. But g(x) is shown to be continuous by (125), since f(x)
is continuous by hypothesis. Hence, by (116), we can rewrite (126) as

W−(x;φ)− V −(x; f) = 0, (135)

i.e. the function W (X;φ)− V (X; f) is a solution of the problem D0
i . Thus,

W (X;φ)− V (X; f) =
k∑

i=1

αiW (X; νi) in CT, (136)

where α1, · · · , αk are definite constants.
We now introduce the function

U(X) ≡ W (X;φ)− V (X; f)−
κ∑

i=1

αiW (X; νi). (137)

It will be shown that U is a solution of problem Ne. It is obvious that
U is a metaharmonic function in T , satisfying condition (I) at infinity and
continuous in T +S. It therefore remains to prove that U is a function of class
G0 and that it satisfies the boundary condition (Ne).

Because of A, V (X; f) belongs to class G0 in T and in CT . As we have
seen above, W (X; νi) also belongs to the class G0, since they are solutions of
problem D0

i . Consequently, by (136), W (X;φ) belongs to the class G0 in CT .
We thus have because of (136)

d

dn
W−(x;φ) =

d

dn
V −(x; f) +

κ∑
i=1

αi
d

dn
W−(x; νi). (138)

But, in view of B4 and (111), this equation becomes

d

dn
W+(x;φ)− d

dn
V +(x; f)−

κ∑
i=1

αi
d

dn
W+(x; νi) = f(x),
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and, by (137), is equivalent to

dU+

dn
= f(x).

We have thus shown that U is a function of classG0, satisfying the condition
(Ne), i.e. the function U given by (137) is a solution of problem Ne.

We observe finally that our discussion refers to the case when the homo-
geneous equation (1260) has non-trivial solutions. But it may easily be seen
that, when this equation has only the trivial solution, our conclusion still holds,
provided we put all αi in (137) equal to zero, i.e. the solution of problem Ne

in this case is

U(X) = W (X;φ)− V (X; f). (137a)

We have assumed up to now that condition (I) holds at infinity. If condition
(II) holds at infinity, our discussion naturally still holds provided we now use
the potentials with kernel Ω2.

Note. It may easily be seen that the above method enables us to show
that problem Ne also has a solution which is unique in class G, if the given
function f is bounded and integrable on S. We only need to observe that the
simple layer potential V (X; f) is a function of class G both in T and in CT ,
provided f is a bounded integrable function on S.

5. We now turn to the solution of problem De; here we will assume first
that condition (I) holds at infinity.

To solve problem De we use a method somewhat different to that used
above for solving problem Ne. If the latter method is used, we meet a serious
difficulty, which can only be overcome by imposing further restrictions (as well
as continuity) on the given function f . In fact, if we assume that problem De

has a solution in the class G, then, by Green’s formula (26), we have

U(X) = W (X; f)− V
(
X;

dU+

dn

)
. (139)

Thus, this formula will give the solution of problem De provided we can find
dU+

dn
. If now differentiate both sides of (139) with respect to the normal and

then take the limit, we obtain the following integral equation for dU+

dn
:

dU+

dnx

+

∫
S

K(y, x)
dU+

dny

dSy = 2
d

dn
W+(x; f), (140)

where K(x, y) is the kernel given by (124). It is clear from here that our

purpose is achieved only when
d

dn
W+(x; f) is at least an integrable function.

However, this is not in general the case if f is merely continuous. We must
therefore use a different method to show that problem De always has a solution
for any continuous function f .
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We seek the solution in the form 17:

U(X) = W (X; ν) + V (X;µ), (141)

where ν and µ are as yet undetermined continuous functions of a point of the
boundary S. On passing to the limit as the point X approaches the boundary
point x from the domain T , we have, by (115):

ν(x) +

∫
S

K(x, y)ν(y)dSy = h(x), (142)

where K(x, y) is the kernel given by (124), and

h(x) = 2f(x)− 2V (x;µ). (143)

We have thus obtained the Fredholm equation (142) for defining the func-
tion ν. As regards µ, we will leave it undefined for the moment. Obviously, if
ν is a solution of equation (142), then (141) will give the solution of problem
De whatever the function µ. Our immediate problem is therefore to select µ
in such a way that equation (142) has a solution.

Suppose first that the homogeneous equation

ν(x) +

∫
S

K(x, y)ν(y)dS = 0 (1420)

has only the trivial solution. Equation (142) then obviously always has a
solution. In particular, therefore, we can put µ = 0. The solution of problem
De may now be written as the double layer potential,

U(X) = W (X; ν), (141a)

where ν is the solution of equation (142) with µ = 0. This solution obviously
belongs to the class C in T + S, since ν is a continuous function.

