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Introduction

Let us consider the classical Cauchy-Dirichlet problem for the heat equation{
∂u

∂t
= ∆u, for t > 0,

u(x, 0) = φ(x), x ∈ Rn,
(1)

where φ is a given function in C0(Rn) ∩ L∞(Rn).
It is well known that the unique solution of problem (1) in the class of

smooth bounded solutions is given by the formula

u(x, t) =
1√

(4πt)n

∫
Rn

φ(y) e−
|x−y|2

4t dy, x ∈ Rn, t > 0. (2)

From (2) it follows immediately

|u(x, t)| 6 ∥φ∥∞, t > 0, (3)

since
1√

(4πt)n

∫
Rn

e−
|x−y|2

4t dy = 1 (t > 0). (4)

Inequality (3) leads to

∥u(·, t)∥∞ 6 ∥φ∥∞, t > 0,

and this in turn implies that the norm ∥u(·, t)∥∞ is a decreasing function of t.
In fact, fix t0 > 0 and consider the problem{

∂v

∂t
= ∆v, for t > t0,

v(x, t0) = u(x, t0), x ∈ Rn.
(5)

It is clear that the unique solution of (5) is given by v(x, t) = u(x, t) (t > t0)
and we have

∥v(·, t)∥∞ 6 ∥u(·, t0)∥∞, t > t0,

i.e.
∥u(·, t)∥∞ 6 ∥u(·, t0)∥∞, t > t0.

But the L∞ norm is not the only norm for which we have this kind of
dissipativity. Let us consider the Lp-norm with 1 < p < ∞. By Cauchy-
Hölder inequality, from (2) we get

|u(x, t)| 6
(

1√
(4πt)n

∫
Rn

|φ(y)|pe−
|x−y|2

4t dy

)1/p(
1√

(4πt)n

∫
Rn

e−
|x−y|2

4t dy

)1/p′
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(1/p+ 1/p′ = 1) and then, keeping in mind (4),

|u(x, t)|p 6 1√
(4πt)n

∫
Rn

|φ(y)|pe−
|x−y|2

4t dy.

Integrating over Rn and applying Tonelli’s Theorem we find∫
Rn

|u(x, t)|pdx 6 1√
(4πt)n

∫
Rn

dx

∫
Rn

|φ(y)|pe−
|x−y|2

4t dy =

1√
(4πt)n

∫
Rn

|φ(y)|pdy
∫
Rn

e−
|x−y|2

4t dx =

∫
Rn

|φ(y)|pdy

and we have proved that
∥u(·, t)∥p 6 ∥φ∥p. (6)

As before, this inequality implies that the norm ∥u(·, t)∥p is a decreasing
function of t.

Let us consider now the more general problem{
∂u

∂t
= Au, for t > 0,

u(x, 0) = φ(x), x ∈ Ω,
(7)

where Ω is a domain in Rn and A is an elliptic partial differential operator of
order two

Au =
∑
|α|62

aα(x)D
αu . (8)

A natural question arises: under which conditions for the operator A the
solution u(x, t) of the problem (7) satisfies the inequality (6) ?

The aim of this short course is to answer to this question.
In order to precise our goal, let us make a simple remark. As we know

already, (6) implies that ∥u(·, t)∥p is a decreasing function of t and then

d

dt
∥u(·, t)∥p 6 0. (9)

On the other hand, at least formally, we have (1)

d

dt
∥u(·, t)∥ p

p =
d

dt

∫
Ω

|u(x, t)|pdx = pRe

∫
Ω

⟨∂tu, u⟩|u|p−2dx, (10)

where ⟨·, ·⟩ denotes the usual scalar product in C.
(1)Note that ∂t|u| = ∂t

√
uu = (utu+ uut)/(2

√
uu) = Re(utu/(2|u|)).

8



Since u is the solution of the problem (7), keeping in mind (10), we have
that (9) holds if and only if

Re

∫
Ω

⟨Au, u⟩|u|p−2dx 6 0.

This leads to the following definition: let A a linear operator from D(A) ⊂
Lp(Ω) to Lp(Ω); A is said to be Lp-dissipative if

Re

∫
Ω

⟨Au, u⟩|u|p−2dx 6 0 ∀ u ∈ D(A). (11)

From what we have said before, if A is Lp-dissipative and if the problem
(7) has solution, then (9) holds.

Of course there are several details we have to precise: at first, we have to
understand what condition (11) means when 1 6 p < 2 and moreover we have
to justify in a rigorous way all the procedure for obtaining it.

This can be done in an abstract and very general setting, by means of the
Functional Analysis and Section 1.2 is devoted to such a purpose.

We end this Introduction with a well known fact (see e.g. [34, p.215]). If
the operator (8) has real smooth coefficients and it can be written in divergence
form, then we have the Lp-dissipativity for any p. If 2 6 p < ∞ this can be
deduced easily by integration by parts. If A = ∂i(aij∂j) (aji = aij ∈ C1(Ω)),
we can write ∫

Ω

⟨Au, u⟩|u|p−2dx = −
∫
Ω

aij∂ju ∂i(u |u|p−2) dx .

If we suppose that aijξiξj > 0 for any ξ ∈ Rn, an easy calculation shows that

Re

∫
Ω

aij∂ju ∂i(u |u|p−2) dx > 0

and the Lp-dissipativity of A follows. Some extra arguments are necessary for
the case 1 6 p < 2.

If the operator (8) has complex coefficients and they are not smooth, the
investigation is not so simple.

During the last half a century various aspects of the Lp-theory of semigroups
generated by linear differential operators were studied in [4, 8, 2, 37, 9, 16, 35,
17, 10, 11, 21, 22, 19, 20, 3, 7, 15, 23, 36, 32, 5, 30, 6] and others. An account
of the subject can be found in the book [33], which contains also an extensive
bibliography.

These notes are divided in three parts. In the first one we provide the
basic facts of the general theory. For us the crucial result in this part is the
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Lumer-Phillips Theorem. In [29] V. G. Maz’ya and P. E. Sobolevskĭı obtained
independently of Lumer and Phillips the same result under the assumption
that the norm of the Banach space is Gâteaux-differentiable. In the same
paper some applications to second order elliptic operators are given. It is
interesting to remark that this paper was sent to the journal in 1960, before
the Lumer-Phillips paper [24] appeared.

Much of the material of this part, containing classical results, is taken from
the books [14, 34].

In the second chapter we give a detailed description of the results obtained
in [5] and [6]. They concern the Lp-dissipativity of scalar second order partial
differential operators with complex coefficients.

In these two parts, we have tried to provide a self-contained exposition,
giving all the proofs of the needed results.

In the last chapter we survey, without proofs, several connected results
concerning the Lp-dissipativity of systems of partial differential operators and
the nondissipativity of higher order operators. These results were mostly
obtained by Vladimir Maz’ya and his co-authors G. Kresin, M. Langer and
myself.
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Chapter 1

A short introduction to
Semigroup Theory

1.1 The Hille-Yosida Theorem

1.1.1 Uniformly continuous semigroups

Let X be a Banach space. A semigroup of linear operators on X is a family of
linear and continuous operators T (t) (0 6 t <∞) from X into itself such that

T (0) = I,

T (t+ s) = T (t)T (s) (s, t > 0).

The linear operator

Ax = lim
t→0+

T (t)x− x

t
(1.1)

is the infinitesimal generator of the semigroup T (t).

The domain D(A) of the operator A is the set of x ∈ X such that the
following limit does exist

lim
t→0+

T (t)x− x

t
.

We remark that the linear operator A does not need to be continuous.

The semigroup T (t) is said to be uniformly continuous if

lim
t→0+

∥T (t)− I∥ = 0. (1.2)

The uniformly continuous semigroups satisfy a lot of nice properties.
However, as the next result shows, these semigroups are very particular. This
is shown by the following theorem, where B(X) denotes the class of linear and
continuous operators from X into itself.
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Theorem 1 The operator A is the generator of a uniformly continuous
semigroup if and only if A ∈ B(X). Moreover

T (t) = etA, (1.3)

where

etA =
∞∑
n=0

(tA)n

n!
. (1.4)

We mention two important properties of a uniformly continuous semigroup
T (t):

(i) there exists a constant ω > 0 such that

∥T (t)∥ 6 eωt,

(ii) the function T (t) is differentiable in norm and

dT (t)

dt
= AT (t) = T (t)A (t > 0). (1.5)

Formula (1.5) shows that the function u(t) = T (t)u0 is the solution of the
evolution problem 

du

dt
= Au (t > 0),

u(0) = u0,

(1.6)

where u0 is a given element of X.

1.1.2 Strongly continuous semigroups

Unfortunately, if A is a partial differential operator, usually it is an unbounded
operator, i.e. it does not belong to B(X).

Then it is necessary to weaker the condition (1.2) and consider more general
semigroups. We say that T (t) is a strongly continuous semigroup (briefly, a
C0-semigroup) if

lim
t→0+

T (t)x = x ∀ x ∈ X.

The operator A is said to be the generator of the C0-semigroup if (1.1)
holds for any x ∈ D(A). We remark that in this case the operator A may be
unbounded.

We have seen that if T (t) is a uniformly continuous semigroup, then
∥T (t)∥ 6 eω t. In case of a C0-semigroup, we have
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Theorem 2 Let T (t) be a C0 semigroup. There exist two constants ω > 0,
M > 1 such hat

∥T (t)∥ 6M eωt, 0 6 t <∞. (1.7)

Proof. First let us show that there exist M, η > 0 such that

∥T (t)∥ 6M ∀ t ∈ [0, η]. (1.8)

If (1.8) is false, we can find a sequence of real numbers tn > 0 such that
∥T (tn)∥ > n, tn → 0. It follows that there exists x ∈ X such that

sup
n∈N

∥T (tn)x∥ = ∞.

If not, we would have

sup
n∈N

∥T (tn)x∥ <∞ ∀ x ∈ X;

in view of the Banach-Steinhaus Theorem, this implies

sup
n∈N

∥T (tn)∥ <∞

and this is absurd. Formula (1.8) is proved.
Since ∥T (0)∥ = 1, we haveM > 1. Let now t be a nonnegative number; we

can write t = nη + δ, where n is a natural number and 0 6 δ < η. Therefore

∥T (t)∥ = ∥T (δ)T (η)n∥ 6Mn+1 =M1+ t−δ
η 6M1+ t

η =M eωt,

where ω = (logM)/η.

A first consequence is that T (t)x is continuous.

Theorem 3 Let T (t) be a C0 semigroup. For any x ∈ X, T (t)x is a continuos
function on X of the real variable t > 0.

Proof. The continuity from the right at t = 0 is obvious. Let us fix t > 0
and take h > 0; we have

∥T (t+ h)x− T (t)x∥ 6 ∥T (t)∥∥T (h)x− x∥ 6Meω t∥T (h)x− x∥

and then
lim
h→0+

∥T (t+ h)x− T (t)x∥ = 0.

On the other hand, if t− h > 0, we have also

∥T (t− h)x− T (t)x∥ 6 ∥T (t− h)∥∥x− T (h)x∥ 6Meω (t−h)∥∥x− T (h)x∥ .
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It follows
lim
h→0−

∥T (t+ h)x− T (t)x∥ = 0

and the result is proved.

The next theorem shows some interesting properties of C0-semigroups.

Theorem 4 Let T (t) be a C0-semigroup and A its generator. Then

a) lim
h→0

1

h

∫ t+h

t

T (s)x ds = T (t)x ∀ x ∈ X.

b) x ∈ X =⇒
∫ t

0

T (s)x ds ∈ D(A) and

A

(∫ t

0

T (s)x ds

)
= T (t)x− x. (1.9)

c) x ∈ D(A) =⇒ T (t)x ∈ D(A) and

d

dt
T (t)x = AT (t)x = T (t)Ax. (1.10)

d) for any x ∈ D(A) we have

T (t)x− T (s)x =

∫ t

s

T (τ)Axdτ =

∫ t

s

AT (τ)x dτ. (1.11)

Proof. Fix x ∈ X and t > 0; given ε > 0, in view of the previous theorem,
there exists δε > 0 such that

∥T (s)x− T (t)x∥ < ε |s− t| < δε.

It follows that, if |s− t| < δε, then∥∥∥∥1h
∫ t+h

t

(T (s)x− T (t)x) ds

∥∥∥∥ 6 1

|h|

∣∣∣∣∫ t+h

t

∥T (s)x− T (t)x∥ds
∣∣∣∣ < ε,

i.e. a) (it is obvious how to change the proof for t = 0).
As far b) is concerned, fix x ∈ X and h > 0. One has

T (h)− I

h

∫ t

0

T (s)x ds =
1

h

∫ t

0

(T (s+ h)x− T (s)x)ds =

1

h

∫ t+h

t

T (s)x ds− 1

h

∫ h

0

T (s)x ds.

14



The last term tends to T (t)x − x as h → 0+ because of a), the integral in b)
belongs to D(A) and b) holds.

Let now x ∈ D(A) and h > 0; we have

T (h)− I

h
T (t)x = T (t)

(
T (h)− I

h

)
x → T (t)Ax.

This shows that T (t)x belongs to D(A) and moreover AT (t)x = T (t)Ax.
We have also proved that

d+

dt
T (t)x = AT (t)x = T (t)Ax.

Let us consider now the left derivative. We can write

T (t− h)x− T (t)x

−h
− T (t)Ax = T (t− h)

[
x− T (h)x

−h

]
− T (t)Ax =

T (t− h)

[
T (h)x− x

h
− Ax

]
+ [T (t− h)− T (t)]Ax.

Since x ∈ D(A), we have

lim
h→0+

T (h)x− x

h
= Ax .

The norm ∥T (s)∥ being bounded on the compact sets, in view of Theorem
2 (note the, differently from the uniformly continuous semigroups, T (t) does
not need to be continuous !), we find

lim
h→0+

T (t− h)

[
T (h)x− x

h
− Ax

]
= 0.

Moreover
lim
h→0+

[T (t− h)− T (t)]Ax = 0

and thus
d−

dt
T (t)x = T (t)Ax.

This proves the statement c).
Finally, (1.11) is obtained by integrating (1.10).

We recall that the operator A is closed if its graph is closed, i.e. ifxn ∈ D(A)
xn → x
Axn → y

=⇒
{
x ∈ D(A)
Ax = y.

(1.12)
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Theorem 5 Let A be the generator of the C0-semigroup T (t). Then A is a
densely defined closed operator.

Proof. We start by proving that D(A) is dense in X. Let x ∈ X and
define

xt =
1

t

∫ t

0

T (s)x ds.

From b) of previous theorem, xt ∈ D(A) and from a) xt → x. This means
that D(A) = X.

In order to prove that A is a closed operator, we have to show that (1.12)
holds. Since xn ∈ D(A), (1.11) implies

T (t)xn − xn =

∫ t

0

T (s)Axnds.

Letting n→ ∞, one has

T (t)x− x =

∫ t

0

T (s)y ds

from which
T (t)x− x

t
=

1

t

∫ t

0

T (s)y ds.

As t→ 0+, the right hand side tends to y and thus x ∈ D(A), Ax = y.

The next result shows that a C0-semigroup is uniquely determined by its
generator.

Theorem 6 Let A and B two generators of the C0-semigroups T (t) and S(t)
respectively. If A = B then the two semigroups coincide, i.e. T (t) = S(t) for
any t > 0.

Proof. Let x ∈ D(A) = D(B). From (1.10) it follows

d

ds
T (t− s)S(s)x = −AT (t− s)S(s)x+ T (t− s)BS(s)x =

−T (t− s)AS(s)x+ T (t− s)BS(s)x = 0 (0 < s < t)

and then the function T (t − s)S(s)x of the real variable s is constant. In
particular T (t)x = S(t)x, i.e. T (t) = S(t) on D(A). The domain D(A) being
dense in X (see Theorem 5), it follows that T (t) = S(t).

Properties (1.7) and (1.10) imply that, as in the case of uniformly
continuous semigroups, for any given u0 ∈ D(A) the function u(t) = T (t)u0 is
the only solution of the abstract Cauchy problem (1.6).
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Remark 1 It is still possible to solve the Cauchy problem (1.6) where u0 is
an arbitrary element of X. In order to do that, it is necessary to introduce a
concept of generalized solution. For this we refer to [34, Ch.4].

Example 1 An example of C0-semigroup.
Let X = C0([0,∞]), where this symbol means the space of the complex

valued functions defined in [0,∞) such that there exists the limit

lim
x→+∞

f(x).

The space X, equipped with the norm

∥f∥∞ = sup
x∈[0,+∞)

|f(x)| ,

becomes a Banach space (prove it !). Define the family of operators T (t)
(t > 0) by

[T (t)f ](x) = f(x+ t).

Obviously, for any t > 0, it makes sense to consider f(x + t). Moreover,
T (t)f is a continuous function and since

lim
x→+∞

[T (t)f ](x) = lim
x→+∞

f(x).

T (t) maps X into itself. Let us remark that

∥T (t)f∥∞ 6 ∥f∥∞ .

It is clear that T (t) is a semigroup. Let us prove that it is a C0-semigroup,
i.e. that

lim
t→0+

∥T (t)f − f∥∞ = 0 . (1.13)

By hypothesis, there exists α ∈ C to which f(x) tends as x→ +∞. Given
ε > 0, there exists Kε > 0 such that

|f(x)− α| < ε ∀ x > Kε.

This implies

|f(x+t)−f(x)| 6 |f(x+t)−α|+ |α−f(x)| < 2 ε ∀ x > Kε, t > 0. (1.14)

On the other hand f is uniformly continuous on [0, Kε + 1] and then there
exists δε > 0 (which can be supposed to be less than 1) such that

|f(x+ t)− f(x)| < ε ∀ x ∈ [0, Kε], 0 6 t < δε .
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Keeping in mind (1.14), we find

|f(x+ t)− f(x)| < 2 ε ∀ x ∈ [0,∞), 0 6 t < δε

and (1.13) is proved (note that basically we have considered a compactification
of [0,∞) and showed that f has to be uniformly continuous).