We now turn to the case when equation (1420) has non-trivial solutions.
We consider the equation adjoint to (1420):

µ(x) +

∫
S

K(y, x)µ(y)dS = 0. (142′0)

Let µ1, ..., µk be a complete system of linearly independent solutions of
this equation. Obviously, µ1, ..., µk are continuous functions. We consider
the simple layer potentials V (X;µ1), ..., V (X;µk) which, in view of (142′0) and
(110), satisfy the conditions

d

dn
V −(x;µi) = 0 (i = 1, 2, ..., k). (144)

17The problem De was solved by this method in the reference [16].
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It follows from here, by (111), that

d

dn
V +(x;µi) = −µi (i = 1, 2, ..., k). (145)

We now show that V (X;µi) (i = 1, ..., k) do not vanish identically in CT
and are linearly independent.

Let V (X;µi) ≡ 0 in CT. Then V −(x;µi) = V +(x;µi) ≡ 0. Consequently,

by Theorem 6, V (X;µi) ≡ 0 in T. Hence
d

dn
V +(x;µi) ≡ 0, i.e. µi ≡ 0, which

contradicts our assumption.
It can similarly be proved that the functions V (X;µi) (i = 1, ..., k) are

linearly independent.
Thus, by (144), the functions V (X;µi) (i = 1, ..., k) are linearly indepen-

dent solutions of problem N0
i .

We show that these functions represent a complete system of solutions of
the latter problem (see, [13, 14]).

In fact, let U be any solution of problem N0
i . In view of condition (N0

i ),
we obtain with the aid of Green’s formula (25):

U(X) = −W (X;U−) in CT. (146)

Hence we have, by (116)

U−(x) +

∫
S

K(x, y)U−(y)dS = 0, (1420)

i.e.
U− = α1ν1 + ...+ αkνk, (147)

where ν1, ..., νk is a complete system of solutions of equation (1420), and
α1, ..., αk are constants. By (147), we obtain from (146):

U(X) = −α1W (X; ν1)− ...− αkW (X; νk) (X ∈ CT ). (148)

We have thus shown that any solution of problemN0
i is a linear combination

of the potentials W (X; νi) (i = 1, ..., k).
We now show that these potentials do not vanish identically in CT .
In fact, it follows from (1420) that

W+(x; νi) = 0 (i = 1, ..., k). (149)

In view of this, we have by (117):

W−(x; νi) = −νi (i = 1, ..., k). (150)

It is hence obvious that W (X; νi) ≡/ 0) in CT , and that these functions are
linearly independent in CT .
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In addition, by (148), these functions represent a complete system of so-
lutions of problem N0

i . It may easily be seen from here that the functions
V (X;µi) (i = 1, ..., k) also represent a complete system of solutions of prob-
lem N0

i .
We now show that a functions µ can always be chosen in (143) such that

equation (142) has a solution. Indeed, the conditions for this equation to have
a solution are ∫

S

hµidS = 0 (i = 1, ..., k). (151)

But, by (143), these conditions become∫
S

µ(x)V (x;µi)dS = fi (i = 1, ..., k), (152)

where

fi =

∫
S

µifdS (i = 1, ..., k).

We showed above that V (X;µi) are solutions of problemN0
i . Consequently,

by (148),

V (X;µi) =
k∑

j=1

βijW (X; νi) (i = 1, ..., k), (153)

in CT , where βij are definite constants, and the determinant |βij| is obviously
non-zero; otherwise, V (X;µi) would be linearly dependent. We obtain from
(153), by (150),

V −(x;µi) =
k∑

j=1

βijW
−(x; νj) = −

k∑
j=1

βijνj. (154)

We introduce the notation

ν∗
i = −

k∑
j=1

βijνj (i = 1, ..., k). (155)

Obviously, the functions ν∗
i (i = 1, ..., κ) are linearly independent. By (155)

and (154), conditions (152) become∫
S

µiν
∗
i dS = fi (i = 1, ..., k). (156)

We now put

µ =
k∑

i=1

Aiν̄∗
i , (157)
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where the constants A1, ..., Ak are given by the equations

ai1A1 + ai2A2 + ...+ aikAk = fi (i = 1, ..., k), (158)

and

aij =

∫
S

ν∗
i ν̄

∗
j dS (i, j = 1, ..., k).

The system (158) obviously has a solution, since the determinant |aij| is
non-zero because of the linear independence of ν∗

i (i = 1, ..., k). If we now
take as µ the function (157), the conditions (156) will evidently be satisfied.
Consequently, equation (142) will have a solution, provided its right-hand side
is taken equal to

h(x) = 2f(x)− 2
κ∑

i=1

AiV (x; ν̄∗
i ). (159)

If we now replace ν in (141) by any solution of equation (142), and µ by
the function (157), we obtain the solution of problem Dl in the form

U(X) = W (X; ν) +
κ∑

i=1

AiV (X; ν̄∗
i ). (160)

We prove that the functions V (X; ν̄∗
i ) (i = 1, ..., k) do not in general vanish

simultaneously in the domain T . If this were to happen, equation (142) would
have a solution whatever its right-hand side, which is of course impossible
since there are cases when the corresponding homogeneous equation (1420)
has a nontrivial solution. In fact, if λ is an eigenvalue of problem N0

i , then, as
we saw above, (1420) has a nontrivial solution, and vice versa.