What is the generator A of T (t) and its domain D(A) ?
The function f belongs to D(A) if and only if there exists in X the limit

Af = lim
t→0+

T (t)f − f

t
= lim

t→0+

f(t+ ·)− f(·)
t

.

In particular,

Af(x) = lim
t→0+

f(t+ x)− f(x)

t
∀ x ∈ [0,∞)

and then f admits the right derivative for any x > 0 and the right derivative,
Af , is continuous everywhere. But then, in view of a well known result in
the theory of functions of one real variable (see, e.g.., [34], p.42–43), f is
differentiable for any x > 0.

Moreover, since Af ∈ X, there exists also

lim
x→+∞

f ′(x).

Therefore D(A) is contained in the space of the functions f ∈ C1([0,∞))
such that f ′ ∈ X and Af = f ′.

Vice versa, if f ∈ C1([0,∞)) and f ′ ∈ X, then f ∈ D(A). In fact, we have

f(x+ t)− f(x)

t
− f ′(x) =

1

t

∫ x+t

x

[f ′(u)− f ′(x)] du .

But, since f ′ ∈ X, f ′ is uniformly continuous and then |f ′(u)− f ′(x)| < ε
for |x− u| less than a certain δε. Thus∣∣∣∣f(x+ t)− f(x)

t
− f ′(x)

∣∣∣∣ 6 1

t

∫ x+t

x

|f ′(u)− f ′(x)| du < ε 0 < t < δε

and this shows that

lim
t→0+

∥∥∥∥f(·+ t)− f

t
− f ′

∥∥∥∥
∞

= 0,

i.e. f ∈ D(A), Af = f ′. We have thus proved that

D(A) = {f ∈ X | ∃ f ′, f ′ ∈ X}, Af = f ′.
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1.1.3 The Hille-Yosida Theorem

For us it will be particular important the case in which we can choose ω = 0
and M = 1 in the inequality (1.7). In this case we have

∥T (t)∥ 6 1

and the semigroup is said to be a contraction semigroup or a semigroup
of contractions. If the operator A is the generator of a C0-semigroup of
contractions, the solution of the Cauchy problem (1.6) satisfies the estimates

∥u(t)∥ 6 ∥u0∥ . (1.15)

If X = Lp(Ω), (1.15) coincides with (6). This why we would like to have
conditions under which A is such a generator. A first answer is given by the
famous Hille-Yosida Theorem. For the proof we need some lemmas.

We recall that the resolvent of a linear operator A, ϱ(A), is the set of the
complex numbers λ such that there exists the resolvent operator (λI−A)−1 and
it is continuous. The spectrum σ(A) of the operator A is defined as C \ ϱ(A).
By R(λ : A) (λ ∈ ϱ(A)), or shortly Rλ, we denote the operator (λI − A)−1.

Lemma 1 Let A be a linear operator. If ϱ(A) ̸= ∅ then A is closed.

Proof. Suppose that the sequence {xn}, contained in the domain of A, is
such that xn → x and Axn → y.

Given λ ∈ ϱ(A), we get

λxn − Axn → λx− y

and then
xn → Rλ(λx− y).

Because of the uniqueness of the limit, we find

x = Rλ(λx− y).

This shows that x ∈ D(λI − A) = D(A) and (λI − A)x = λx − y, i.e.
Ax = y and the lemma is proved (see (1.12)).

Lemma 2 If λ, µ ∈ ϱ(A) we have the resolvent identity (1)

Rλ −Rµ = (µ− λ)RλRµ. (1.16)

Moreover the operators Rλ and Rµ commute: RλRµ = RµRλ.

(1)Note that if λ, µ,A were numbers, we would have

1

λ−A
− 1

µ−A
=

µ− λ

(λ−A)(µ−A)
.
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Proof. We have

(λI − A)[Rλ −Rµ](µI − A) = [I − (λI − A)Rµ](µI − A) =

(µI − A)− (λI − A) = (µ− λ)I

and (1.16) follows. By exchanging λ and µ we prove the commutativity.

Let A be an operator such that(2) R+ ⊂ ϱ(A); we can then consider Rλ for
any λ > 0. The operator Aλ = λARλ is called the Yosida approximation of A.
Even if A is unbounded, the operator Aλ is a linear and continuous operator
defined all over X. The linearity is obvious, while Aλ is continuous, because

(λI − A)Rλ = I ⇐⇒ ARλ = λRλ − I

and then
Aλ = λ2Rλ − λI. (1.17)

The next lemma shows in which sense Aλ is an approximation of A.

Lemma 3 Let A be a densely defined operator such that R+ ⊂ ϱ(A) and

∥Rλ∥ 6 1

λ
∀ λ > 0.

Then
lim
λ→0+

λRλx = x ∀ x ∈ X (1.18)

lim
λ→0+

Aλx = Ax ∀ x ∈ D(A). (1.19)

Proof. Suppose first x ∈ D(A); since

Rλ(λI − A)x = x

we get
λRλx = x+RλAx.

Limit (1.18) for any x ∈ D(A) follows from the inequality

∥RλAx∥ 6 1

λ
∥Ax∥ .

Let now x ∈ X; given ε > 0, by hypothesis there exists y ∈ D(A) such
that ∥x− y∥ < ε. Since

∥λRλx−x∥ 6 ∥λRλx−λRλy∥+∥λRλy−y∥+∥y−x∥ 6 2 ∥x−y∥+∥λRλy−y∥
(2)By R+ we denote the set {λ ∈ R | λ > 0}.
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we have
lim sup
λ→∞

∥λRλx− x∥ 6 2ε .

Because of the arbitrariness of ε, (1.18) is proved for any x ∈ X.
As far as (1.19) is concerned, formula (1.18) clearly implies

lim
λ→0+

λRλAx = Ax ∀ x ∈ D(A)

and (1.19) follows, because Rλ commute with on the domain of A (3) .

Lemma 4 Let U(t) and V (t) be two contraction semigroups whose generators
are C and D respectively. Suppose that U(t) and V (t) commute, i.e.
U(t)V (s) = V (s)U(t) for any s, t > 0. Then

∥U(t)x− V (t)x∥ 6 t ∥Cx−Dx∥ ∀ x ∈ D(C) ∩D(D). (1.20)

Proof. First observe that from the commutativity of U(t) and V (t) it
follows that also the generator of U(t), C, commute with V (t). Specifically,
let x ∈ D(C); we can write

U(h)− I

h
V (t)x = V (t)

U(h)x− x

h
;

therefore x ∈ D(C) ⇒ V (t)x ∈ D(C) and

CV (t)x = V (t)Cx

(for any t > 0). Keeping in mind (1.10), we have for any x ∈ D(C) ∩D(D)

U(t)x− V (t)x =

∫ t

0

d

ds
[U(s)V (t− s)x] ds =∫ t

0

[U(s)CV (t− s)x− U(s)V (t− s)Dx] ds

and then

U(t)x− V (t)x =

∫ t

0

[U(s)V (t− s)Cx− U(s)V (t− s)Dx] ds .

This implies

∥U(t)x− V (t)x∥ 6
∫ t

0

∥U(s)∥ ∥V (t− s)∥ ∥Cx−Dx∥ ds 6 t ∥Cx−Dx∥ .

(3)In fact (λI − A)Rλ = Rλ(λI − A) = I on D(A) and then ARλx = RλAx for any
x ∈ D(A).
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We are now in a position to prove the famous Hille-Yosida theorem.

Theorem 7 (Hille-Yosida) A linear operator A generates a C0 semigroup
of contractions T (t) if, and only if,

(i) A is closed and D(A) is dense in X;
(ii) ϱ(A) ⊃ ϱ+ and

∥Rλ∥ 6 1

λ
, ∀ λ > 0. (1.21)

Proof. Suppose that A is the generator of a contraction semigroups. We
know already that A is a densely defined and closed operator (see theorem 5).

In order to prove b), observe that for any λ > 0, e−λtT (t) is a contraction
semigroup, because

∥e−λtT (t)∥ = e−λt∥T (t)∥ 6 1.

The generator of e−λtT (t) is A− λI; in fact

e−λtT (t)x− x

t
= e−λtT (t)x− x

t
+
e−λt − 1

t
T (t)x

and then

lim
t→0+

e−λtT (t)x− x

t
= Ax− λx, ∀ x ∈ D(A) = D(A− λI).

We can apply (1.9) and (1.11) to A− λI, obtaining

e−λtT (t)x− x = (A− λI)

(∫ t

0

e−λsT (s)x ds

)
∀ x ∈ X;

e−λtT (t)x− x =

∫ t

0

e−λsT (s)(A− λI)x ds ∀ x ∈ D(A).

Letting t→ +∞ we find

x = (λI − A)

(∫ ∞

0

e−λsT (s)x ds

)
∀ x ∈ X

x =

∫ ∞

0

e−λsT (s)(λI − A)x ds ∀ x ∈ D(A).

The first equality shows that the range of λI − A is all of X, while the
second one implies that λI −A is injective. Then there exists (λI −A)−1 and,
setting y = (λI − A)x,

(λI − A)−1y =

∫ ∞

0

e−λsT (s)y ds .
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This leads to

∥(λI − A)−1y∥ 6
∫ ∞

0

e−λs∥T (s)∥ ∥y∥ ds 6 ∥y∥
∫ ∞

0

e−λsds =
∥y∥
λ
.

Then we have proved that (λI − A)−1 is continuous (i.e. λ ∈ ϱ(A)) and
(1.21) holds.

Vice versa, let A satisfy a) and b). For any λ > 0 we can consider the
Yosida approximation Aλ and the limit (1.19) holds. The operator Aλ, being
linear and continuous, is the generator of a semigroup uniformly continuous
etAλ . This is a contractive semigroup, because, keeping in mind (1.17), we have

∥etAλ∥ = ∥e−λtIeλ
2tRλ∥ 6 e−λteλ

2t∥Rλ∥ 6 e−λteλt = 1

(here we used that λ∥Rλ∥ 6 1).
Define

T (t)x = lim
λ→∞

etAλx ∀ x ∈ X. (1.22)

To see that this definition makes sense, we have to show that this limit
does exist for any x ∈ X.

Let us start by first showing that this limit does exist for any x ∈ D(A):
given λ, µ > 0, it is easy to show that the contraction semigroups etAλ and
etAµ commute and then we can apply Lemma 4. From (1.20) it follows

∥etAλx− etAµx∥ 6 t ∥Aλx− Aµx∥ ∀ x ∈ D(A).

But, if x ∈ D(A), (1.19) shows that Aλx → Ax and then, given ε > 0,
there exists λε > 0 such that, for λ, µ > λε, one has ∥Aλx− Aµx∥ < ε. Thus

∥etAλx− etAµx∥ 6 t ε.

This shows that the limit (1.22) does exist for any x ∈ D(A). Let now
x ∈ X; given ε > 0 let y ∈ D(A)such that ∥x− y∥ < ε. We have

∥etAλx− etAµx∥ 6 ∥etAλx− etAλy∥+ ∥etAλy − etAµy∥+ ∥etAµy − etAµx∥ 6
2∥x− y∥+ ∥etAλy − etAµy∥

and then there exists λε such that, for µ > λε, one has

∥etAλx− etAµx∥ 6 3ε′.

Thus there exists the limit (1.22) for any x ∈ X.
(1.22) implies also

lim
λ→∞

∥T (t)x∥ = lim
λ→∞

∥etAλx∥ 6 ∥x∥ ∀ x ∈ X
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and then ∥T (t)∥ 6 1.
From (1.22) easily follows that T (0) = I, T (t + s) = T (t)T (s), i.e. T (t) is

a semigroup. Let us show that T (t) is continuous:

lim
t→0+

T (t)x = x ∀ x ∈ X (1.23)

We prove first (1.23) when x ∈ D(A). In fact, if x ∈ D(A), we have

etAλx− x =

∫ t

0

d

ds
[esAλx] ds =

∫ t

0

esAλAλx ds ,

from which, letting λ→ ∞ and keeping in mind (1.19), it follows

T (t)x− x =

∫ t

0

T (s)Axds (1.24)

(invoking the dominated convergence theorem, we can pass the limit under the
integral sign, because ∥T (s)Ax∥ 6 ∥Ax∥). We have then

∥T (t)x− x∥ 6
∫ t

0

∥T (s)Ax∥ ds 6 t∥Ax∥

and (1.23) follows for any x ∈ D(A). The density of D(A) in X implies the
result for any x ∈ X.

We have shown that is a contractive C0-semigroup. To complete the proof,
we have to show that A is the generator of T (t).

Let B be the generator of T (t); we have to show that A = B.
Dividing (1.24) by t we get

T (t)x− x

t
=

1

t

∫ t

0

T (s)Axds ∀ x ∈ D(A)

and then the limit (1.1) exists and

lim
t→0+

T (t)x− x

t
= T (t)Ax ∀ x ∈ D(A).

This shows that D(A) ⊂ D(B) and Bx = Ax on D(A). On the other
hand I ∈ ϱ(A) (by hypothesis) and I ∈ ϱ(B) ( because of the necessity part
of the present theorem). Therefore (I − A)−1 and (I − B)−1 do exist and are
continuous. In particular, I − A and I −B are surjective operators. Thus

(I −B)D(A) = (I − A)D(A) = X = (I −B)D(B)
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from which it follows: D(A) = D(B) and then A = B.

Since A can be unbounded, the semigroup generated by A cannot be given
by (1.3), because the series in (1.4) does not converge. Nevertheless, we can
still prove that the semigroup is given by etA, provided this exponential is
understood in a generalized sense. This is shown by the next result.

Lemma 5 If A is the generator of a C0-semigroup, then T (t) is given by (1.3),
where this exponential is understood as

etAx = lim
λ→∞

etAλx, x ∈ X.

Proof. In the proof of the Hille-Yosida Theorem, we have seen that there
exists the limit

lim
λ→∞

etAλx, ∀ x ∈ X

and that it defines a semigroup S(t), whose generator is A.
Both the semigroups T (t) and S(t) being generated by A, Theorem 6

implies T (t) ≡ S(t).

Another interesting formula is the following one, which shows that the
resolvent can be considered as the Laplace transform of the semigroup

Rλu =

∫ ∞

0

e−λt[T (t)u] dt (Re λ > ω).

From the Hille-Yosida Theorem, one can obtain also the following
characterization of the generators of C0-semigroups, where M and ω are the
constants appearing in (1.7)

Theorem 8 A linear operator A generates a C0 semigroup T (t) if, and only
if,

(i) A is closed and D(A) is dense in X;
(ii) ϱ(A) ⊃ {λ ∈ ϱ |λ > ω} and

∥Rn
λ∥ 6 M

(λ− ω)n
∀ λ > ω, n = 1, 2, . . . .

1.2 The dissipativity in an abstract setting

1.2.1 Dissipative operators on Banach spaces

Let X be a (complex) Banach space and denote by X∗ its (topological) dual
space.
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Given x ∈ X, denote by I (x) the set

I (x) = {x∗ ∈ X∗ | ⟨x∗, x⟩ = ∥x∥2 = ∥x∗∥2}.

The set I (x) is called the dual set of x.
It is not difficult to prove that, for any x ∈ X, I (x) is not empty. In fact,

exists f ∈ X∗ such that

⟨f, x⟩ = ∥x∥, ∥f∥ = 1.

Thus x∗ = ∥x∥ f belongs to I (x), since

⟨x∗, x⟩ = ∥x∥⟨f, x⟩ = ∥x∥2, ∥x∗∥ = ∥x∥ ∥f∥ = ∥x∥.

Generally speaking, the set I (x) can contain more than one element. This
does not happen if X∗ is strictly convex, in particular if X is a Hilbert space.

Lemma 6 If X∗ is strictly convex, for any x ∈ X the set I (x) contains only
one element.

Proof. Since I (0) = {0}, the result is true if x = 0.
Let now x ̸= 0 and let f, g be in I (x); let us prove that

f + g

2
∈ I (x). (1.25)

In fact, we have

⟨f, x⟩ = ∥x∥2 = ∥f∥2, ⟨g, x⟩ = ∥x∥2 = ∥g∥2

and therefore ⟨
f + g

2
, x

⟩
=

1

2
⟨f, x⟩+ 1

2
⟨g, x⟩ = ∥x∥2.

This implies

∥x∥2 6 1

2
∥f + g∥ ∥x∥

from which

∥x∥ 6 1

2
∥f + g∥ .

On the other hand, since ∥f + g∥ 6 ∥f∥+ ∥g∥ = 2 ∥x∥, we have

1

2
∥f + g∥ = ∥x∥

26

if x = 0, I (0) = {0}. If x ̸= 0, in view of the Hahn-Banach Theorem, there



and this proves (1.25).
We have thus

∥f + g∥ = 2 ∥x∥ = ∥f∥+ ∥g∥ .
Because of the strictly convexity ofX∗, this implies that f and g are linearly

dependent, i.e. there exists (a, b) ̸= (0, 0) such that af + bg = 0 a.e. .
Supposing a ̸= 0, we find f = λ g. Since

⟨g, x⟩ = ∥x∥2 = ⟨f, x⟩ = λ⟨g, x⟩

we have λ = 1 (note that x ̸= 0 and then ⟨g, x⟩ ̸= 0), i.e. f = g.

Let us determine the dual set I (x) in the particular case of the Lp spaces.
Since the spaces Lp(Ω) (1 < p < ∞) are strictly convex, the dual set I (f)
contains only one element f∗. Let us look for f ∗ in the following form

f ∗(x)

{
= cff(x)|f(x)|α if f(x) ̸= 0
= 0 if f(x) = 0

where cf and α are to be determined.
Since f ∗ has to belong to Lq, and since

|f ∗(x)|q = cqf |f(x)|
q(α+1)

where f ̸= 0, we must have q(α+ 1) = p, i.e. α = p
q
− 1 = p− 2.

Imposing the condition ⟨f∗, f⟩ = ∥f∥2p leads to

∥f∥2p = ⟨f∗, f⟩ = cf

∫
f ̸=0

|f |α+2dx = cf

∫
Ω

|f |pdx = cf∥f∥pp

and then
cf = ∥f∥2−p

p .

Let us prove that we have also ∥f ∗∥q = ∥f∥p. In fact, since |f ∗|q =
cqf |f |q(α+1) = cqf |f |p (where f ̸= 0), we have∫

Ω

|f∗|qdx = cqf

∫
f ̸=0

|f |pdx = ∥f∥q(2−p)+p
p = ∥f∥qp.

We have then proved

Lemma 7 Let X = Lp(Ω) (1 < p < ∞). The dual set I (f) contains only
the element f ∗, where

f ∗(x)

{
= ∥f∥2−p

p f(x) |f(x)|p−2 if f(x) ̸= 0
= 0 if f(x) = 0.
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Remark 2 If p = 1, we can take

f∗(x)

= ∥f∥1
f(x)

|f(x)|
if f(x) ̸= 0

= ψ(x) if f(x) = 0,

where ψ is any measurable function such that |ψ(x)| 6 ∥f∥1 a.e. .
We leave the proof to the reader. This shows that there are infinite

functions f ∗ in I (f), provided that the set {x ∈ Ω | f(x) = 0} has positive
measure and ∥f∥1 > 0.

Let A : D(A) ⊂ X → X a linear operator, X being a (complex) Banach
space. A is said to be dissipative if, for any x ∈ D(A), there exists x∗ ∈ I (x)
such that

Re ⟨x∗, x⟩ 6 0.

Remark 3 Let A be a linear operator defined on a subspace D(A) contained
in Lp(Ω), Ω being a domain in Rn (1 < p < ∞). Thanks to Lemma 7, the
operator A is dissipative with respect to the Lp-norm, briefly is Lp-dissipative,
if, and only if,

Re

∫
Ω

⟨Au, u⟩|u|p−2dx 6 0, ∀ u ∈ D(A),

where the integral is extended on the set {x ∈ Ω | u(x) ̸= 0}.

A lemma which plays a key role is the following one.

Lemma 8 Let x, y ∈ X. The inequality

∥x∥ 6 ∥x− αy∥ (1.26)

holds for any α > 0 if, and only if, there exists φ ∈ I (x) such that

Re⟨φ, y⟩ 6 0. (1.27)

Proof. If x = 0 the result is trivial, since I (0) = {0}. Let x ̸= 0.
If (1.27) is true, for any α > 0 we may write

∥x∥2 = ⟨φ, x⟩ 6 ⟨φ, x⟩ − αRe⟨φ, y⟩ = Re⟨φ, x− αy⟩ 6 ∥x∥ ∥x− αy∥

and (1.26) follows.
Conversely, let us suppose that (1.26) holds for any α > 0. Let φα be an

element of I (x − αy) and define ψα = φα/∥φα∥. Note that φα ̸= 0, because
∥x∥ 6 ∥x− αy∥ = ∥φα∥ and we are assuming x ̸= 0.

28



Moreover

⟨ψα, x− αy⟩ = ⟨φα, x− αy⟩/∥φα∥ = ∥x− αy∥ > ∥x∥ . (1.28)

Because of the Banach-Alaoglu Theorem, we can find a sequence {αn} of

positive numbers such that αn → 0 and ψαn

∗
⇀ψ0, with

∥ψ0∥ 6 1. (1.29)

Putting α = αn in (1.28) and letting n→ ∞, we find (4)

∥x∥ = ⟨ψo, x⟩ 6 ∥ψ0∥ ∥x∥

from which, keeping in mind (1.29), we find

∥ψo∥ = 1.

Define φ = ∥x∥ψ0 . Since

⟨φ, x⟩ = ∥x∥ ⟨ψo, x⟩ = ∥x∥2 = ∥φ∥2

we have φ ∈ I (x). Moreover, the inequality

∥x∥ 6 ∥x− αy∥ = Re⟨ψa, x⟩ − αRe⟨ψa, y⟩ 6 ∥x∥ − αRe⟨ψa, y⟩

shows that
Re⟨ψa, y⟩ 6 0 .

Putting α = αn and letting n→ ∞, we find (1.27).

This lemma has some interesting consequences.

Corollary 1 The linear operator A is dissipative if and only if, for any
x ∈ D(A), we have

∥x∥ 6 ∥x− αAx∥ (1.30)

for any α > 0.

Proof. The operator A is dissipative if, and only if, for any x ∈ D(A),
there exists φ ∈ I (x) such that Re⟨φ,Ax⟩ 6 0. Fixed x ∈ D(A), Lemma
8 (where y = Ax) shows that this happens if and only if (1.30) holds for any
α > 0.

The operator A is said to be m-dissipative if A is dissipative and ϱ(A) ∩
R+ ̸= ∅.

(4)Note that, if xn → x0 and ψn
∗
⇀ψ0, then ⟨ψn, xn⟩ → ⟨ψ, x⟩.
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Corollary 2 The operator A is m-dissipative if, and only if, A is dissipative
and there exists λ > 0 such that R(λI − A) = X.

Proof. If A is dissipative and R(λI −A) = X, then (λI −A)−1 does exist
and is continuous, in view of (1.30). This shows that A is m-dissipative. The
converse is obvious.

Corollary 3 If A is closed and dissipative, then for any λ > 0 the range
R(λI − A) is closed.

Proof. Let yn be a sequence in R(λI − A) such that yn → y0. We can
write yn = λxn − Axn, for some xn ∈ D(λI − A) = D(A).

Because of Corollary 1, we have

∥xn+p − xn∥ 6 ∥(λxn+p − Axn+p)− (λxn − Axn)∥ = ∥yn+p − yn∥

and then {xn} is a Cauchy sequence in X. Let x0 be its limit. We have
Axn = λxn − yn → λx0 − y0. Since A is a closed operator, x0 belongs to D(A)
and Ax0 = λx0 − y0, i.e. y0 = λx0 − Ax0. This shows that y0 belongs to
R(λI − A), i.e. that R(λI − A) is closed.

Lemma 9 Let A be a linear operator and let µ ∈ ϱ(A). Then λ ∈ ϱ(A) if and
only if U−1 belongs to B(X), where

U = I + (λ− µ)(µI − A)−1.

In this case (5)

(λI − A)−1 = (µI − A)−1U−1.

Proof. If U−1 does exist and is continuous, we have

(λI − A)(µI − A)−1U−1 = [(λ− µ)I + (µI − A)](µI − A)−1U−1 =

[(λ− µ)(µI − A)−1 + I]U−1 = U U−1 = I.

In the same way

(µI − A)−1U−1(λI − A) = (µI − A)−1U−1[(λ− µ)I + µI − A] =

(µI −A)−1U−1[(λ−µ)(µI −A)−1+ I](µI −A) = (µI −A)−1(µI −A) = ID(A).

(5)Note that if λ, µ,A were numbers, we would have

1

λ−A
=

1

λ− µ+ µ−A
=

1

µ−A

1

1 + λ−µ
µ−A

.
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This means that (λI −A)−1 exists, is given by (µI −A)−1U−1 and thus it
belongs to B(X).

The proof of the converse is similar.

1.2.2 The Lumer-Phillips Theorem

The next theorems provides new necessary and sufficient conditions under
which A generates a contraction semigroup.

Theorem 9 (Lumer-Phillips) If A generates a C0 semigroup of
contractions, then

(i) D(A) = X;
(ii) A is dissipative. More precisely, for any x ∈ D(A), we have

Re⟨x∗, Ax⟩ 6 0, ∀ x∗ ∈ I (x);

(iii) ϱ(A) ⊃ ϱ+.
Conversely, if
(i’) D(A) = X;
(ii’) A is dissipative;
(iii’) ϱ(A) ∩ ϱ+ ̸= ∅,
then A generates a C0 semigroup of contractions.

Proof. Because of Hille-Yosida Theorem 7, the operator A generates a C0-
semigroup of contractions if and only if the following conditions are satisfied:

(a) A is closed;
(b) D(A) = X;
(c) ϱ(A) ⊃ R+;

(d) ∥Rλ∥ 6 1

λ
∀ λ > 0.

Let us suppose that A generates the C0 semigroup of contractions T (t).
Since (a)-(d) hold true, conditions (i) and (iii) are certainly satisfied. In order
to prove (ii), let x∗ denote any element in I (x). We have

⟨x∗, T (t)x− x⟩ = ⟨x∗, T (t)x⟩ − ∥x∥2

and since

|⟨x∗, T (t)x⟩| 6 ∥x∗∥ ∥T (t)x∥ 6 ∥x∥2,

we find

Re⟨x∗, T (t)x− x⟩ = Re⟨x∗, T (t)x⟩ − ∥x∥2 6 0.
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Supposing x ∈ D(A), dividing by t and letting t→ 0+, we get

Re⟨x∗, Ax⟩ 6 0

and (ii) is proved.
Conversely, let A be an operator satisfying (i’)-(iii’). Condition (b) is

obviously true.
Condition (a) follows from the fact that ϱ(A) ̸= ∅ (see Lemma 1).
Let now µ ∈ ϱ(A) ∩ R+ and α = 1

µ
; since

I − αA = I − 1

µ
A =

1

µ
(µI − A)

the existence of (µI − A)−1 implies that (I − αA)−1 does exist and

(I − αA)−1 = µ (µI − A)−1.

Because of the dissipativity ofA we have (see Corollary 1) ∥(I−αA)−1∥ 6 1,
i.e.

∥(µI − A)−1∥ 6 1

µ
(1.31)

If we choose λ such that |λ− µ| < µ, we get

∥(λ− µ)(µI − A)−1∥ 6 |λ− µ|
µ

< 1

and then the operator I + (λ− µ)(µI − A)−1 is invertible (6).

(6)If B is a linear and continuous operator such that ∥I −B∥ < 1, it is invertible and

B−1 =

∞∑
n=0

(I −B)n.

This follows from a general result holding in an algebra B with unity e: if x ∈ B is such
that ∥x∥ < 1, then e− x is invertible and

(e− x)−1 =
∞∑

n=0

xn.

Indeed, for any integer s we have

(e− x)
s∑

n=0

xn = e− xs+1 =
s∑

n=0

xn(e− x).

Letting s→ ∞,

(e− x)

∞∑
n=0

xn = e =

∞∑
n=0

xn(e− x).
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Lemma 9 assures that λ ∈ ϱ(A). We have shown that µ ∈ ϱ(A) ∩ R+

implies that all the interval (0, 2µ) (7) is contained in ϱ(A). Replacing µ by 3
2
µ

we find that ϱ(A) contains also every λ > 0 such that∣∣∣∣λ− 3

2
µ

∣∣∣∣ < 3

2
µ,

i.e. (0, 3µ) ⊂ ϱ(A). By iterating the argument it follows that R+ ⊂ ϱ(A) and
(c) is proved.

Assertion (d) follows from (1.31), taking into account that R+ ⊂ ϱ(A).

Lumer-Phillips Theorem can be stated in an equivalent form by using the
concept of m-dissipativity.

Theorem 10 (Lumer-Phillips) The operator A generates a C0 semigroup
of contractions if, and only if, A is m-dissipative and D(A) = X.

Proof. The proof follows immediately from Theorem 9 and the definition
of m-dissipative operator.

The following theorem provides a useful sufficient condition for the
generation of a semigroup of contractions.

Theorem 11 Let A be a closed operator with D(A) = X. If A and A∗ are
dissipative, then A generates a C0 semigroup of contractions.

Proof. Because of Lumer-Phillips Theorem 10, we have to prove that A
is m-dissipative. Since A is dissipative by hypothesis, all we have to show is
that there exists λ > 0 such that R(λI − A) = X (see Corollary 2).

Let λ be a positive number. In view of Corollary 3, R(λI − A) is closed.
If R(λI − A) ̸= X, we can find φ ∈ X∗ such that φ ̸= 0 and

⟨φ, λx− Ax⟩ = 0, ∀ x ∈ D(λI − A) = D(A). (1.32)

Condition (1.32) can be written as

⟨λφ− A∗φ, x⟩ = 0, ∀ x ∈ D(A).

From the density of D(A) it follows λφ− A∗φ = 0.
On the other hand, in view of the dissipativity of A∗ and Corollary 1, we

have ∥φ∥ 6 ∥λφ− A∗φ∥. Then φ = 0 and this is absurd.

(7)The inequality |λ− µ| < µ (µ > 0, λ ∈ C), means that λ belongs to the open disc with
radius µ and center µ. Therefore, if we have λ ∈ R – as in the text – the inequality means
0 < λ < 2µ.
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Example 2 (The Convection Equation) Let us consider in L2(Rn) the
operator A defined as

D(A) = {f ∈ L2(Rn) | V · ∇f ∈ L2(Rn)}
Af = −V · ∇f,

where V = (v1, . . . , vn) is a real constant vector. The operator A is L2-
dissipative. In fact,

(Af, f) = −
∫
Rn

f V · ∇f dx

and since(8)

−
∫
Rn

f V · ∇f dx =

∫
Rn

(V · ∇f) f dx ,

we find
(Af, f) = 0 ∀ f ∈ D(A).

Let us show that A is m-dissipative: ϱ(A)∩R+ ̸= ∅. Indeed, we shall prove
more: ϱ(A) ⊃ R+.

Let λ > 0; given g ∈ L2(Rn), consider the equation

λf − Af = g ,

i.e.
λf + V · ∇f = g . (1.33)

This equation has one and only one solution in D(A). In fact, let

f(x) =

∫ ∞

0

e−λsg(x− sV ) ds .

Suppose first that g ∈ C̊∞(Rn); we have

V · ∇f(x) =
∫ ∞

0

e−λsV · ∇x[g(x− sV )] ds = −
∫ ∞

0

e−λs d

ds
[g(x− sV )] ds =

−
[
e−λsg(x− sV )

]s=∞
s=0

− λ

∫ ∞

0

e−λsg(x− sV ) ds = g(x)− λf(x)

(8)The integration by parts can be justified in the following way. It is well known that
C̊∞(Rn) is dense in H1(Rn); in a similar way, one can prove that, given f ∈ D(A), there
exists a sequence fm ∈ C̊∞(Rn) such that fm → f , V ·∇fm → V ·∇f in L2(Rn). Therefore∫

Rn

f V · ∇f dx = lim
m→∞

∫
Rn

fm V · ∇fm dx =

− lim
m→∞

∫
Rn

(V · ∇fm) fm dx = −
∫
Rn

(V · ∇f) f dx.
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and then f is solution of (1.33).
To check that f ∈ D(A), we have to prove that f and V · ∇f belong to

L2(Rn). One has

|f(x)| 6
∫ ∞

0

e−
λs
2 e−

λs
2 |g(x− sV )| ds 6(∫ ∞

0

e−λsds

) 1
2
(∫ ∞

0

e−λs|g(x− sV )|2ds
) 1

2

=(
1

λ

) 1
2
(∫ ∞

0

e−λs|g(x− sV )|2ds
) 1

2

,

from which ∫
Rn

|f(x)|2dx 6 1

λ

∫
Rn

dx

∫ ∞

0

e−λs|g(x− sV )|2ds .

Invoking Tonelli’s Theorem∫
Rn

|f(x)|2dx 6 1

λ

∫ ∞

0

e−λsds

∫
Rn

|g(x− sV )|2dx =

1

λ

∫ ∞

0

e−λsds ∥g∥2L2(Rn) =
1

λ2
∥g∥2L2(Rn)

i.e.

∥f∥L2(Rn) 6
1

λ
∥g∥L2(Rn). (1.34)

Inequality (1.34) shows not only that f ∈ L2(Rn), but also that V · ∇f ∈
L2(Rn). In fact, we know that V · ∇f = g − λf and then

∥V · ∇f∥L2(Rn) 6 ∥g∥L2(Rn) + λ ∥f∥L2(Rn) 6 2 ∥g∥L2(Rn). (1.35)

Let now g ∈ L2(Rn); there exists a sequence {gn} in C̊∞(Ω) such that
∥gn − g∥L2(Rn) → 0. Inequalities (1.34), (1.35) imply that, setting

fn(x) =

∫ ∞

0

e−λsgn(x− sV ) ds ,

we have fn ∈ D(A) and

∥fn − f∥L2(Rn) → 0, ∥V · ∇fn − V · ∇f∥L2(Rn) → 0.

This shows that f ∈ D(A). Moreover, from what we have just seen,
λfn + V · fn = gn. Letting n→ ∞, we get (1.33).
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We have then proved that, given g ∈ L2(Rn), there exists a solution
f ∈ D(A) of (1.33). In view of Corollary 2, A is m-dissipative.

Because of Lumer-Phillips Theorem 10, A is the generator of a contraction
semigroup.

The theory previously developed provides an existence and uniqueness
result for the Cauchy problem for the convection equation{

ut(x, t) = −V · ∇xu(x, t)
u(x, 0) = u0(x)

and the solution satisfies the inequality

∥u(·, t)∥L2(Rn) 6 ∥u0∥L2(Rn).
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Chapter 2

Lp-dissipativity of scalar second
order operators

2.1 General results

2.1.1 The main lemma

By C̊(Ω) we denote the space of complex valued continuous functions having
compact support in Ω. Let C̊1(Ω) consist of all the functions in C̊(Ω) having
continuos partial derivatives of the first order.