In this way we finally obtain the following theorem.
Theorem 7. The problem De always has a solution. The solution is repre-

sented as the double layer potential if λ is not an eigenvalue of the correspond-
ing homogeneous problem N0

i , but if λ is an eigenvalue of the corresponding
homogeneous problem N0

i , then the solution of problem De can not be repre-
sented, in general, in the form of the double layer potential. In this case, the
solution has the form (160).

The problem De may be solved in a similar way in the case when condition
(II) holds at infinity, provided we make use of the potentials with kernel Ω2.

6. We can now propose a further method for solving problem Ne.
We seek the solution of the problem as

U(X) = V (X;µ) + U0(X), (161)

where µ is a continuous function of a point of the boundary S, and U0 is the
solution of a specific problem De to be defined bleow; we will only assume for
the moment that U0 belongs to class G0 in T .
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On differentiating both sides of (161) with respect to the normal direction
and taking the limit, we obtain, by (109) and the condition (Ne), the Fredholm
integral equation

µ(x)−
∫
S

K(y, x)µ(y)dS = g∗(x), (162)

where

g∗(x) = −2f(x) + 2
dU+

0

dnx

. (163)

Having found µ from this equation and substituting it in (161), we obtain
the solution of problem Ne. Consequently, it remains for us to select the
metaharmonic function U0 of class G0 in such a way that the integral equation
(162) has a solution.

We take the homogeneous equation corresponding to (162):

µ(x)−
∫
S

K(y, x)µ(y)dS = 0 (1620)

and its adjoint

ν(x)−
∫
S

K(x, y)ν(y)dS = 0. (162′0)

Equations (162′0) and (1620) are the same as (1260), (126
′
0) respectively,

which we discussed in details in sec. 4 of the present part.
We suppose first that (1620) has only the trivial solution. Obviously, (162)

will now have a solution whatever its right-hand side, and, in particular, we
can put U0 ≡ 0. Formula (161) becomes in this case

U(X) = V (X;µ), (161a)

where µ is the solution of equation (162) with g∗ = −2f . Consequently, when
equation (1620) has only the trivial solution (and this is only the case when
problem D0

i has only the trivial solution), we can write the solution of problem
Ne as the simple layer potential (161a).

Now let the homogeneous equation (1620) have a nontrivial solution. Let
µ1, ..., µκ and ν1, ..., νκ be complete systems of solutions of equations (1620)
and (162′0) respectively. As we showed in sec. 4 of this part, the potentials
V (X;µi) (i = 1, ..., κ), and also W (V ; νi) (i = 1, ..., κ), represent complete
systems of linearly independent solutions of problem D0

i . Consequently, the
case we are discussing can only hold when λ is an eigenvalue of problem D0

i ,
i.e. in our case λ is positive.

We now write down the conditions for (162) to have a solution∫
S

g∗νjdS = 0 (j = 1, ..., k), (164)
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which become, by (163) and (130)∫
S

dU+
0

dn
W+(x; νj)dS = fj (j = 1, ..., k). (165)

As we showed above (sec. 4), the functions W (X; νj) (j = 1, ..., k) belong
to class G0 both in the domain T and in CT . In addition, U0 belongs to class
G0 in T by hypothesis. Hence we have, by (24):∫

S

(dU+
0

dn
W+(x, νj)− U+

0

d

dn
W+(x, νj)

)
dS

=

∫
ΣR

(dU0

dR
W (X; νj)− U0

d

dR
W (X, νj)

)
dΣ, (166)

where ΣR is a hypersphere of sufficiently large radius R, containing S.
But the functions U0 and W (X; νj) (j = 1, ..., k) satisfy one of the Sommer-

feld conditions (I0) and (II0) at infinity. Suppose that condition (I0) holds,
i.e.

dU

dr
= iλU + o(r−q− 1

2 ). (I0)

From this condition, and the condition that follows from (I0):

U = O(r−q− 1
2 ), (33)

we obtain

dU0

dR
W (X; νj)− U0

d

dR
W (X; νj) = R−p+1o(1).

On substituting this in the right-hand side of (166), we easily find that∫
S

[dU+
0

dn
W+(x; νj)− U+

0

d

dn
W+(x; νj)

]
dS = 0 (j = 1, ..., k),

i.e. conditions (165) become∫
S

U+
0

d

dn
W+(x; νj)dS = fj (j = 1, ..., k). (167)

But in CT , as we already know (sec. 4),

W (X; νj) =
k∑

i=1

αjiV (X;µi) (j = 1, ..., k), (168)
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where αji are constants, and the determinant |αji| ̸= 0. We obtain from this,
in view of B4 and (129):

d

dn
W+(x; νj) =

d

dn
W−(x; νj) =

k∑
i=1

αji
d

dn
V −(x;µi) =

k∑
i=1

αjiµi ≡ µ∗
i (169)

(j = 1, ..., k).