In what follows, A is a n× n matrix function with complex valued entries
ahk ∈ (C̊(Ω))∗, A t is its transposed matrix and A ∗ is its adjoint matrix, i.e.

A ∗ = A
t
.

Let b = (b1, . . . , bn) and c = (c1, . . . , cn) stand for complex valued vectors
with bj, cj ∈ (C̊(Ω))∗. By a we mean a complex valued scalar distribution in

(C̊1(Ω))∗.
We denote by L (u, v) the sesquilinear form

L (u, v) =

∫
Ω

(⟨A ∇u,∇v⟩ − ⟨b∇u, v⟩+ ⟨u, c∇v⟩ − a⟨u, v⟩)

defined on C̊1(Ω)× C̊1(Ω).
The integrals appearing in this definition have to be understood in a proper

way. The entries ahk being measures, the meaning of the first term is∫
Ω

⟨A ∇u,∇v⟩ =
∫
Ω

∂ku ∂hv da
hk.

Similar meanings have the terms involving b and c. Finally, the last term
is the action of the distribution a ∈ (C̊1(Ω))∗ on the function ⟨u, v⟩ belonging
to C̊1(Ω).
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The form L is related to the operator

Au = div(A ∇u) + b∇u+ div(cu) + au. (2.1)

where div denotes the divergence operator.
The operator A acts from C̊1(Ω) to (C̊1(Ω))∗ through the relation

L (u, v) =

∫
Ω

⟨Au, v⟩

for any u, v ∈ C̊1(Ω).
Instead of studying the dissipativity of the operator A, we start with the

dissipativity of the form L . Such a concept was given in [5].
The form L is called Lp-dissipative if for all u ∈ C̊1(Ω)

ReL (u, |u|p−2u) > 0 if p > 2; (2.2)

ReL (|u|p′−2u, u) > 0 if 1 < p < 2. (2.3)

The necessity of differentiating the case 1 < p < 2 from p > 2 is due to the
fact that |u|q−2u ∈ C̊1(Ω) for q > 2 and u ∈ C̊1(Ω).

The following lemma will play a key role.

Lemma 10 The form L is Lp-dissipative if and only if for all v ∈ C̊1(Ω)

Re

∫
Ω

[
⟨A ∇v,∇v⟩ − (1− 2/p)⟨(A −A ∗)∇(|v|), |v|−1v∇v⟩−

(1− 2/p)2⟨A ∇(|v|),∇(|v|)⟩
]
+

∫
Ω

⟨Im(b+ c),Im(v∇v)⟩+∫
Ω

Re(div(b/p− c/p′)− a)|v|2 > 0.

(2.4)

Here and in the sequel the integrand is extended by zero on the set where v
vanishes.

Proof. The proof of this Lemma is quite technical.
Suppose that p > 2 and that (2.4) holds. Take u ∈ C̊1(Ω) and set

v = |u|(p−2)/2u. (2.5)

The function v belongs to C̊1(Ω) and |v| = |u|p/2, i.e. |u| = |v|2/p. From
2.5 it follows also that u = |v|(2−p)/pv.

A direct calculation shows that

⟨A ∇u,∇(|u|p−2u)⟩ = ⟨A ∇(|v|
2−p
p v),∇(|v|

p−2
p v)⟩ =⟨

A (∇v−( 1− 2/p)|v|−1v∇|v|),∇v + (1− 2/p)|v|−1v∇|v|
⟩
=

⟨A ∇v,∇v⟩ − (1− 2/p)
(
⟨|v|−1vA ∇|v|,∇v⟩ − ⟨A ∇v, |v|−1v∇|v|⟩

)
−

− (1− 2/p)2 ⟨A ∇|v|,∇|v|⟩ .
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Since

Re(⟨vA ∇|v|,∇v⟩ − ⟨A ∇v, v∇|v|⟩) =
Re(v⟨A ∇|v|,∇v⟩ − ⟨vA ∗ ∇|v|,∇v⟩) = Re(⟨v(A −A ∗)∇|v|,∇v⟩)

we have

Re⟨A ∇u,∇(|u|p−2u)⟩ = Re
[
⟨A ∇v,∇v⟩−

(1− 2/p)⟨(A −A ∗)∇(|v|), |v|−1v∇v⟩ − (1− 2/p)2⟨A ∇(|v|),∇(|v|)⟩
]
.

Moreover, we have

⟨b∇u, |u|p−2u⟩ = (1− 2/p) |v|b∇|v|+ v b∇v

and then

Re⟨b∇u, |u|p−2u⟩ = 2 Re(b/p)Re(v∇v)− (Imb)Im(v∇v) =
Re(b/p)∇(|v|2)− (Imb)Im(v∇v).

An integration by parts gives∫
Ω

Re⟨b∇u, |u|p−2u⟩ = −
∫
Ω

Re(∇t(b/p))|v|2−
∫
Ω

⟨Imb,Im(v∇v)⟩ . (2.6)

In the same way we find

Re⟨u, c∇(|u|p−2u)⟩ = Re ((1− 2/p) |v|c∇|v|+ v c∇v) =
2 Re(c/p′)Re(v∇v) + (Im c)Im(v∇v) =

Re(c/p′)∇(|v|2) + (Im c)Im(v∇v)

and then∫
Ω

Re⟨u, c∇(|u|p−2u)⟩ = −
∫
Ω

Re(∇t(c/p′)|v|2 +
∫
Ω

⟨Im c,Im(v∇v)⟩.

(2.7)
Finally, since we have also

Re(a⟨u, |u|p−2u⟩ = (Re a)|u|p = (Re a)|v|2,

the left-hand side in (2.4) is equal to ReL (u, |u|p−2u) and (2.2) follows from
(2.4).

Viceversa, let us suppose (2.2) holds and let v ∈ C̊1(Ω). Since the function

u = |v|
2−p
p v does not need to belong to C̊1(Ω), we cannot proceed as for the

Sufficiency. In order to overcome this difficulty, set

gε = (|v|2 + ε2)
1
2 , uε = g

2
p
−1

ε v. (2.8)

39



We have

⟨A ∇uε,∇(|uε|p−2uε)⟩ =
|uε|p−2⟨A ∇uε,∇uε⟩+ (p− 2)|uε|p−3⟨A ∇uε, uε∇|uε|⟩

On the other hand, since ∂hgε = g−1
ε |v|∂h|v|, we can write

|uε|p−2∂huε∂kuε = g2−p
ε |v|p−2

[
(1− 2/p)2 g−2

ε |v|2∂hgε∂kgε−
(1− 2/p) g−1

ε (v∂hgε∂kv + v∂hv∂kgε) + ∂hv∂kv
]
=

(1− 2/p)2 g−(p+2)
ε |v|p+2∂h|v|∂k|v|−

(1− 2/p) g−p
ε |v|p−1(v∂h|v|∂kv + v∂hv∂k|v|) + g2−p

ε |v|p−2∂hv∂kv.

This leads to

|uε|p−2⟨A ∇uε,∇uε⟩ = (1− 2/p)2 g−(p+2)
ε |v|p+2⟨A ∇|v|,∇|v|⟩−

(1− 2/p) g−p
ε |v|p−1(⟨A v∇|v|,∇v⟩+ ⟨A ∇v, v∇|v|) + g2−p

ε |v|p−2⟨A ∇v,∇v⟩ .

In the same way

|uε|p−3⟨A ∇uε, uε∇|uε|⟩ =[
(1− 2/p)2 g−(p+2)

ε |v|p+2 − (1− 2/p) g−p
ε |v|p

]
⟨A ∇|v|,∇|v|⟩+[

− (1− 2/p) g−p
ε |v|p−1 + g−p+2

ε |v|p−3
]
⟨A ∇v, v∇|v|⟩.

Observing that gε tends to |v| as ε → 0 and that g−1
ε |v| 6 1, referring to

Lebesgue’s dominated convergence theorem we find

lim
ε→0

∫
Ω

⟨A ∇uε,∇(|uε|p−2uε)⟩ =∫
Ω

⟨A ∇v,∇v⟩−

(1− 2/p)

∫
Ω

1

|v|
(⟨vA ∇|v|,∇v⟩ − ⟨A ∇v, v∇|v|⟩) −

− (1− 2/p)2
∫
Ω

⟨A ∇|v|,∇|v|⟩ .

(2.9)

Similar computations show that

⟨b∇uε, |uε|p−2uε⟩ = −(1− 2/p)g−p
ε |v|p+1b∇|v|+ g2−p

ε |v|p−2vb∇v,

⟨uε, c∇(|uε|p−2uε)⟩ = g2−p
ε |v|p−2c

[
(1− p) (1− 2/p) g−2

ε |v|3∇|v|+

+(p− 2)|v|∇|v|+ v∇v
]
,

a⟨uε, |uε|p−2uε⟩ = ag2−p
ε |v|p,
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from which follows

lim
ε→0

∫
Ω

⟨b∇uε, |uε|p−2uε⟩ =
∫
Ω

(−(1− 2/p) |v|b∇|v|+ v b∇v) , (2.10)

lim
ε→0

∫
Ω

⟨uε, c∇(|uε|p−2uε)⟩ =
∫
Ω

((1− 2/p) |v|c∇|v|+ v c∇v) , (2.11)

lim
ε→0

∫
Ω

a⟨uε, |uε|p−2uε⟩ =
∫
Ω

a|v|2. (2.12)

From (2.9)–(2.12) we obtain that

lim
ε→0

ReL (uε, |uε|p−2uε)

exists and is equal to the left-hand side of (2.4). This shows that (2.2) implies
(2.4) and the necessity is proved for p > 2.

The proof for 1 < p < 2 hinges on the remark that (2.3) can be written as

Re

∫
Ω

(⟨A ∗∇u,∇(|u|p′−2u)⟩+ ⟨c∇u, |u|p′−2u⟩ − ⟨∇u,b∇(|u|p′−2u)⟩−

−a⟨u, |u|p′−2u⟩) > 0.

We omit the details.

The interest of this Lemma is that it transform conditions (2.2)-(2.3) in
condition (2.4). Even if the last one seems to be much more complicated, it
has the big advantage that it does not contain the term |u|p−2.

2.1.2 A necessary condition and a sufficient condition

Lemma 10 has several consequences. A first one is that an Lp-dissipative
operator has to be degenerate elliptic:

Corollary 4 If the form L is Lp-dissipative, we have

⟨ReA ξ, ξ⟩ > 0 (2.13)

for any ξ ∈ Rn.

Proof. We remark that condition (2.13) has to be understood in the sense
of measures, i.e. it means that, for any ξ ∈ Rn,∫

Ω

⟨ReA ξ, ξ⟩ v > 0
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for any nonnegative v ∈ C̊(Ω).
Given a function v, let us set

X = Re(|v|−1v∇v), Y = Im(|v|−1v∇v),

on the set {x ∈ Ω | v ̸= 0}. We have

Re⟨A ∇v,∇v⟩ = Re
⟨
A (|v|−1v∇v), |v|−1v∇v

⟩
=

⟨ReA X,X⟩+ ⟨ReA Y, Y ⟩+ ⟨Im(A −A t)X,Y ⟩,
Re⟨(A −A ∗)∇(|v|),∇v⟩|v|−1v = Re⟨(A −A ∗)X,X + iY ⟩ =

⟨Im(A −A ∗)X, Y ⟩,
Re⟨A ∇|v|,∇|v|⟩ = ⟨ReA X,X⟩.

Since L is Lp-dissipative, (2.4) holds. Hence, keeping in mind that the
next integral is extended on the set where v does not vanish,∫

Ω

{ 4

p p′
⟨ReA X,X⟩+ ⟨ReA Y, Y ⟩+

2⟨(p−1 ImA +p′−1 ImA ∗)X, Y ⟩+ ⟨Im(b+ c), Y ⟩|v|+
Re [div (b/p− c/p′)− a] |v|2

}
> 0.

(2.14)

We define the function

v(x) = ϱ(x) eiφ(x)

where ϱ and φ are real functions with ϱ ∈ C̊1(Ω) and φ ∈ C1(Ω). Since

|v|−1v∇v = |ϱ|−1(ϱ e−iφ (∇ϱ+ iϱ∇φ) eiφ) = |ϱ|−1ϱ∇ϱ+ i|ϱ|∇φ

on the set {x ∈ Ω | ϱ(x) ̸= 0}, it follows from (2.14) that

4

p p′

∫
Ω

⟨ReA ∇ϱ,∇ϱ⟩+
∫
Ω

ϱ2⟨ReA ∇φ,∇φ⟩+

2

∫
Ω

ϱ⟨(p−1 ImA +p′−1 ImA ∗)∇ϱ,∇φ⟩+∫
Ω

ϱ⟨Im(b+ c),∇φ⟩+
∫
Ω

Re [div (b/p− c/p′)− a] ϱ2 > 0

(2.15)

for any ϱ ∈ C̊1(Ω), φ ∈ C1(Ω).
We choose φ by the equality

φ =
µ

2
log(ϱ2 + ε),
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where µ ∈ R and ε > 0. Then (2.15) takes the form

4

p p′

∫
Ω

⟨ReA ∇ϱ,∇ϱ⟩+ µ2

∫
Ω

ϱ4

(ϱ2 + ε)2
⟨ReA ∇ϱ,∇ϱ⟩+

2µ

∫
Ω

ϱ2

ϱ2 + ε
⟨(p−1 ImA +p′−1 ImA ∗)∇ϱ,∇ϱ⟩+

µ

∫
Ω

ϱ3

ϱ2 + ε
⟨Im(b+ c),∇ϱ⟩+

∫
Ω

Re [div (b/p− c/p′)− a] ϱ2 > 0

(2.16)

Letting ε→ 0+ in (2.16) leads to

4

p p′

∫
Ω

⟨ReA ∇ϱ,∇ϱ⟩+ µ2

∫
Ω

⟨ReA ∇ϱ,∇ϱ⟩+

2µ

∫
Ω

⟨(p−1 ImA +p′−1 ImA ∗)∇ϱ,∇ϱ⟩+

µ

∫
Ω

ϱ⟨Im(b+ c),∇ϱ⟩+
∫
Ω

Re [div (b/p− c/p′)− a] ϱ2 > 0.

(2.17)

Since this holds for any µ ∈ R, we have∫
Ω

⟨ReA ∇ϱ,∇ϱ⟩ > 0 (2.18)

for any ϱ ∈ C̊1(Ω).
Taking ϱ(x) = ψ(x) cos⟨ξ, x⟩ with a real ψ ∈ C̊1(Ω) and ξ ∈ Rn, we find∫

Ω

{⟨ReA ∇ψ,∇ψ⟩ cos2⟨ξ, x⟩ − [⟨ReA ξ,∇ψ⟩+

⟨ReA ∇ψ, ξ⟩] sin⟨ξ, x⟩ cos⟨ξ, x⟩+ ⟨ReA ξ, ξ⟩ψ2(x) sin2⟨ξ, x⟩} > 0.

On the other hand, taking ϱ(x) = ψ(x) sin⟨ξ, x⟩,∫
Ω

{⟨ReA ∇ψ,∇ψ⟩ sin2⟨ξ, x⟩+ [⟨ReA ξ,∇ψ⟩+

⟨ReA ∇ψ, ξ⟩] sin⟨ξ, x⟩ cos⟨ξ, x⟩+ ⟨ReA ξ, ξ⟩ψ2(x) cos2⟨ξ, x⟩} > 0.

The two inequalities we have obtained lead to∫
Ω

⟨ReA ∇ψ,∇ψ⟩+
∫
Ω

⟨ReA ξ, ξ⟩ψ2 > 0.

Because of the arbitrariness of ξ, we find∫
Ω

⟨ReA ξ, ξ⟩ψ2 > 0.
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On the other hand, any nonnegative function v ∈ C̊(Ω) can be
approximated in the uniform norm in Ω by a sequence ψ2

n, with ψn ∈ C̊∞(Ω),
and then ⟨ReA ξ, ξ⟩ is a nonnegative measure.

It will be clear later that (2.13) is not sufficient for theLp-dissipativity.

The next corollary provides a sufficient condition. It shows that the Lp-
dissipativity of A follows from the nonnegativity of a certain polynomial (whose
coefficients are measures) in 2n real variables. This polynomial depend on the
real parameters α, β, which can be arbitrarily fixed.

Corollary 5 Let α, β two real constants. If

4

p p′
⟨ReA ξ, ξ⟩+ ⟨ReA η, η⟩+ 2⟨(p−1 ImA +p′−1 ImA ∗)ξ, η⟩+

⟨Im(b+ c), η⟩ − 2⟨Re(αb/p− βc/p′), ξ⟩+
Re [div ((1− α)b/p− (1− β)c/p′)− a] > 0

(2.19)

for any ξ, η ∈ Rn, the form L is Lp-dissipative.

Proof. In the proof of Lemma 10 we have integrated by parts in (2.6) and
(2.7). More generally, we have

2/p

∫
Ω

⟨Reb,Re(v∇v)⟩ = 2α/p

∫
Ω

⟨Reb,Re(v∇v)⟩−

(1− α)/p

∫
Ω

Re(∇tb)|v|2 ;

2/p′
∫
Ω

⟨Re c,Re(v∇v)⟩ = 2β/p′
∫
Ω

⟨Re c,Re(v∇v)⟩−

(1− β)/p′
∫
Ω

Re(∇tc)|v|2 .

This leads to write conditions (2.4) in a slightly different form:

Re

∫
Ω

[
⟨A ∇v,∇v⟩ − (1− 2/p)⟨(A −A ∗)∇(|v|), |v|−1v∇v⟩−

(1− 2/p)2⟨A ∇(|v|),∇(|v|)⟩
]
+

∫
Ω

⟨Im(b+ c),Im(v∇v)⟩−

2

∫
Ω

⟨Re(αb/p− βc/p′),Re(v∇v)⟩+∫
Ω

Re(div((1− α)b/p− (1− β)c/p′)− a)|v|2 > 0.
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By using the functions X and Y introduced in Corollary 4, the left-hand
side of the last inequality can be written as∫

Ω

Q(X, Y ),

where Q denotes the polynomial (2.19).
The result follows from Lemma 10.

Generally speaking, conditions (2.19) are not necessary for Lp-dissipativity.
We show this by the following example, where ImA is not symmetric.
Later we give another example showing that, even for symmetric matrices
ImA , conditions (2.19) are not necessary for Lp-dissipativity (see Example
7). Nevertheless in the next section we show that the conditions are necessary
for the Lp-dissipativity, provided the operator A has no lower order terms and
the matrix ImA is symmetric (see Theorem 12 and Remark 4).

Example 3 Let n = 2 and

A =

(
1 iγ

−iγ 1

)
,

where γ is a real constant, b = c = a = 0. In this case polynomial (2.19) is
given by

(η1 + γξ2)
2 + (η2 − γξ1)

2 − (γ2 − 4/(pp′))|ξ|2.
Taking γ2 > 4/(pp′), condition (2.19) is not satisfied, while we have the

Lp-dissipativity, because the corresponding operator A is nothing but the
Laplacian.

2.1.3 Some other consequences of the main lemma

The next Corollary is an interpolation result

Corollary 6 If the form L is both Lp- and Lp′-dissipative, it is also Lr-
dissipative for any r between p and p′, i.e. for any r given by

1/r = t/p+ (1− t)/p′ (0 6 t 6 1). (2.20)

Proof. From the proof of Corollary 4 we know that (2.14) holds. In the
same way, we find∫

Ω

{ 4

p′ p
⟨ReA X,X⟩+ ⟨ReA Y, Y ⟩−

2⟨(p′−1 ImA +p−1 ImA ∗)X, Y ⟩+ ⟨Im(b+ c), Y ⟩|v|+
Re [div (b/p′ − c/p)− a] |v|2

}
> 0.

(2.21)
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We multiply (2.14) by t, (2.21) by (1− t) and sum up. Since

t/p′ + (1− t)/p = 1/r′ and r r′ 6 p p′ ,

we find, keeping in mind Corollary 4,∫
Ω

{ 4

r r′
⟨ReA X,X⟩+ ⟨ReA Y, Y ⟩−

2⟨(r−1 ImA +r′−1 ImA ∗)X, Y ⟩+ ⟨Im(b+ c), Y ⟩|v|+

+Re [div (b/r − c/r′)− a] |v|2
}
> 0

and L is Lr-dissipative by Lemma 10 .

Corollary 7 Suppose that either

ImA = 0, Re divb = Re div c = 0 (2.22)

or

ImA = ImA t, Im(b+ c) = 0, Re divb = Re div c = 0. (2.23)

If L is Lp-dissipative, it is also Lr-dissipative for any r given by (2.20).

Proof. Assume that (2.22) holds. With the notation introduced in
Corollary 4, inequality (2.4) reads as∫

Ω

( 4

p p′
⟨ReA X,X⟩+ ⟨ReA Y, Y ⟩+

⟨Im(b+ c), Y ⟩|v| − Re a|v|2
)
> 0.

Since the left-hand side does not change after replacing p by p′, Lemma 10
gives the result.

Let (2.23) holds. Using the formula

p−1 ImA +p′−1 ImA ∗ =
p−1 ImA −p′−1 ImA t = −(1− 2/p)ImA ,

(2.24)

we obtain ∫
Ω

( 4

p p′
⟨ReA x, x⟩+ ⟨ReA Y, Y ⟩−

2 (1− 2/p)⟨ImA X, Y ⟩ − Re a|v|2
)
> 0.
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Replacing v by v, we find∫
Ω

( 4

p p′
⟨ReA x, x⟩+ ⟨ReA Y, Y ⟩+

2 (1− 2/p)⟨ImA X, Y ⟩ − Re a|v|2
)
> 0

and we have the Lp′-dissipativity by 1 − 2/p = −1 + 2/p′. The reference to
Corollary 6 completes the proof.

2.2 The operator div(A ∇u). The main

theorem

In this section we consider operator (2.1) without lower order terms:

Au = div(A ∇u) (2.25)

with the coefficients ahk ∈ (C̊(Ω))∗. The following theorem contains an
algebraic necessary and sufficient condition for the Lp-dissipativity.

This result is new even for smooth coefficients, when it implies a criterion
for the Lp-contractivity of the corresponding semigroup (see Theorem 15
below).

Theorem 12 Let the matrix ImA be symmetric, i.e. ImA t = ImA .
The form

L (u, v) =

∫
Ω

⟨A ∇u,∇v⟩

is Lp-dissipative if and only if

|p− 2| |⟨ImA ξ, ξ⟩| 6 2
√
p− 1 ⟨ReA ξ, ξ⟩ (2.26)

for any ξ ∈ Rn, where | · | denotes the total variation.

Proof.
Sufficiency. In view of Corollary 5 the form L is Lp-dissipative if

4

p p′
⟨ReA ξ, ξ⟩+ ⟨ReA η, η⟩ − 2(1− 2/p)⟨ImA ξ, η⟩ > 0 (2.27)

for any ξ, η ∈ Rn.
By putting

λ =
2
√
p− 1

p
ξ
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we write (2.27) in the form

⟨ReA λ, λ⟩+ ⟨ReA η, η⟩ − p− 2√
p− 1

⟨ImA λ, η) > 0.

Then (2.27) is equivalent to

S (ξ, η) := ⟨ReA ξ, ξ⟩+ ⟨ReA η, η⟩ − p− 2√
p− 1

⟨ImA ξ, η) > 0

for any ξ, η ∈ Rn.
For any nonnegative φ ∈ C̊(Ω), define

λφ = min
|ξ|2+|η|2=1

∫
Ω

S (ξ, η)φ .

Let us fix ξ0, η0 such that |ξ0|2 + |η0|2 = 1 and

λφ =

∫
Ω

S (ξ0, η0)φ .

We have the algebraic system
∫
Ω

(
2 ReA ξ0 −

p− 2

2
√
p− 1

Im(A −A ∗)η0

)
φ = 2λφ ξ0∫

Ω

(
2 ReA η0 −

p− 2

2
√
p− 1

Im(A −A ∗)ξ0

)
φ = 2λφ η0 .

This implies∫
Ω

(
2 ReA (ξ0 − η0) +

p− 2

2
√
p− 1

Im(A −A ∗)(ξ0 − η0)

)
φ =

2λφ (ξ0 − η0)

and therefore∫
Ω

(
2⟨ReA (ξ0 − η0), ξ0 − η0⟩+

p− 2√
p− 1

⟨ImA (ξ0 − η0), ξ0 − η0⟩
)
φ =

2λφ |ξ0 − η0|2.

The left-hand side is nonnegative because of (2.26). Hence, if λφ < 0, we
find ξ0 = η0. On the other hand we have

λφ =

∫
Ω

S (ξ0, ξ0)φ =∫
Ω

(
2⟨ReA ξ0, ξ0⟩ −

p− 2√
p− 1

⟨ImA ξ0, ξ0⟩
)
φ > 0.
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This shows that λφ > 0 for any nonnegative φ and the sufficiency is proved.
Necessity. We know from the proof of Corollary 4 that if L is Lp-

dissipative, then (2.17) holds for any ϱ ∈ C̊1(Ω), µ ∈ R. In the present
case, keeping in mind (2.24), (2.17) can be written as∫

Ω

⟨B∇ϱ,∇ϱ⟩ > 0,

where

B =
4

p p′
ReA +µ2 ReA −2µ (1− 2/p)ImA .

In the proof of Corollary 4, we have also seen that from (2.18) for any
ϱ ∈ C̊1(Ω), (2.13) follows. In the same way, the last relation implies
⟨B ξ, ξ⟩ > 0, i.e.

4

p p′
⟨ReA ξ, ξ⟩+ µ2⟨ReA ξ, ξ⟩ − 2µ (1− 2/p)⟨ImA ξ, ξ⟩ > 0

for any ξ ∈ Rn, µ ∈ R.
Because of the arbitrariness of µ we have∫

Ω

⟨ReA ξ, ξ⟩φ > 0

(1− 2/p)2
(∫

Ω

⟨ImA ξ, ξ⟩φ
)2

6 4

p p′

(∫
Ω

⟨ReA ξ, ξ⟩φ
)2

,

i.e.

|p− 2|
∣∣∣∣∫

Ω

⟨ImA ξ, ξ⟩φ
∣∣∣∣ 6 2

√
p− 1

∫
Ω

⟨ReA ξ, ξ⟩φ

for any ξ ∈ Rn and for any nonnegative φ ∈ C̊(Ω).
We have

|p− 2|
∣∣∣∣∫

Ω

⟨ImA ξ, ξ⟩φ
∣∣∣∣ 6 2

√
p− 1

∫
Ω

⟨ReA ξ, ξ⟩|φ|

for any φ ∈ C̊(Ω) and this implies (2.26), because

|p− 2|
∫
Ω

|⟨ImA ξ, ξ⟩| g = |p− 2| sup
φ∈C̊(Ω)
|φ|6g

∣∣∣∣∫
Ω

⟨ImA ξ, ξ⟩φ
∣∣∣∣ 6

2
√
p− 1 sup

φ∈C̊(Ω)
|φ|6g

∫
Ω

⟨ReA ξ, ξ⟩|φ| 6 2
√
p− 1

∫
Ω

⟨ReA ξ, ξ⟩g

for any nonnegative g ∈ C̊(Ω).
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Remark 4 From the proof of Theorem 12 we see that condition (2.26) holds
if and only if

4

p p′
⟨ReA ξ, ξ⟩+ ⟨ReA η, η⟩ − 2(1− 2/p)⟨ImA ξ, η⟩ > 0

for any ξ, η ∈ Rn. This means that conditions (2.19) are necessary and
sufficient for the operators considered in Theorem 12.

Remark 5 Let us assume that either A has lower order terms or they are
absent and ImA is not symmetric. Using the same arguments as in Theorem
12, one could prove that (2.26) is still a necessary condition for A to be Lp-
dissipative. However, in general, it is not sufficient. This is shown by the
next example (see also Theorem 13 below for the particular case of constant
coefficients).

Example 4 Let n = 2 and let Ω be a bounded domain. Denote by σ a not
identically vanishing real function in C̊2(Ω) and let λ ∈ R. Consider operator
(2.25) with

A =

(
1 iλ∂1(σ

2)
−iλ∂1(σ2) 1

)
,

i.e.
Au = ∂1(∂1u+ iλ∂1(σ

2) ∂2u) + ∂2(−iλ∂1(σ2) ∂1u+ ∂2u),

where ∂i = ∂/∂xi (i = 1, 2).
By definition, we have L2-dissipativity if and only if

Re

∫
Ω

((∂1u+ iλ∂1(σ
2) ∂2u)∂1u+ (−iλ∂1(σ2) ∂1u+ ∂2u)∂2u) dx > 0

for any u ∈ C̊1(Ω), i.e. if and only if∫
Ω

|∇u|2dx− 2λ

∫
Ω

∂1(σ
2)Im(∂1u ∂2u) dx > 0

for any u ∈ C̊1(Ω). Taking u = σ exp(itx2) (t ∈ R), we obtain, in particular,

t2
∫
Ω

σ2dx− tλ

∫
Ω

(∂1(σ
2))2dx+

∫
Ω

|∇σ|2dx > 0. (2.28)

Since ∫
Ω

(∂1(σ
2))2dx > 0,

we can choose λ ∈ R so that (2.28) is impossible for all t ∈ R. Thus A is not
L2-dissipative, although (2.26) is satisfied.
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Since A can be written as

Au = ∆u− iλ(∂21(σ
2) ∂1u− ∂11(σ

2) ∂2u),

the same example shows that (2.26) is not sufficient for the L2-dissipativity in
the presence of lower order terms, even if ImA is symmetric.

Remark 6 It is nice to remark that from (2.26) we can immediately deduce
the following facts: let A be the differential operator (2.25) satisfying the
hypothesis of Theorem 12. Let us suppose that A is a degenerate elliptic
operator (i.e. it satisfies (2.13)). Then

(i) the corresponding form L if L2-dissipative;
(ii) if the operator A has real coefficients (ImA = 0), then the

corresponding form L if Lp-dissipative for any p.

Remark 7 In view of Theorem 12, it is now clear why condition (2.13) cannot
be sufficient for the Lp-dissipativity when p ̸= 2.

2.3 Operators with lower order terms

We know from Remark 5 that, if the partial differential operator A contains
lower order terms, the algebraic condition 2.26 is not necessary and sufficient
for the Lp-dissipativity. One could ask if there are other algebraic necessary
and sufficient conditions for these more general operators.

Generally speaking, this is not possible. We can convince ourselves of that
by means of the following examples.

Example 5 Let A be the operator

Au = ∆u+ a(x)u

in a bounded domain Ω ⊂ Rn, where a(x) is a real smooth function. Denote
by λ1 the first eigenvalue of the Dirichlet problem for Laplace equation in Ω.
A sufficient condition for A to be L2-dissipative is Re a 6 λ1 and we cannot
give an algebraic characterization of λ1.

Example 6 Let A be the operator

Au = ∆u+ µu

in a domain Ω ⊂ Rn, where µ is a nonnegative measure. Lemma 10 shows that
A is Lp-dissipative if and only if∫

Ω

|w|2dµ 6 4

pp′

∫
Ω

|∇w|2dx ∀ w ∈ C̊∞(Ω). (2.29)
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It is easy to show that, if (2.29) holds, then

µ(F )

capΩ(F )
6 4

pp′
(2.30)

for any compact set F ⊂ Ω, where capΩ(F ) is the relative capacity of F

capΩ(F ) = inf
{∫

Ω

|∇u|2dx : u ∈ C̊∞(Ω), u > 1 on F
}
.

In fact, if u ∈ C̊∞(Ω), with u > 1 on F , (2.29) implies that

µ(F ) 6
∫
F

u2dµ 6
∫
Ω

u2dµ 6 4

pp′

∫
Ω

|∇u|2dx

and then

µ(F ) 6 4

pp′
inf

u∈C̊∞(Ω)
u>1 onF

∫
Ω

|∇u|2dx,

i.e. (2.30).
On the other hand, if

µ(F )

capΩ(F )
6 1

pp′
(2.31)

for any compact set F ⊂ Ω, then (2.29) holds. This is a deep result and it is
due to V. Maz’ya (see [25, 26, 27]). One can show that the necessary condition
(2.30) is not sufficient and the sufficient condition (2.31) is not necessary.

However, if the operator has constant coefficients, then one can still give
necessary and sufficient conditions. This is the subject of the following
subsection.

2.3.1 Operators with constant coefficients

In this section we characterize the Lp-dissipativity for the operator (2.1) with
constant complex coefficients. Without loss of generality we can write A as

Au = ∇t(A ∇u) + b∇u+ au, (2.32)

assuming that the matrix A is symmetric.

Theorem 13 Let Ω be an open set in Rn which contains balls of arbitrarily
large radius. The operator A is Lp-dissipative if and only if there exists a real
constant vector V such that

2ReA V + Imb = 0, (2.33)

Re a+ ⟨ReA V, V ⟩ 6 0 (2.34)
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and the inequality

|p− 2| |⟨ImA ξ, ξ⟩| 6 2
√
p− 1 ⟨ReA ξ, ξ⟩ (2.35)

holds for any ξ ∈ Rn.

Proof. First, let us prove the theorem for the special case b = 0, i.e. for
the operator

A = ∇t(A ∇u) + au.

If A is Lp-dissipative, (2.4) holds for any v ∈ C̊1(Ω). We find, by repeating
the arguments used in the proof of Theorem 12, that

4

p p′

∫
Ω

⟨ReA ∇ϱ,∇ϱ⟩ dx+ µ2

∫
Ω

⟨ReA ∇ϱ,∇ϱ⟩ dx−

2µ (1− 2/p)

∫
Ω

⟨ImA ∇ϱ,∇ϱ⟩ dx− (Re a)

∫
Ω

ϱ2dx > 0
(2.36)

for any ϱ ∈ C̊∞(Ω) and for any µ ∈ R. As in the proof of Theorem 12 this
implies (2.35). On the other hand, we can find a sequence of balls contained
in Ω with centers xm and radii m. Set

ϱm(x) = m−n/2σ ((x− xm)/m) ,

where σ ∈ C̊∞(Rn), sptσ ⊂ B1(0) and∫
B1(0)

σ2(x) dx = 1.

Putting in (2.36) µ = 1 and ϱ = ϱm, we obtain

4

p p′

∫
B1(0)

⟨ReA ∇σ,∇σ⟩ dy +
∫
B1(0)

⟨ReA ∇σ,∇σ⟩ dy −

2 (1− 2/p)

∫
B1(0)

⟨ImA ∇σ,∇σ⟩ dy −m2(Re a) > 0

for any m ∈ N. This implies Re a 6 0. Note that in this case the algebraic
system (2.33) has always the trivial solution and that for any eigensolution V
(if they exist) we have ⟨ReA V, V ⟩ = 0. Then (2.34) is satisfied.