The functions µ∗
j (j = 1, ..., k) obviously form a complete system of solu-

tions of equation (162′0), i.e. (1260).
Hence, by Lemma 5, µ∗

i and D1µ
∗
i ∈ Ch on S (i = 1, ..., k).

If now we substitute (169) in (167), we get∫
S

U+
0 µ

∗
i dS = fi (i = 1, ..., k). (170)

These conditions will obviously hold if

U+
0 =

k∑
j=1

Bjµ̄∗
j , (171)

where Bj are constants, defined by the equations

bi1B1 + bi2B2 + ...+ bikBk = fi (i = 1, ..., k),

where

bij =

∫
S

µ̄∗
iµ

∗
jdS (i, j = 1, ..., k);

the determinant |bij| obviously does not vanish.
Thus, to find the function U0, we have to solve problem De with the bound-

ary condition (171). But we showed in the previous section that this problem
always has a solution. It now remains to show that U0 is a function of class G0

in the domain T . But this is obvious from Lemmas 4 and 5, since, by (171),
U+
0 and D1U

+
0 ∈ Ch on S.

If we now substitute our function U0 in the right-hand side of (162), we ar-
rive at an integral equation which has a solution for any function f . Replacing
µ in (161) by the solution of this equation, where U0 is a solution of problem
De with boundary condition (171), we obtain the required solution of problem
Ne.

It is now easily shown that the functions U0 cannot in general be repre-
sented by the simple layer potential. For, if this were possible, we would find
that (162) has a solution whatever its right-hand side, no matter what the
parameter λ. But this cannot be true, since the homogeneous equation (1620)
has a nontrivial solution whenever λ is an eigenvalue of the problem D0

i .
We thus have the following
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Theorem 8. The problem Ne always has a solution. Its solution can be
represented by the simple layer potential if λ is not an eigenvalue of the problem
D0

i . If λ is such an eigenvalue, then the solution of problem Ne cannot in
general be represented by the simple layer potential, but instead it has the form
(161).

7. We now introduce Green’s functions corresponding to problems De and
Ne.

Let X and X0 be respectively a variable and a fixed point of the domain
T . We will denote by (I,De) and (I,Ne) the problems De, Ne respectively
when condition (I) is satisfied at infinity. The symbols (II, De) and (II, Ne)
are similarly defined.

Green’s function GI(X,X0) corresponding to problem (I,De) is defined as
follows: the function

gI(X,X0) = GI(X,X0)− Ω1(X,X0) (172)

is metaharmonic in T , satisfies condition (I) at infinity, and satisfies the bound-
ary condition

g+I (x,X0) = −Ω1(x,X0) (x ∈ S). (173)

Green’s function ΓI(X,X0) corresponding to problem (I,Ne) is defined
thus: the function

γI(X,X0) = ΓI(X,X0) + Ω1(X,X0) (174)

is metaharmonic in T satisfies condition (I) at infinity and satisfies the bound-
ary condition

d

dn
γ+
I (x;X0) =

d

dn
Ω1(x;X0) (x ∈ S). (175)

Green’s functions GII(X,X0) and ΓII(X,X0) corresponding to problems
(II,De) and (II,Ne) are similarly defined; we only have to take Ω1 instead of
Ω2 in these cases.

Obviously, all these functions exits and, with X0 fixed, belong to the class
G0 in the domain T .

The solutions of problems (I,De) and (I,Ne) can obviously be expressed
respectively by the formulae:

U(X0) =

∫
S

U+ d

dnx

GI(x;X0)dS, (176)

U(X0) =

∫
S

ΓI(x;X0)
dU+

dnx

dS. (177)

Similar expressions can be obtained for the solutions of problems (II,De)
and (II,Ne) in terms of the functions GII(X,X0) and ΓII(X,X0) respectively.
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8. We now take as an example Green’s function GI(X,X0) for the domain
T bounded by the hypersphere Σa of radius a with centre at the origin.

Since gI(X,X0) satisfies condition (I) at infinity, it can be expanded, by
Theorem 3 (§ 3, sec. 3), into a series

gI(X,X0) =
∞∑
n=0

r−qH
(1)
q+n(λr)Yn(Θ|p), (178)

where r, Θ(θ1, ..., θp−1) are the polar coordinates of the variable point X.
In view of (80), we have

Ω1(x,X0) =
i

4

1

(2π)q

∞∑
n=0

a−qJq+n(λa)ρ
−qH

(1)
q+n(λρ)P

∗
n(cosγ|p), (179)

where x is a point of the hypersphere Σa (S ≡ Σa) of radius a, ρ is the
radius vector of the fixed point X0, γ is the angle between the vectors OX0

and Ox, P ∗
n are the functions defined by (78a) or (78b).