Conversely, if (2.35) is satisfied, we have (see Remark 4)

4

p p′
⟨ReA ξ, ξ⟩+ ⟨ReA η, η⟩ − 2 (1− 2/p)⟨ImA ξ, ξ⟩ > 0

for any ξ, η ∈ Rn. If also (2.34) is satisfied (i.e. if Re a 6 0), A is Lp-dissipative
in view of Corollary 5.
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Let us consider the operator in the general form (2.32). If A is Lp-
dissipative, we find, by repeating the arguments employed in the proof of
Theorem 12, that

4

p p′

∫
Ω

⟨ReA ∇ϱ,∇ϱ⟩ dx+
∫
Ω

ϱ2⟨ReA ∇φ,∇φ⟩ dx−

2 (1− 2/p)

∫
Ω

ϱ ⟨ImA ∇ϱ,∇φ⟩ dx+∫
Ω

ϱ2⟨Imb,∇φ⟩ dx− Re a

∫
Ω

ϱ2dx > 0

for any ϱ ∈ C̊1(Ω), φ ∈ C1(Ω). By fixing ϱ and choosing φ = t⟨η, x⟩ (t ∈ R,
η ∈ Rn) we get

4

p p′

∫
Ω

⟨ReA ∇ϱ,∇ϱ⟩ dx+ (t2⟨ReA η, η⟩+ t ⟨Imb, η⟩ − Re a)

∫
Ω

ϱ2 dx > 0

for any t ∈ R. This leads to

|⟨Imb, η⟩|2 6 K ⟨ReA η, η⟩

for any η ∈ Rn and this inequality shows that system (2.33) is solvable. Let V
be a solution of this system and let

z = e−i⟨V,x⟩u.

One checks directly that

Au = (∇t(A ∇z) + ⟨c,∇z⟩+ αz)ei⟨V,x⟩

where

c = 2iA V + b, α = a+ i⟨b, V ⟩ − ⟨A V, V ⟩.

Since we have∫
Ω

⟨Au, u⟩|u|p−2dx =

∫
Ω

⟨∇t(A ∇z) + ⟨c,∇z⟩+ αz, z⟩|z|p−2dx ,

the Lp-dissipativity of A is equivalent to the Lp-dissipativity of the operator

∇t(A ∇z) + ⟨c,∇z⟩+ αz .

On the other hand Lemma 10 shows that, as far as the first order terms
are concerned, the Reb does not play any role. Since Im c = 0 because
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of (2.33), the Lp-dissipativity of A is equivalent to the Lp-dissipativity of the
operator

∇t(A ∇z) + αz . (2.37)

By what we have already proved above, the last operator is Lp-dissipative
if and only if (2.35) is satisfied and Re α 6 0. From (2.33) it follows that Re α
is equal to the left-hand side of (2.34).

Conversely, if there exists a solution V of (2.33), (2.34), and if (2.35) is
satisfied, operator (2.37) is Lp-dissipative. Since this is equivalent to the Lp-
dissipativity of A, the proof is complete.

Corollary 8 Let Ω be an open set in Rn which contains balls of arbitrarily
large radius. Let us suppose that the matrix ReA is not singular. The operator
A is Lp-dissipative if and only if (2.35) holds and

4Re a 6 −⟨(ReA )−1 Imb,Imb⟩. (2.38)

Proof. If ReA is not singular, the only vector V satisfying (2.33) is

V = −(1/2)(ReA )−1 Imb

and (2.34) is satisfied if and only if (2.38) holds. The result follows from
Theorem 13.

Remark 8 The Corollary 8 was proved in this way in [5]. The same result,
obtained with a different approach, can be found also in [17].

Example 7 Let n = 1 and Ω = R1. Consider the operator(
1 + 2

√
p− 1

p− 2
i

)
u′′ + 2iu′ − u,

where p ̸= 2 is fixed. Conditions (2.35) and (2.38) are satisfied and this
operator is Lp-dissipative, in view of Corollary 8.

On the other hand, the polynomial considered in Corollary 5 (with α =
β = 0) is

Q(ξ, η) =

(
2

√
p− 1

p
ξ − η

)2

+ 2η + 1

which is not nonnegative for any ξ, η ∈ R. This shows that, in general,
condition (2.19) is not necessary for the Lp-dissipativity, even if the matrix
ImA is symmetric.
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2.4 Dissipativity and semigroups. Operators

with smooth coefficients

In this Section we want to investigate the relations between the concept of
dissipativity of the form L (introduced in Section 2.1) and the usual concept
of dissipativity of the operator A, as considered in Section 1.2. We consider
the generation of the corresponding semigroups as well.

We shall do that for operators with smooth coefficients. In all this section
A will be the operator

Au = div(A ∇u) + b∇u+ a u (2.39)

with the coefficients ahk, bh ∈ C1(Ω), a ∈ C0(Ω). Here Ω is a bounded domain
in Rn, whose boundary is in the class C2,α for some α ∈ [0, 1) (this regularity
assumption could be weakened, but we prefer to avoid the technicalities related
to such generalizations).

We consider A as an operator defined on the set

D(A) = W 2,p(Ω) ∩ W̊ 1,p(Ω). (2.40)

2.4.1 The dissipativity of the form L and the
dissipativity of the operator A

We recall that the operator A is Lp-dissipative if

Re

∫
Ω

⟨Au, u⟩|u|p−2dx 6 0 (2.41)

for any u ∈ D(A).
The aim of this Subsection is to show that the Lp-dissipativity of A is

equivalent to the Lp-dissipativity of the sesquilinear form

L (u, v) =

∫
Ω

(⟨A ∇u,∇v⟩ − ⟨b∇u, v⟩ − a⟨u, v⟩) .

In order to obtain that, we need some lemmas.

Lemma 11 The form L is Lp-dissipative if and only if

Re

∫
Ω

[
⟨A ∇v,∇v⟩ − (1− 2/p)⟨(A −A ∗)∇(|v|), |v|−1v∇v⟩−

(1− 2/p)2⟨A ∇(|v|),∇(|v|)⟩
]
dx+∫

Ω

⟨Imb,Im(v∇v)⟩dx+
∫
Ω

Re(∇t(b/p)− a)|v|2dx > 0

(2.42)

for any v ∈ H1
0 (Ω).
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Proof.
Sufficiency. We know from Lemma 10 that L is Lp-dissipative if and only

if (2.42) holds for any v ∈ C̊1(Ω). Since C̊1(Ω) ⊂ H1
0 (Ω), the sufficiency

follows.
Necessity. Given v ∈ H1

0 (Ω), we can find a sequence {vn} ⊂ C̊1(Ω) such
that vn → v in H1

0 (Ω). Let us show that

χEn|vn|−1vn∇vn → χE|v|−1v∇v in L2(Ω), (2.43)

where En = {x ∈ Ω | vn(x) ̸= 0}, E = {x ∈ Ω | v(x) ̸= 0}. We may assume
vn(x) → v(x), ∇vn(x) → ∇v(x) almost everywhere in Ω. We see that

χEn|vn|−1vn∇vn → χE|v|−1v∇v (2.44)

almost everywhere on the set E ∪ {x ∈ Ω \ E | ∇v(x) = 0}. Since the set
{x ∈ Ω\E | ∇v(x) ̸= 0} has zero measure, we can say that (2.44) holds almost
everywhere in Ω.

Moreover, since ∫
G

|χEn|vn|−1vn∇vn|2dx 6
∫
G

|∇vn|2dx

for any measurable set G ⊂ Ω and {∇vn} is convergent in L2(Ω),
the sequence {|χEn|vn|−1vn∇vn − χE|v|−1v∇v |2} has uniformly absolutely
continuos integrals. Now we may appeal to Vitali’s Theorem to obtain (2.43).

From this it follows that (2.42) for any v ∈ H1
0 (Ω) implies (2.42) for any

v ∈ C̊1(Ω). Lemma 10 shows that L is Lp-dissipative.

Lemma 12 The form L is Lp-dissipative if and only if

Re

∫
Ω

(⟨A ∇u,∇(|u|p−2u)⟩ − ⟨b∇u, |u|p−2u⟩ − a |u|p)dx > 0 (2.45)

for any u ∈ Ξ, where Ξ denotes the space {u ∈ C2(Ω) | u|∂Ω = 0}.

Proof.
Necessity. Since L is Lp-dissipative, (2.42) holds for any v ∈ H1

0 (Ω). Let
u ∈ Ξ. We introduce the function

ϱε(s) =

{
ε

p−2
2 if 0 6 s 6 ε

s
p−2
2 if s > ε.

Setting
vε = ϱε(|u|)u
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a direct computation shows that u = σε(|vε|) vε and ϱ2ε(|u|)u = [σε(|vε|)]−1 vε,
where

σε(s) =

{
ε

2−p
2 if 0 6 s 6 ε

p
2

s
2−p
p if s > ε

p
2 .

Therefore

⟨A ∇u,∇[ϱ2ε(|u|)u]⟩ = ⟨A ∇[σε(|vε|) vε],∇[(σε(|vε|))−1vε]⟩ =
⟨A [σε(|vε|)∇vε + σ′

ε(|vε|) vε∇|vε|] , σε(|vε|)−1∇vε−
σ′
ε(|vε|)σ−2

ε (|vε|)vε∇|vε|⟩ =
⟨A ∇vε,∇vε⟩+ σ′

ε(|vε|)σε(|vε|)−1 (⟨vε A ∇|vε|,∇vε⟩ − ⟨A ∇vε, vε∇|vε|⟩)−
−σ′

ε(|vε|)2σε(|vε|)−2⟨vε A ∇|vε|, vε∇|vε|⟩ .

Since
σ′
ε(|vε|)
σε(|vε|)

=

{
0 if 0 < |u| < ε
−(1− 2/p) |vε|−1 if |u| > ε

we may write ∫
Ω

⟨A ∇u,∇[ϱ2ε(|u|)u]⟩ dx =

∫
Ω

⟨A ∇vε,∇vε⟩ dx−

−(1− 2/p)

∫
Eε

1

|vε|
(⟨vε A ∇|vε|,∇vε⟩ − ⟨A ∇vε, vε∇|vε|⟩) dx−

−(1− 2/p)2
∫
Eε

⟨A ∇|vε|, ∂h∇|vε|⟩ dx,

where Eε = {x ∈ Ω | |u(x)| > ε}. Then∫
Ω

⟨A ∇u,∇[ϱ2ε(|u|)u]⟩ dx =

∫
Ω

⟨A ∇vε,∇vε⟩ dx−

(1− 2/p)

∫
Ω

1

|vε|
(⟨vε A ∇|vε|,∇vε⟩ − ⟨A ∇vε, vε∇|vε|⟩) dx−

(1− 2/p)2
∫
Ω

⟨A ∇|vε|,∇|vε|⟩ dx+R(ε),

where

R(ε) = (1− 2/p)

∫
Ω\Eε

1

|vε|
(vε⟨A ∇vε|,∇vε⟩ − ⟨A ∇vε, vε∇|vε|⟩) dx−

(1− 2/p)2
∫
Ω\Eε

⟨A ∇|vε|,∇|vε|⟩ dx.

It is proved in [19] that if u ∈ C2(Ω) and u|∂Ω = 0, then

lim
ε→0

εr
∫
Ω\Eε

|∇u|2dx = 0 (2.46)
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for any r > −1. Since

|∇|vε| | =
∣∣∣∣Re

(
vε∇vε
|vε|

χE0

)∣∣∣∣ 6 |∇vε| = ε
p−2
2 |∇u|

in E0 \ Eε, we obtain∣∣∣∣∫
Ω\Eε

⟨A ∇|vε|,∇|vε|⟩ dx
∣∣∣∣ 6 K εp−2

∫
Ω\Eε

|∇u|2dx→ 0

as ε→ 0. We have also

|vε|−1 |⟨vε A ∇|vε|,∇vε⟩ − ⟨A ∇vε, vε ∇|vε|⟩| 6 K εp−2|∇u|2

and thus R(ε) = o(1) as ε→ 0.
We have proved that

Re

∫
Ω

⟨A ∇u,∇[ϱ2ε(|u|)u]⟩ dx = Re
[ ∫

Ω

⟨A ∇vε,∇vε⟩ dx−

(1− 2/p)

∫
Ω

⟨(A −A ∗)∇|vε|, |vε|−1vε∇vε⟩dx−

(1− 2/p)2
∫
Ω

⟨A ∇|vε|,∇|vε|⟩ dx
]
+ o(1).

(2.47)

By means of similar computations, we find by the identity∫
Ω

⟨b∇u, |u|p−2u⟩dx =

∫
Ω\Eε

⟨b∇u, |u|p−2u⟩dx−

(1− 2/p)

∫
Eε

⟨b, |vε|∇(|vε|)⟩dx+
∫
Eε

⟨b∇vε, vε⟩dx

that

Re

∫
Ω

⟨b∇u, |u|p−2u⟩dx =∫
Ω

⟨Re(b/p),∇(|vε|2)⟩dx−
∫
Ω

⟨Imb,Im(vε∇v)⟩dx+ o(1).
(2.48)

Moreover ∫
Ω

|u|pdx =

∫
Eε

|u|pdx+
∫
Ω\Eε

|u|pdx =∫
Eε

|vε|2dx+
∫
Ω\Eε

|u|pdx =

∫
Ω

|vε|2dx+ o(1).
(2.49)
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Equalities (2.47), (2.48) and (2.49) lead to

Re

∫
Ω

(⟨A ∇u,∇[ϱ2ε(|u|)u]⟩ − ⟨b∇u, |u|p−2u⟩ − a|u|p)dx =

Re
[ ∫

Ω

⟨A ∇vε,∇vε⟩ dx−

−(1− 2/p)

∫
Ω

⟨(A −A ∗)∇|vε|,∇vε⟩)vε|vε|−1dx−

−(1− 2/p)2
∫
Ω

⟨A ∇|vε|,∇|vε|⟩ dx
]
+∫

Ω

Re(∇t(b/p)|vε|2dx+
∫
Ω

⟨Imb,Im(vε∇v)⟩dx−∫
Ω

Re a |vε|2dx+ o(1).

(2.50)

As far as the left-hand side of (2.50) is concerned, we have∫
Ω

⟨A ∇u,∇[ϱ2ε(|u|)u]⟩ dx =

εp−2

∫
Ω\Eε

⟨A ∇u,∇u⟩ dx+
∫
Eε

⟨A ∇u,∇(|u|p−2u)⟩ dx

and then

lim
ε→0

Re

∫
Ω

(⟨A ∇u,∇[ϱ2ε(|u|)u]⟩ − ⟨b∇u, |u|p−2u⟩ − a|u|p)dx =∫
Ω

⟨∇u,∇(|u|p−2u)⟩ − ⟨b∇u, |u|p−2u⟩ − a|u|p)dx.

Letting ε→ 0 in (2.50), we complete the proof of the necessity.
Sufficiency. Suppose that (2.45) holds. Let v ∈ Ξ and let uε be defined by

(2.8). We have uε ∈ Ξ and arguing as in the necessity part of Lemma 10, we
find (2.9), (2.10) and (2.12). These limit relations lead to (2.42) for any v ∈ Ξ
and thus (2.42) is true for any v ∈ H1

0 (Ω) (see the proof of Lemma 11). In
view of Lemma 11, the form L is Lp-dissipative.

Theorem 14 The operator A is Lp-dissipative if and only if the form L is
Lp-dissipative.

Proof.
Necessity. Let u ∈ Ξ and gε = (|u|2 + ε2)

1
2 . Since gp−2

ε u ∈ Ξ we have

−
∫
Ω

⟨∇t(A ∇u), u⟩gp−2
ε dx =

∫
Ω

⟨A ∇u,∇(gp−2
ε u)⟩dx
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and since
∂h(g

p−2
ε u) = (p− 2)gp−4

ε Re(⟨∂hu, u⟩)u+ gp−2
ε ∂hu

we have also

∂h(g
p−2
ε u) ={

(p− 2)|u|p−4 Re(⟨∂hu, u⟩)u+ |u|p−2∂hu = ∂h(|u|p−2u) if x ∈ F0

εp−2∂hu if x ∈ Ω \ F0.

We find, keeping in mind (2.46), that

lim
ε→0

∫
Ω

⟨A ∇u,∇(gp−2
ε u)⟩dx =

∫
Ω

⟨A ∇u,∇(|u|p−2u)⟩dx .

On the other hand, using Lemma 3.3 in [20], we see that

lim
ε→0

∫
Ω

⟨∇t(A ∇u), u⟩gp−2
ε dx =

∫
Ω

⟨∇t(A ∇u), u⟩|u|p−2dx.

Then

−
∫
Ω

⟨∇t(A ∇u), u⟩|u|p−2dx =

∫
Ω

⟨A ∇u,∇(|u|p−2u)⟩dx (2.51)

for any u ∈ Ξ. Hence

−
∫
Ω

⟨Au, u⟩|u|p−2dx =∫
Ω

(⟨A ∇u,∇(|u|p−2u)⟩ − ⟨b∇u, |u|p−2u⟩ − a |u|p)dx .

Therefore (2.45) holds. We can conclude now that the form L is Lp-
dissipative, because of Lemma 12.

Sufficiency. Given u ∈ D(A), we can find a sequence {un} ⊂ Ξ such that
un → u in W 2,p(Ω). Keeping in mind (2.51), we have

−
∫
Ω

⟨Au, u⟩|u|p−2dx = − lim
n→∞

∫
Ω

⟨Aun, un⟩|un|p−2dx =

lim
n→∞

∫
Ω

⟨A ∇un,∇(|un|p−2un)⟩ − ⟨b∇un, |un|p−2un⟩ − a |un|p)dx.

Since L is Lp-dissipative, (2.45) holds for any u ∈ Ξ and (2.41) is true for
any u ∈ D(A).
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2.4.2 Intervals of dissipativity

The next result permits to determine the best interval of p’s for which the
operator

Au = ∇t(A ∇u) (2.52)

is Lp-dissipative. We set

λ = inf
(ξ,x)∈M

⟨ReA (x)ξ, ξ⟩
|⟨ImA (x)ξ, ξ⟩|

,

where M is the set of (ξ, x) with ξ ∈ Rn, x ∈ Ω such that ⟨ImA (x)ξ, ξ⟩ ̸= 0.