By (178) and (179), the boundary condition (173) gives:

∞∑
n=0

a−qH
(1)
q+n(λa)Yn =

1

4i(2π)q

∞∑
n=0

a−qJq+n(λa)ρ
−qH

(1)
q+n(λρ)P

∗
n . (180)

We obtain at once from this, in view of (82) and (82a):

Yn(Θ|p) = 1

4i(2π)q
Jq+n(λa)ρ

−qH
(1)
q+n(λρ)

H
(1)
q+n(λa)

P ∗
n(cosγ|p). (181)

On substituting (181) in (178), we obtain the required function

gI(X,X0) =
1

4i(2π)q

∞∑
n=0

Jq+n(λa)r
−qH

(1)
q+n(λr)ρ

−qH
(1)
q+n(λρ)

h(1)q+n(λa)
P ∗
n(cosγ|p).

(182)
On substituting this in (172), we find from the latter Green’s function

GI(X,X0) for the domain bounded by the hypersphere Σa.
All the other Green’s functions mentioned above can be constructed for

this domain in a similar manner. We will not discuss this in detail here.
Note 1. The methods described above for solving the exterior Dirichlet

and Neumann problems can also be used for solving the analogous problems
in the case of general differential equations of the elliptic type. The methods
obviously can also be used in the case of Laplace’s equation.

Generally speaking, these methods differ from the usual methods of poten-
tials, widely employed in solving boundary value problems in connection with
elliptic differential equations [23, 26, 27, 28] only in central modifications of a
methodological kind. The modifications amount to the fact that, according to
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our method, it is always possible to form a combination of simple and double
layer potentials which will lead to a Fredholm integral equation equivalent to
the Dirichlet or Neumann boundary value problem in question.

Note 2. The solution by means of potentials of problems De and Nl in the
cases p = 2, 3, and real λ, was also considered by Kupradze [11-15].

2 Some Fundamental Properties of Solutions

of Equation (A)

The second half of the paper is devoted to the general representation of all
solutions of equation (A) by means of metaharmonic functions (§5). In addi-
tion, the Riquier boundary value problem connected with equation (A) will be
solved in §6 by means of this representation.

§ 5. General representation of solutions of equation (A)

1. We can write equation (A) as 18

∆k(∆ + χ1)
k1 ...(∆ + χm)

kmU = 0, (A)

where χ1, ..., χm are distinct roots of the equation

χn − a1χ
n−1 + ...+ (−1)nan = 0, (a)

and k1, ..., km are the respective multiplicities of these roots; it is assumed here
that

χi ̸= 0 (i = 1, ...,m);

k is the multiplicity of the root χ = 0. Obviously, k ≥ 0, ki ≥ 1 (i = 1, ...,m)
and

k + k1 + ...+ km = n.

It will be assumed that χi, like the coefficients of equation (A), are in
general complex.

We will assume that, in general, the solutions of (A) are complex-valued
functions. We will denote the solutions symbolically by U(X;A), where X
is a point of space, and A indicates the dependence of the solution on the
parameters a1, ..., an.

We will prove the following
Theorem 9. Every solution of equation (A), regular in some domain T ,

has the form

U(X;A) = V (X) +
m∑
i=1

k1−1∑
j=0

rj
∂jUij(X;χi)

∂rj
, (1)

18My attention to this form of writing equation (A) was drawn by Acad. S.L. Sobolev.
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where V (X) is a k-harmonic function, i.e. a solution of the equation ∆kV = 0,
and Uij(X;χi) (j = 0, 1, ..., ki−1) are metaharmonic functions with the param-
eters χi (i = 1, ...,m), ∆Uij + χiUij = 0 (i = 1, ...,m; j = 0, 1, ..., ki − 1).

These functions are uniquely defined by means of the corresponding solution
of equation (A).

Conversely, formula (1) gives the solution of equation (A), where V is
any k-harmonic function, and Uij (j = 0, 1, ..., ki − 1) are any metaharmonic
functions with the parameters χi (i = 1, ...,m).

Proof. 10. We first take the case k = 0, ki = 1 (i = 1, ..., n). In this case
equation (A) and formula (1) become

(∆ + χ1)(∆ + χ2)...(∆ + χn)U = 0, (2)

U(X;A) = U1(X;χ1) + U(X;χ2) + ...+ Un(X;χn), (3)

where U1(X;χ1), ..., Un(X;χn) are metaharmonic functions with the parame-
ters χ1, ..., χn respectively. It may easily be seen that expression (3) is always a
solution of equation (2). It remains to show that any solution of this equation
can be expressed by (3).

Formula (3) obviously holds with n = 1. Suppose now that this formula
holds for n = k, where k is any positive integer, and consider the equation

(∆ + χ1)...(∆ + χk)(∆ + χk+1)U = 0. (4)

This equation is obviously equivalent to

(∆ + χ1)...(∆ + χk)U = U ′
k+1(X;χk+1), (5)

where
U ′
k+1(X;χk+1)

is a metaharmonic function with parameter χk+1. It may easily be verified
that equation (5) is satisfied by the metaharmonic function

Uk+1(X;χk+1) =
U ′
k+1(X;χk+1)

(χ1 − χk+1)...(χk − χk+1)
. (6)

Hence, in view of our assumption, the general solution of equation (5), or
what amounts to the same thing, of equation (4), is