Corollary 9 Let A be the operator (2.52). Let us suppose that the matrix
ImA is symmetric and that

⟨ReA (x)ξ, ξ⟩ > 0 (2.53)

for any x ∈ Ω, ξ ∈ Rn. If ImA (x) = 0 for any x ∈ Ω, A is Lp-dissipative
for any p > 1. If ImA does not vanish identically on Ω, A is Lp-dissipative
if and only if

2 + 2λ(λ−
√
λ2 + 1) 6 p 6 2 + 2λ(λ+

√
λ2 + 1). (2.54)

Proof.
When ImA (x) = 0 for any x ∈ Ω, the statement follows from Theorem

12. Let us assume that ImA does not vanish identically; note that this
implies M ̸= ∅.

Necessity. If the operator (2.52) is Lp-dissipative, Theorem 12 shows that

|p− 2| |⟨ImA (x)ξ, ξ⟩| 6 2
√
p− 1 ⟨ReA (x)ξ, ξ⟩ (2.55)

for any x ∈ Ω, ξ ∈ Rn. In particular we have

|p− 2|
2
√
p− 1

6 ⟨ReA (x)ξ, ξ⟩
|⟨ImA (x)ξ, ξ⟩|

for any (ξ, x) ∈ M and then

|p− 2|
2
√
p− 1

6 λ.

This inequality is equivalent to (2.54).
Sufficiency. If (2.54) holds, we have (p−2)2 6 4(p−1)λ2. Note that p > 1,

because 2 + 2λ(λ−
√
λ2 + 1) > 1.

62



Since λ > 0 in view of (2.53), we find |p− 2| 6 2
√
p− 1λ and (2.55) is true

for any (ξ, x) ∈ M. On the other hand, if x ∈ Ω and ξ ∈ Rn with (ξ, x) /∈ M,
(2.55) is trivially satisfied and then it holds for any x ∈ Ω, ξ ∈ Rn. Theorem
12 gives the result.

The next Corollary provides a characterization of operators which are Lp-
dissipative only for p = 2.

Corollary 10 Let A be as in Corollary 9. The operator A is Lp-dissipative
only for p = 2 if and only if ImA does not vanish identically and λ = 0.

Proof. Inequalities (2.54) are satisfied only for p = 2 if and only if
λ(λ −

√
λ2 − 1) = λ(λ +

√
λ2 + 1) and this happens if and only if λ = 0.

Thus the result is a consequence of Corollary 9.

2.4.3 Contractive semigroups generated by the
operator div(A ∇u)

Let A be the operator div(A ∇u) with smooth coefficients. In this subsection
we want to investigate when A generates a contraction semigroup.

In the next Theorem we suppose that A is strongly elliptic, i.e.

⟨ReA (x)ξ, ξ⟩ > 0

for any x ∈ Ω, ξ ∈ Rn \ {0}.

Theorem 15 Let A be the strongly elliptic operator (2.52) with ImA =
ImA t. The operator A generates a contraction semigroup on Lp if and only
if

|p− 2| |⟨ImA (x)ξ, ξ⟩| 6 2
√
p− 1 ⟨ReA (x)ξ, ξ⟩ (2.56)

for any x ∈ Ω, ξ ∈ Rn.

Proof.
Sufficiency. It is a classical result that the operator A defined on (2.40)

and acting in Lp(Ω) is a densely defined closed operator (see [1], [28, Theorem
1, p.302]).

From Theorem 12 we know that the form L is Lp-dissipative and Theorem
14 shows that A is Lp-dissipative. Finally the formal adjoint operator

A∗u = ∇t(A ∗ ∇u)
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with D(A∗) = W 2,p′(Ω) ∩ W̊ 1,p′(Ω), is the adjoint operator of A and since
ImA ∗ = Im(A ∗)t and (2.56) can be written as

|p′ − 2| |⟨ImA ∗(x)ξ, ξ⟩| 6 2
√
p′ − 1 ⟨ReA ∗(x)ξ, ξ⟩, (2.57)

we have also the Lp′-dissipativity of A∗.

The result is a consequence of Theorem 11.

Necessity. If A generates a contraction semigroup on Lp, it is Lp-dissipative.
Therefore (2.56) holds because of Theorem 12.

2.4.4 Quasi-dissipativity and quasi-contractivity

We know that, in case either A has lower order terms or they are absent
and ImA is not symmetric, condition (2.56) is not sufficient for the Lp-
dissipativity. As we shall see now, it turns out that, for these more general
operators, (2.56) is necessary and sufficient for the so called quasi-dissipativity
of A, i.e. the dissipativity of A − ωI for a suitable ω > 0. In other words, A
is Lp-quasi-dissipative if there exists ω > 0 such that

Re

∫
Ω

⟨Au, u⟩|u|p−2dx 6 ω ∥u∥pp

for any u ∈ D(A).

As a consequence, condition (2.56) is necessary and sufficient for the quasi-
contractivity of the semigroup generated by A (see Theorem 17 below).

Lemma 13 The operator (2.39) is Lp-quasi-dissipative if and only if there
exists ω > 0 such that

Re

∫
Ω

[
⟨A ∇v,∇v⟩ − (1− 2/p)⟨(A −A ∗)∇(|v|), |v|−1v∇v⟩−

(1− 2/p)2⟨A ∇(|v|),∇(|v|)⟩
]
dx+

∫
Ω

⟨Imb,Im(v∇v)⟩ dx+∫
Ω

Re(div(b/p)− a)|v|2dx > −ω
∫
Ω

|v|2dx

(2.58)

for any v ∈ H1
0 (Ω).

Proof. The result follows from Lemma 11.
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Theorem 16 The strongly elliptic operator (2.39) is Lp-quasi-dissipative if
and only if

|p− 2| |⟨ImA (x)ξ, ξ⟩| 6 2
√
p− 1 ⟨ReA (x)ξ, ξ⟩ (2.59)

for any x ∈ Ω, ξ ∈ Rn.

Proof.
Necessity. By using the functions X, Y introduced in Corollary 4, we write

condition (2.58) in the form∫
Ω

{ 4

p p′
⟨ReA X,X⟩+ ⟨ReA Y, Y ⟩+

2⟨(p−1 ImA +p′−1 ImA ∗)X, Y ⟩+ ⟨Imb, Y ⟩|v|+

Re [div(b/p)− a+ ω] |v|2
}
dx > 0 .

As in the proof of Corollary 4, this inequality implies

4

p p′

∫
Ω

⟨ReA ∇ϱ,∇ϱ⟩dx+ µ2

∫
Ω

⟨ReA ∇ϱ,∇ϱ⟩dx+

2µ

∫
Ω

⟨(p−1 ImA +p′−1 ImA ∗)∇ϱ,∇ϱ⟩dx+

µ

∫
Ω

ϱ⟨Imb,∇ϱ⟩dx+
∫
Ω

Re [div (b/p)− a+ ω] ϱ2dx > 0

for any ϱ ∈ C̊1(Ω), µ ∈ R. Since

⟨ImA ∗ ∇ϱ,∇ϱ⟩ = −⟨ImA t∇ϱ,∇ϱ⟩ = −⟨ImA ∇ϱ,∇ϱ⟩

we have

4

p p′

∫
Ω

⟨ReA ∇ϱ,∇ϱ⟩dx+ µ2

∫
Ω

⟨ReA ∇ϱ,∇ϱ⟩dx−

2(1− 2/p)µ

∫
Ω

⟨ImA ∇ϱ,∇ϱ⟩dx+

µ

∫
Ω

ϱ⟨Imb,∇ϱ⟩dx+
∫
Ω

Re [div (b/p)− a+ ω] ϱ2dx > 0

for any ϱ ∈ C̊1(Ω), µ ∈ R.
Taking ϱ(x) = ψ(x) cos⟨ξ, x⟩ and ϱ(x) = ψ(x) sin⟨ξ, x⟩ with ψ ∈ C̊1(Ω) and

arguing as in the proof of Corollary 4, we find∫
Ω

⟨B∇ψ,∇ψ⟩dx+
∫
Ω

⟨B ξ, ξ⟩ψ2dx+

µ

∫
Ω

⟨Imb,∇ψ⟩ψ dx+
∫
Ω

Re [div (b/p)− a+ ω]ψ2dx > 0 ,
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where µ ∈ R and

B =
4

p p′
ReA +µ2 ReA −2(1− 2/p)µImA .

Because of the arbitrariness of ξ we see that∫
Ω

⟨B ξ, ξ⟩ψ2dx > 0

for any ψ ∈ C̊1(Ω). Hence ⟨B ξ, ξ⟩ > 0, i.e.

4

p p′
⟨ReA ξ, ξ⟩+ µ2⟨ReA ξ, ξ⟩ − 2(1− 2/p)µ⟨ImA ξ, ξ⟩ > 0

for any x ∈ Ω, ξ ∈ Rn, µ ∈ R. Inequality (2.59) follows from the arbitrariness
of µ.

Sufficiency. Assume first that ImA is symmetric. By repeating the first
part of the proof of sufficiency of Theorem 12, we find that (2.59) implies

4

p p′
⟨ReA ξ, ξ⟩+ ⟨ReA η, η⟩ − 2(1− p/2)⟨ImA ξ, η⟩ > 0 (2.60)

for any x ∈ Ω, ξ, η ∈ Rn.
In order to prove (2.58), it is not restrictive to suppose

Re(div(b/p)− a) = 0.

Since A is strongly elliptic, there exists a non singular real matrix C ∈
C1(Ω) such that

⟨ReA η, η⟩ = ⟨C η,C η⟩

for any η ∈ Rn. Setting

S = (1− 2/p)(C t)−1 ImA ,

we have

|C η − S ξ|2 = ⟨ReA η, η⟩ − 2(1− p/2)⟨ImA ξ, η⟩+ |S ξ|2.

This leads to the identity

4

p p′
⟨ReA ξ, ξ⟩+ ⟨ReA η, η⟩ − 2(1− p/2)⟨ImA ξ, η⟩ =

|C η − S ξ|2 + 4

p p′
⟨ReA ξ, ξ⟩ − |S ξ|2

(2.61)
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for any ξ, η ∈ Rn. In view of (2.60), putting η = C −1 S ξ in (2.61), we obtain

4

p p′
⟨ReA ξ, ξ⟩ − |S ξ|2 > 0 (2.62)

for any ξ ∈ Rn.
On the other hand, we may write

⟨Imb, Y ⟩ = ⟨(C −1)t Imb,C Y ⟩ =
⟨(C −1)t Imb,C Y − S X⟩+ ⟨(C −1)t Imb,S X⟩ .

By the Cauchy inequality∫
Ω

⟨(C −1)t Imb,C Y − S X⟩|v| dx >

−
∫
Ω

|C Y − S X|2dx− 1

4

∫
Ω

|(C −1)t Imb|2|v|2dx

and, integrating by parts,∫
Ω

⟨(C −1)t Imb,S X⟩|v| dx =
1

2

∫
Ω

⟨(C −1 S )t Imb,∇(|v|2)⟩ dx =

−1

2

∫
Ω

∇t((C −1 S )t Imb) |v|2 dx .

This implies that there exists ω > 0 such that∫
Ω

⟨Imb, Y ⟩ |v| dx > −
∫
Ω

|C Y − S X|2dx− ω

∫
Ω

|v|2dx

and then, in view of (2.61),∫
Ω

{ 4

p p′
⟨ReA X,X⟩+ ⟨ReA Y, Y ⟩+

2(1− p/2)⟨ImA X, Y ⟩+ ⟨Imb, Y ⟩|v|
}
dx >∫

Ω

(
4

p p′
⟨ReA X,X⟩ − |S X|2

)
dx− ω

∫
Ω

|v|2dx .

Inequality (2.62) gives the result.
We have proved the sufficiency under the assumption ImA t = ImA .

In the general case, the operator A can be written in the form

Au = ∇t((A +A t)∇u)/2 + c∇u+ au,
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where
c = ∇t(A −A t)/2 + b.

Since (A +A t) is symmetric, we know that A is Lp-quasi-dissipative if and
only if

|p− 2| |⟨Im(A +A t)ξ, ξ⟩| 6 2
√
p− 1 ⟨Re(A +A t)ξ, ξ⟩

for any ξ ∈ Rn, which is exactly condition (2.59).

With Theorem 16 in hand, we may obtain the following corollary.

Corollary 11 Let A be the strongly elliptic operator (2.39). If ImA (x) = 0
for any x ∈ Ω, A is Lp-quasi-dissipative for any p > 1. If ImA does not
vanish identically on Ω, A is Lp-quasi-dissipative if and only if (2.54) holds.

Proof. The proof is similar to that of Corollary 9, the role of Theorem 12
being played by Theorem 16.

The next theorem gives a criterion for the Lp-quasi-contractivity of the
semigroup generated by A (i.e. the Lp-contractivity of the semigroup generated
by A− ωI).

Theorem 17 Let A be the strongly elliptic operator (2.39). The operator A
generates a quasi-contraction semigroup on Lp if and only if (2.56) holds for
any x ∈ Ω, ξ ∈ Rn.

Proof.
Sufficiency. Let us consider A as an operator defined on (2.40) and acting

in Lp(Ω). As in the proof of Theorem 15, one can see that A is a densely
defined closed operator and that the formal adjoint coincides with the adjoint
A∗. Theorem 16 shows that A is Lp-quasi-dissipative. On the other hand,
condition (2.57) holds and then A∗ is Lp′-quasi-dissipative. As in Theorem 15,
this implies that A generates a quasi-contraction semigroup on Lp.

Necessity. If A generates a quasi-contraction semigroup on Lp, A is Lp-
quasi-dissipative and (2.56) holds.

2.5 The angle of dissipativity

In this section we want to determine the angle of dissipativity of the operator

A = ∇t(A (x)∇),
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where A = {aij(x)} (i, j = 1, . . . , n) is a matrix with complex locally
integrable entries defined in a domain Ω ⊂ Rn.

This means that we want to find the complex values z such that the operator
zA is Lp-dissipative, provided A itself is Lp-dissipative.

It is known that, if A is a real matrix, then zA is dissipative if and only
if z belongs to a certain angle, which does not depend on the operator A (see
Remark 9 below). We shall find that for a complex matrix A the situation is
quite different: zA is Lp-dissipative if and only if z belongs to a certain angle,
which depends on the operator A.

We know that, if ImA is symmetric, there is the Lp-dissipativity of the
Dirichlet problem for the differential operator A if and only if

|p− 2| |⟨ImA (x)ξ, ξ⟩| 6 2
√
p− 1⟨ReA (x)ξ, ξ⟩ (2.63)

for almost every x ∈ Ω and for any ξ ∈ Rn.
For the sake of completeness we give a proof of the following elementary

lemma

Lemma 14 Let P and Q two real measurable functions defined on a set
Ω ⊂ Rn. Let us suppose that P (x) > 0 almost everywhere. The inequality

P (x) cosϑ−Q(x) sinϑ > 0 (ϑ ∈ [−π, π]) (2.64)

holds for almost every x ∈ Ω if and only if

arccot [ess inf
x∈Ξ

(Q(x)/P (x))]− π 6 ϑ 6 arccot [ess sup
x∈Ξ

(Q(x)/P (x))], (2.65)

where Ξ = {x ∈ Ω | P 2(x) +Q2(x) > 0} and we set

Q(x)/P (x) =

{
+∞ if P (x) = 0, Q(x) > 0
−∞ if P (x) = 0, Q(x) < 0.

Here 0 < arccot y < π, arccot(+∞) = 0, arccot(−∞) = π and

ess inf
x∈Ξ

(Q(x)/P (x)) = +∞, ess sup
x∈Ξ

(Q(x)/P (x)) = −∞

if Ξ has zero measure.

Proof. If Ξ has positive measure and P (x) > 0, inequality (2.64) means

cosϑ− (Q(x)/P (x)) sinϑ > 0

and this is true if and only if

arccot (Q(x)/P (x))− π 6 ϑ 6 arccot (Q(x)/P (x)). (2.66)
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If x ∈ Ξ and P (x) = 0, (2.64) means

−π 6 ϑ 6 0, if Q(x) > 0, 0 6 ϑ 6 π, if Q(x) < 0.

This shows that (2.64) is equivalent to (2.66) provided that x ∈ Ξ. On the
other hand, if x /∈ Ξ, P (x) = Q(x) = 0 almost everywhere and (2.64) is always
satisfied. Therefore, if Ξ has positive measure, (2.64) and (2.65) are equivalent.

If Ξ has zero measure, the result is trivial.

The next theorem provides a necessary and sufficient condition for the Lp-
dissipativity of the Dirichlet problem for the differential operator zA, where
z ∈ C.

Theorem 18 Let the matrix A be symmetric. Let us suppose that the
operator A is Lp-dissipative. Set

Λ1 = ess inf
(x,ξ)∈Ξ

⟨ImA (x)ξ, ξ⟩
⟨ReA (x)ξ, ξ⟩

, Λ2 = ess sup
(x,ξ)∈Ξ

⟨ImA (x)ξ, ξ⟩
⟨ReA (x)ξ, ξ⟩

,

where
Ξ = {(x, ξ) ∈ Ω× Rn | ⟨ReA (x)ξ, ξ⟩ > 0}. (2.67)

The operator zA is Lp-dissipative if and only if

ϑ− 6 arg z 6 ϑ+ , (2.68)

where

ϑ− =

{
arccot

(
2
√
p−1

|p−2| − p2

|p−2|
1

2
√
p−1+|p−2|Λ1

)
− π if p ̸= 2

arccot(Λ1)− π if p = 2

ϑ+ =

{
arccot

(
−2

√
p−1

|p−2| + p2

|p−2|
1

2
√
p−1−|p−2|Λ2

)
if p ̸= 2

arccot(Λ2) if p = 2.