U1(X;χ1) + ...+ Uk(X;χk) + Uk+1(X;χk+1), (7)

where
U1(X;χ1), ..., Uk(X;χk)

are metaharmonic functions with parameters χ1, ..., χk respectively. But, since
the validity of (3) is obvious with n = 1, we find at once from (7) that it also
holds for any positive integer n, which was to be proved.
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If we now apply the operator

(∆ + χ1)...(∆ + χi−1)(∆ + χi+1)...(∆ + χn),

to both sides of (3), we easily obtain the formula

Ui(X;χi) =
(∆ + χ1)...(∆ + χi−1)(∆ + χ i+ 1)...(∆ + χn)U(x;A)

(χ1 − χi)...(χi−1 − χi)(χi+1 − χi)...(χn − χi)
. (8)

This shows that the metaharmonic functions appearing in (3) are uniquely
determined by the n-metaharmonic function U(X;A).

20. We now take the case when k = 0, while k1, ..., km are arbitrary positive
integers. In this case equation (A) and formula (1) become respectively

(∆ + χ1)
k1(∆ + χ2)

k2 ...(∆ + χm)
kmU = 0, (9)

U(X;A) =
m∑
i=1

ki−1∑
j=0

rj
∂jUij(X;χi)

∂rj
. (10)

Let the latter formula hold for

k1 = p1, ..., km = pm,

where p1, ..., pm are arbitrary positive integers; we consider the equation

(∆ + χ1)
p1+1(∆ + χ2)

p2 ...(∆ + χm)
pmU = 0, (11)

which is obviously equivalent to

(∆ + χ1)
p1(∆ + χ2)

p2 ...(∆ + χm)
pmU = U ′

1(X;χ1), (12)

where U ′
1(X;χ1) is a metaharmonic function with parameter χ1.

We introduce for brevity the notation

∆k ≡ rk
∂k

∂rk
(k = 0, 1, ...; ∆0 ≡ 1) (13)

and show that equation (12) is satisfied by

∆p1U1(X;χ1), (14)

where U1(X;χ1) is the metaharmonic function with parameter χ1, given by

U1(X;χ1) =
(−1)p1U ′

1(X;χ1)

2p1p1!χ
p1
1

∏
i̸=1

(χi − χ1)pi
. (15)

To prove this we need to make use of the formula

(∆ + χ)∆kU(X;χ) = −2χk∆k−1U(X;χ)− χk(k − 1)∆k−2U(X;χ) (16)

(k = 0, 1, 2, ...; ∆−1 = ∆−2 ≡ 0),
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where U(X;χ) is any metaharmonic function with the parameter χ. This
formula is easily shown to hold by using the familiar expression for the operator
∆ in polar coordinates (see §1).

Let U be a regular solution of equation (11) in the domain T . Now, by
(12) and (15), the function U1(X;χ1) will be metaharmonic in the domain T ,
hence it is analytic in the same domain T .

If we now apply the operator ∆ + χ successively k − 1 times to both sides
of (16) and use this formula each time, we easily find that

(∆ + χ)k∆kU(X;χ) = (−1)k2kk!χkU(X;χ) (k = 0, 1, 2, ...). (17)

On putting

k = p1, χ = χ1, U(X;χ) = U1(X;χ1),

in this formula, where U1(X;χ1) is the function defined by (15), and applying
to both sides of the resulting equation the operator (∆ + χ2)

p2 ...(∆ + χm)
pm ,

we obtain by the formula

(∆ + χj)
pjU(X;χj) = (χj − χi)

pjU(X;χi), (18)

together with (15)

(∆ + χ2)
p2 ...(∆ + χm)

pm∆p1U1(X;χ1) = U ′
1(X;χ1),

which was to be proved.
According to our assumption, (10) holds for

k = p1..., km = pm.

The general solution of (12), or what amounts to the same thing, of equation
(11), is therefore

m∑
i=1

pi−1∑
j=0

∆jUij(X;χi) + ∆p1U1(X;χ1).

But, if we introduce the notation

U1(X;χ1) = U1,p1(X;χ1),

this expression is the same as (10) with

k1 = p1 + 1, k2 = p2, ..., km = pm.

By applying this result and remembering that we have already proved (10)
above for ki = 1 (i = 1, ..., n), we find immediately that (10) holds for any
positive integers k1, ..., km.
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We now proved that the metaharmonic functions Uij(X;χi) appearing
in (10) are uniquely defined by the corresponding n-metaharmonic function
U(X;A) and that, in addition, (10) is always a solution of equation (A).

We obviously have from (17):

(∆ + χ)k+l∆kU(X;χ) = 0, (19)

where l is any positive integer, and U(X;χ) is any metaharmonic function
with parameter χ.

We introduce into discussion the operators

Fj,s(∆) ≡
(−1)s(∆ + χj)

s
∏
i̸=j

(∆ + χi)
ki

2ss!χs
j

∏
i̸=j

(χi − χj)ki
(20)

(j = 1, ...,m; s = 0, 1, ..., kj).

When s = kj the operator Fj,s(∆) is the same, up to a constant factor, as
the operator on the left-hand side of (9).

On applying the operator Fj,s(∆) to both sides of (10) and taking (18) and
(19) into account, we get

Ujs(X;χj) = Fj,s(∆)U(X;A)− Fj,s(∆)

ki−1∑
i=s+1

∆iUji(X;χj) (21)

(j = 1, ...,m; s = 0, 1, ..., kj − 1).

On putting s = kj − 1 in this formula, we get

Uj,kj−1(X,χj) = Fj,kj−1(∆)U(X;A), (j = 1, ...,m), (22)

i.e. the metaharmonic functions

Uj,kj−1(X;χj),

appearing in (10) are uniquely defined by the n-metaharmonic function U(X;A).
We now assign to the index s in (21) the value kj − 2 and use the fact that

the functions Uj,kj−1 are already given by (22), and thus obtain an expression
for the functions

Uj,kj−2(X;χj) (j = 1, 2, ...,m).

On proceeding further in this way, we can find an expression for all the
metaharmonic functions appearing in (10) in terms of the n-metaharmonic
function U(X;A), these metaharmonic functions being uniquely defined, as is
clear from the method of obtaining them. In addition, as may easily be seen
from (19), expression (10) is always a solution of equation (A).

30. It now remains to consider the most general case, when k, k1, ..., km are
arbitrary positive integers.
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In this case, by virtue of (10), equation (A) is equivalent to

∆kU =
m∑
i=1

ki−1∑
j=0

∆jU
′
ij(X;χi), (23)

where
U ′
ij(X;χi)

are metaharmonic functions with the parameters χi respectively. We show
that the constants

Bi,s
j,0 (i = 1, ...,m; s = 0, 1, ..., ki − 1; j = 0, 1, ..., s)

can always be chosen in such a way that the function

W (X) =
m∑
i=1

ki−1∑
s=0

s∑
j=0

Bi,s
j,0∆jU

′
is(X;χi) (24)

satisfies equation (23).
On applying the operator ∆ to both sides of (24) and taking into consid-

eration (16), we get

∆W =
m∑
i=1

ki−1∑
s=0

s∑
j=0

Bi,s
j,1∆jU

′
is(X;χi), (25)

where

Bi,s
j,1 = −χi[B

i,s
j,0 + 2(j + 1)Bi,s

j+1,0 + (j + 1)(j + 2)Bi,s
j+2,0] (26)

(i = 1, ..,m; s = 0, 1, ..., ki − 1; j = 0, 1, ..., s; Bi,s
kj ,0

= Bi,s
ki+1,0 = 0).

If we now apply the operator ∆ successively to both sides of (25) and use
formula (26) each time, we obtain the general formula

∆lW (X) =
m∑
i=1

ki−1∑
s=0

s∑
j=0

Bi,s
j,l∆jU

′
is(X;χi), (27)

where

Bi,s
j,l = (−1)lχl

i[B
i,s
j,l−1 + 2(j + 1)Bi,s

j+1,l−1 + (j + 1)(j + 2)Bi,s
j+2,l−1] (28)

(i = 1, ...,m; s = 0, 1, ..., ki − 1; j = 0, 1, ..., s;

l = 0, 1..., ; Bi,s
ki,l

= Bi,s
ki+1,l = 0).
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If we now put l = k in (27) and (28) and

Bi,s
s,k = 1, Bi,s

s−1,k = 0, ..., Bi,s
0,k = 0 (29)

(i = 1, ...,m; s = 0, 1, ..., ki − 1),

then (27) becomes

∆kW (X) =
m∑
i=1

ki−1∑
s=0

∆sU
′
is(X;χi).

Thus it may be seen that the functionW given by (24) is in fact a solution of
equation (23), provided conditions (29) hold. We now show that the constants
Bi,s

j,0 are in fact uniquely defined by these latter conditions.
It may easily be seen that the constants Bj,k−1 are uniquely defined from

(29). By using them, we can find the constants Bi,s
j,k−2 from (28) with l =

k − 1. On continuing this process, we arrive finally at equation (26) whence
the required constants Bi,s

j,0 may be found, which was to be proved.
If we now introduce the notation

Uij(X;χi) =

ki−1∑
s=j

Bi,s
j,0U

′
is(X;χi), (30)

expression (24) becomes

W (X) =
m∑
i=1

ki−1∑
j=0

∆jUij(X;χi)

and the general solution of equation (23) becomes

U(X;A) = V (X) +
m∑
i=1

ki−1∑
j=0

∆jUij(X;χi),

where V (X) denotes a k-harmonic function.
We have thus proved (1) in the most general case, and the proof of theorem

9 is consequently complete.
2. We now find the general form of solution of equation (A), depending

only on r. If U(X;A) is such a solution, the metaharmonic functions appearing
in (1) will also be functions of r only, i.e. they will have the form

Uij(X;χi) = αijr
−qH(1)

q (λir) + βijr
−qH(2)

q (λir) (31)

(i = 1, ...,m; j = 0, 1, ..., ki − 1; λi =
√
χi),

where αij, βij are arbitrary complex constants. If we now use successively the
formula

d

dx
[x−qH(ν)

q (x)] = −x−qH
(ν)
q+1(x) (ν = 1, 2),
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we obtain from (1), on substituting (31) in it, the expression

m∑
i=1

ki−1∑
j=0

Aisr
−q+sH

(1)
q+s(λir) + Bisr

−q+sH
(2)
q+s(λir), (30a)

where Ais, Bis are arbitrary constants which can be expressed linearly in terms
of the constants αij and βij.

Expression (31) represents the most general form of the solution of equation
(A) which is a function of only r. Provided not all the Ais are respectively equal
to Bis, this expression will have a singularity of the form 1/rp−2 or log1/r at a
fixed point, according to whether p > 2 or p = 2. The function (30a) belongs
to the class of so-called elementary solutions of the equation (A)19.

§ 6. Riquier’s boundary value problem for equation (A)

We will deal here with some simple applications of the above results to the
solution of boundary value problems connected with equation (A).

1. Let T be a finite domain, with respect to which any Dirichlet problem
(with continuous data) for the Laplace equation has a solution. We consider
the following boundary value problem:

Problem R. Find a solution of equation (A), regular in the domain T , from
the boundary conditions

U = f0(x), ∆U = f1(x), ..., ∆
n−1U = fn−1(x), (R)

where f0(x), f1(x), ..., fn−1(x) are given continuous functions of the boundary
point x20.

We will confine ourselves for simplicity to the case when the equation

χn − a1χ
n−1 + ...+ (−1)nan = 0 (a)

has only simple non-zero roots χ1, ..., χn, i.e. k = 0, ki = 1 (i = 1, ..., n).
The general case can be treated in exactly the same way.
By Theorem 9, the required solution is given in this case by

U(X;A) = U1(X;χ1) + ...+ Un(X;χn), (3)

19These solutions were obtained by another method by Ghermanescu [18], where, inciden-
tally, a fairly complete list of references to articles concerned with an equation of the type
(A) can be found.

20This problem was first considered by Riquier [17] for the n-harmonic equation in the
case p = 2. The major part of Ghermanescu’s article (Ghermanescu [18]) is concerned with
the solution of the problem R in the case of equation (A), though it gives no criterion for
the existence of a solution of the problem; as it will be seen below, the criterion is in fact
extremely simple.
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where U1, ..., Un are metaharmonic functions in the domain T with parameters
χ1, ..., χn respectively, i.e.

∆Ui + χiUi = 0 (i = 1, ..., n). (31)

From (8) and the boundary conditions (R), we find that

U+
i (x;χi) = φi(x) x ∈ S (i = 1, ...,m). (32)

where
φi(x) = Ai1f0(x) + Ai2f1(x) + ...+ Ainfn−1(x), (33)

and the Aik are known constants, independent of the choice of functions
f0, f1, ..., fn−1, and such that the determinant |Aik| ≠ 0.

The problem R thus reduces to the solution of n independent Dirichlet
problems for metaharmonic functions. It may easily be seen that these latter
problems have a solution if the problem R has a solution, and vice versa.

Consequently, the necessary and sufficient condition for problem R to have
a solution for any continuous boundary data is that the roots χ1, ..., χn of
equation (a) are not eigenvalues of the Dirichlet problem for the metaharmonic
equation; the solution of problem R is unique if it exists.

This theorem still holds when equation (a) has multiple roots.
Hence the sufficient condition for problem R to have a solution is that the

equation (a) has no positive roots.
2. We now consider problem R in the case of an infinite domain. Let T be

an infinite domain of class B. The problem R now obviously again reduces to
finding the metaharmonic functions U1, ..., Un from the boundary conditions
(32). But in order for the problem to be well-pesed, we must add to these
boundary conditions further conditions at infinity. The latter conditions have
the form

dUk

dr
− iλkUk = eiλkro(r−q− 1

2 ) (λ2
k = χk), (Ik)

when Im(λk) ≥ 0, and

dUk

dr
+ iλkUk = e−iλkro(r−q− 1

2 ), (IIk)

when Im(λk) ≤ 0, where, by (8), the Uk are metaharmonic functions connected
with the required solution of equation (A) by the formulae

Uk(X;χk) =

∏
i̸=k

(∆ + χk)U(X;A)∏
i̸=k

(χi − χk)
(k = 1, ..., n). (34)

The problem R for an infinite domain thus reduces to n independent prob-
lems De. But we showed in §4 that these problems always have a solution. We
therefore have:
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The problem R always has a solution in the case of an infinite domain T
of class B (whatever the continuous boundary data).

A completely analogous result can be obtained when the equation (a) has
multiple roots.

A similar method of solution may easily be seen to be possible for the
problem with boundary condition of the type

dU

dν
= f0(x),

d∆U

dν
= f1(x), ...,

d∆n−1U

dν
= fn−1(x), (R′)

where ν is the normal to S.
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