Proof. The matrix A being symmetric, Im(eiϑA) is symmetric and in
view of (2.63), the operator eiϑA (with ϑ ∈ [−π, π]) is Lp-dissipative if and
only if

|p− 2| |⟨ReA (x)ξ, ξ⟩ sinϑ+ ⟨ImA (x)ξ, ξ⟩ cosϑ| 6
2
√
p− 1(⟨ReA (x)ξ, ξ⟩ cosϑ− ⟨ImA (x)ξ, ξ⟩ sinϑ) (2.69)

for almost every x ∈ Ω and for any ξ ∈ Rn. Suppose p ̸= 2. Setting

a(x, ξ) = |p− 2| ⟨ReA (x)ξ, ξ⟩, b(x, ξ) = |p− 2| ⟨ImA (x)ξ, ξ⟩,
c(x, ξ) = 2

√
p− 1 ⟨ReA (x)ξ, ξ⟩, d(x, ξ) = 2

√
p− 1 ⟨ImA (x)ξ, ξ⟩,
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the inequality in (2.69) can be written as the system{
(c(x, ξ)− b(x, ξ)) cosϑ− (a(x, ξ) + d(x, ξ)) sinϑ > 0,
(c(x, ξ) + b(x, ξ)) cosϑ+ (a(x, ξ)− d(x, ξ)) sinϑ > 0.

(2.70)

Noting that c(x, ξ) ± b(x, ξ) > 0 because of (2.63), the solutions of the
inequalities in (2.70) are given by the ϑ’s satisfying both of the following
conditions (see Lemma 14)

arccot

(
ess inf
(x,ξ)∈Ξ1

a(x,ξ)+d(x,ξ)
c(x,ξ)−b(x,ξ)

)
− π 6 ϑ 6 arccot

(
ess sup
(x,ξ)∈Ξ1

a(x,ξ)+d(x,ξ)
c(x,ξ)−b(x,ξ)

)

arccot

(
ess inf
(x,ξ)∈Ξ2

d(x,ξ)−a(x,ξ)
c(x,ξ)+b(x,ξ)

)
− π 6 ϑ 6 arccot

(
ess sup
(x,ξ)∈Ξ2

d(x,ξ)−a(x,ξ)
c(x,ξ)+b(x,ξ)

)
,

(2.71)
where

Ξ1 = {(x, ξ) ∈ Ω× Rn | (a(x, ξ) + d(x, ξ))2 + (c(x, ξ)− b(x, ξ))2 > 0},
Ξ2 = {(x, ξ) ∈ Ω× Rn | (a(x, ξ)− d(x, ξ))2 + (b(x, ξ) + c(x, ξ))2 > 0}.

We have

a(x, ξ) d(x, ξ) = b(x, ξ) c(x, ξ),

a2(x, ξ) + b2(x, ξ) + c2(x, ξ) + d2(x, ξ) = p2(⟨ReA (x)ξ, ξ⟩2 + ⟨ImA (x)ξ, ξ⟩2)

and then, keeping in mind (2.63), we may write Ξ1 = Ξ2 = Ξ, where Ξ is given
by (2.67).

Moreover
a(x, ξ) + d(x, ξ)

c(x, ξ)− b(x, ξ)
> d(x, ξ)− a(x, ξ)

c(x, ξ) + b(x, ξ)

and then ϑ satisfies all of the inequalities in (2.71) if and only if

arccot

(
ess inf
(x,ξ)∈Ξ

d(x,ξ)−a(x,ξ)
c(x,ξ)+b(x,ξ)

)
− π 6 ϑ 6 arccot

(
ess sup
(x,ξ)∈Ξ

a(x,ξ)+d(x,ξ)
c(x,ξ)−b(x,ξ)

)
(2.72)

A direct computation shows that

d(x, ξ)− a(x, ξ)

c(x, ξ) + b(x, ξ)
=

2
√
p− 1

|p− 2|
− p2

|p− 2|
1

2
√
p− 1 + |p− 2|Λ(x, ξ)

,

a(x, ξ) + d(x, ξ)

c(x, ξ)− b(x, ξ)
= −2

√
p− 1

|p− 2|
+

p2

|p− 2|
1

2
√
p− 1− |p− 2|Λ(x, ξ)
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where

Λ(x, ξ) =
⟨ImA (x)ξ, ξ⟩
⟨ReA (x)ξ, ξ⟩

.

Hence condition (2.72) is satisfied if and only if (2.68) holds.
If p = 2, (2.69) is simply

⟨ReA (x)ξ, ξ⟩ cosϑ− ⟨ImA (x)ξ, ξ⟩ sinϑ > 0

and the result follows directly from Lemma 14.

Remark 9 If A is a real matrix, then Λ1 = Λ2 = 0 and the angle of
dissipativity does not depend on the operator. In fact we have

2
√
p− 1

|p− 2|
− p2

2
√
p− 1|p− 2|

= − |p− 2|
2
√
p− 1

and Theorem 18 shows that zA is dissipative if and only if

arccot

(
− |p− 2|
2
√
p− 1

)
− π 6 arg z 6 arccot

(
|p− 2|
2
√
p− 1

)
,

i.e.

| arg z| 6 arctan

(
2
√
p− 1

|p− 2|

)
.

This is a well known result (see, e.g., [12, 13, 31]).
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Chapter 3

Systems and higher order
operators

In this Chapter we survey several results concerning the Lp-dissipativity of
systems of partial differential operators and the problem of the dissipativity of
higher order operators.

Such results are connected to the ones contained in the previous Chapter.

We are not going to give the proofs, but for each result, we indicate the
paper containing them.

3.1 Systems of partial differential operators

3.1.1 Lp-contractivity for weakly coupled systems

In this Section we consider the operator

Apu = ∂i(aij∂ju) + ai∂iu+ Au, u ∈ (W 2,p(Ω) ∩W 1,p
0 (Ω))N , (3.1)

where aij, ai are C
1(Ω) real functions and A is a N ×N -matrix with complex

C0(Ω) entries. The matrix {aij} is supposed to be pointwise symmetric.

We introduce also the following operator which is associated to (3.1)

Au =
4

pp′
∂i(aij∂ju) +

1

2p
(p(A+ A∗)− 2∂iaiI)u, (3.2)

where u ∈ (H2(Ω) ∩H1
0 (Ω))

N .

The following result obtained by Langer and Maz’ya shows that the Lp-
contractivity of the operator Ap is related to the L2-contractivity of the
operator A.
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Theorem 19 ([19]) Let Ω ⊂ Rn a bounded domain with a C2,α boundary
(0 < α 6 1) and let Ap the operator (3.1) which is supposed to be elliptic.
If the operator (3.2) generates a contraction semigroup on (L2(Ω))N , then Ap

generates a contraction semigroup on (Lp(Ω))N . Conversely, if there is a basis
of constant eigenvectors to A+A∗, then A generates a contraction semigroup on
(L2(Ω))N if Ap generates a contraction semigroup on (Lp(Ω))N . In particular,
the converse holds in the scalar case.

This result was obtained by considering the functionals

J(w) =

∫
Ω

( 4

pp′
aij⟨∂iw, ∂jw⟩+ Re⟨(p−1∂iaiI − A)w,w⟩

)
dx,

Jp(w) =

∫
Ω

(
aij⟨∂iw, ∂jw⟩+ Re⟨(p−1∂iaiI − A)w,w⟩

)
dx

− (p− 2)2

p2

∫
{w ̸=0}

aij Re⟨∂iw,w⟩Re⟨∂jw,w⟩|w|−2 dx,

and the related constants

µ = inf{J(w) : w ∈ (H1
0 (Ω))

N , ∥w∥2 = 1},
µp = inf{Jp(w) : w ∈ (H1

0 (Ω))
N , ∥w∥2 = 1}.

Lemma 15 ([19]) The operator Ap is dissipative in (Lp(Ω))N if and only if
µp > 0.

We have also

Lemma 16 ([19]) Let 1 < p < ∞ and suppose that the principal part of Ap

is positive. Then A and Ap generate the semigroups T on (L2(Ω))N and Tp on
(Lp(Ω))N , respectively, fulfilling the inequalities

∥T (t)∥ 6 e−µt, ∥Tp(t)∥ 6 e−µpt, t > 0.

The constants µ and µp are the best possible.

Lemma 16 implies that if µ = µp, then Ap generates a contraction
semigroup on (Lp)N if and only if A generates a contraction semigroup on
(L2)N . It is therefore interesting to understand the relation between µ and µp.

Lemma 17 ([19]) Suppose that 1 < p <∞ and that the principal part of Ap

is positive. Then µ = µp if and only if at least one of the nonzero generalized
solutions of the equation

− 4

pp′
∂i(aij∂jw) +

1

2p
(2∂iaiI − p(A+ A∗))w = µw, w ∈ (H1

0 (Ω))
N ,
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is of the form w = fc for some real-valued scalar function f and some c ∈ CN .
Moreover, µ is the least eigenvalue of the left-hand side of the equation.

Corollary 12 ([19]) Suppose that the principal part of Ap is positive. Then
µ 6 µp. If µ = µp, there is a constant eigenvector to A+ A∗ on Ω.

With these results at hand Langer and Maz’ya proved Theorem 19
formulated above.

The following interesting example concerns the equality µ = µp, which is
always satisfied if N = 1, in view of Lemma 17.

Example 8 Let A be the matrix

A(x) =

(
1 |x|
|x| −1

)
, x ∈ Ω.

Since A has no constant eigenvectors, we have µ < µp (see Corollary 12).
Therefore we can choose a suitable constant c such that Ap + cI generates a
contraction semigroup on (Lp(Ω))2, while A does not generate a contraction
semigroup on (L2(Ω))2.

3.1.2 Parabolic systems

The maximum modulus principle for a parabolic system

In this subsection we discuss the L∞ case. This subject has been widely
investigated by Kresin and Maz’ya (see [18] for a general survey of their result).
In particular they proved that for a system which is uniformly parabolic in
the sense of Petrovskii and in which the coefficients do not depend on t, the
maximum modulus principle holds if and only if the principal part of the
system is scalar and the coefficients of the system satisfy a certain algebraic
inequality (see Theorem 20 below).

They have considered the case in which the coefficients depend on t as
well, where they found necessary and, separately, sufficient conditions for the
validity of the maximum modulus principle.

They studied also maximum principles in which the norm is understood in
a generalized sense, i.e. as the Minkowski functional of a compact convex body
in Rn containing the origin. Also in this general case they give necessary and
(separately if the coefficients of the system depend on t) sufficient conditions
for the validity of the maximum norm principle.

Let Ω ⊂ Rn be a bounded domain with a C2,α boundary (0 < α 6 1) and
let QT be the cylinder Ω× (0, T ).

75



Let A be the differential operator

Au = ∂i(Aij∂ju) + Ai∂iu+ Au

where Aij, Ai and A are N × N matrices whose entries are complex valued
functions. The elements of Aij, Ai and A belong to C2,α(Ω), C1,α(Ω) and
C0,α(Ω) respectively.

Moreover Aij = Aji and there exists δ > 0 such that for every x ∈ Ω and
every ξ = (ξ1, . . . , ξN) ∈ RN , the zeros of the polynomial

λ 7→ det(ξiξjAij + λI)

satisfy the inequality Re λ 6 −δ|ξ|2.
∂tu−Au = 0, on QT ,
u(·, 0) = φ, on Ω,
u|∂Ω×[0,T ] = 0,

(3.3)

where φ ∈ (C2,α(Ω))N and vanishes on ∂Ω.

Theorem 20 ([17]) Let u be the solution of (3.3). In order that

∥u(·, t)∥∞ 6 ∥φ∥∞ ∀t ∈ [0, T ],

for all φ ∈ (C2,α(Ω))N vanishing on ∂Ω, it is necessary and sufficient that

(a) there are real-valued scalar functions aij on Ω such that for every i, j,
Aij = aijI and the n× n-matrix {aij} is positive definite;

(b) for all ηi, ζ ∈ CN , i = 1, . . . , n, with Re⟨ηi, ζ⟩ = 0, the inequality

Re {aij⟨ηi, ηj⟩ − ⟨Aiηi, ζ⟩ − ⟨Aζ, ζ⟩} > 0

holds on Ω.

In the scalar case n = 1, condition (b) is reduced to the requirement that
the inequality

−4ReA > bij ImAi ImAj

holds on Ω, where {bij} = {aij}−1 (cfr. (2.38)).
Let us consider now the problem

∂tw +A∗w = 0, on QT ,
w(·, T ) = ψ, on Ω,
w|∂Ω×[0,T ] = 0,

(3.4)

where A∗ is the formally adjoint operator of A

A∗w = ∂i(A
∗
ij∂jw)− A∗

i ∂iw + (A∗ − ∂iA
∗
i )w.

Theorem 20 implies
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Corollary 13 Let w be the solution of (3.4). In order that

∥w(·, t)∥∞ 6 ∥ψ∥∞ ∀t ∈ [0, T ],

for all ψ ∈ (C2,α(Ω))N vanishing on ∂Ω, it is necessary and sufficient that

(a) there are real-valued scalar functions aij on Ω such that for every i, j,
Aij = aijI and the n× n-matrix {aij} is positive definite;

(b) for all ηi, ζ ∈ CN , i = 1, . . . , n, with Re⟨ηi, ζ⟩ = 0, the inequality

Re {aij⟨ηi, ηj⟩+ ⟨Aiζ, ηi⟩ − ⟨(A− ∂iAi)ζ, ζ⟩} > 0

holds on Ω.

Hinging on Theorem 20 and its Corollary 13 and using interpolation, one
arrives to the necessary and sufficient conditions for the validity of the Lp

maximum principle for all p ∈ [1,∞] simultaneously:

Corollary 14 ([19]) Let u be the solution of (3.3). In order that

∥u(·, t)∥p 6 ∥φ∥p ∀t ∈ [0, T ],

for all φ ∈ (C2,α(Ω))N vanishing on ∂Ω and for all p ∈ [1,∞], it is necessary
and sufficient that

(a) there are real-valued scalar functions aij on Ω such that for every i, j,
Aij = aijI and the n× n-matrix {aij} is positive definite;

(b) for all ηi, ζ ∈ CN , i = 1, . . . , n, with Re⟨ηi, ζ⟩ = 0, the inequalities

Re {aij⟨ηi, ηj⟩ − ⟨Aiηi, ζ⟩ − ⟨Aζ, ζ⟩} > 0,

Re {aij⟨ηi, ηj⟩+ ⟨Aiζ, ηi⟩ − ⟨(A− ∂iAi)ζ, ζ⟩} > 0

hold on Ω.

Applications to semigroup theory

Theorem 14 implies the following result about the contractivity property of
the semigroup generated by Ap, where Ap is the extension of the operator A
to the space

D(Ap) = (W 2,p(Ω) ∩W 1,p
0 (Ω))N , 1 < p <∞

and A1 is the closure in (L1(Ω))N of the operator A, whose domain is the
space of the functions in (C2,α(Ω))N vanishing on ∂Ω.
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Theorem 21 ([19]) The operators Ap generate contraction semigroups on
(Lp(Ω))N for all p ∈ [1,∞) and on (C0(Ω))

N for p = ∞ simultaneously if
and only if

(a) there are real-valued scalar functions aij on Ω such that for every i, j,
Aij = aijI and the n× n-matrix {aij} is positive definite;

(b) for all ηi, ζ ∈ CN , i = 1, . . . , n, with Re⟨ηi, ζ⟩ = 0, the inequalities

Re {aij⟨ηi, ηj⟩ − ⟨Aiηi, ζ⟩ − ⟨Aζ, ζ⟩} > 0,

Re {aij⟨ηi, ηj⟩+ ⟨Aiζ, ηi⟩ − ⟨(A− ∂iAi)ζ, ζ⟩} > 0

hold on Ω.

Example 9 Let us consider the Schrödinger operator with magnetic field

−(i∇+m)t(i∇+m)− V,

where m is an Rn-valued function on Ω and V is complex-valued. Theorem
21 shows that this operator generates contraction semigroups on Lp(Ω) for all
p ∈ [1,∞] simultaneously if and only if

−4ReA >
n∑

j=1

(ImAj)
2, −4Re(A− ∂jAj) >

n∑
j=1

(−ImAj)
2.

This is equivalent to the condition Re V > 0 on Ω.

3.1.3 Two-dimensional elasticity

Let us consider the classical operator of two-dimensional elasticity

Eu = ∆u+ (1− 2ν)−1∇ div u, (3.5)

where ν is the Poisson ratio. It is well known that E is strongly elliptic if and
only if either ν > 1 or ν < 1/2.

In order to obtain a necessary and sufficient condition for the Lp-
dissipativity of the elasticity system, we start with some results concerning
systems of partial differential equations of the form

A = ∂h(A
hk(x)∂k), (3.6)

where A hk(x) = {ahkij (x)} are m × m matrices whose elements are complex
locally integrable functions defined in an arbitrary domain Ω of Rn (1 6 i, j 6
m, 1 6 h, k 6 n).
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Lemma 18 ([6]) The operator (3.6) is Lp-dissipative in the domain Ω ⊂ Rn

if and only if ∫
Ω

(
Re⟨A hk ∂kw, ∂hw⟩

−(1− 2/p)2|w|−4 Re⟨A hk w,w⟩Re⟨w, ∂kw⟩Re⟨w, ∂hw⟩

−(1− 2/p)|w|−2 Re(⟨A hk w, ∂hw⟩Re⟨w, ∂kw⟩

−⟨A hk ∂kw,w⟩Re⟨w, ∂hw⟩)
)
dx > 0

for any w ∈ (C̊1(Ω))m.

In the particular case n = 2 we can deduce from Lemma 18 a necessary
algebraic condition:

Theorem 22 ([6]) Let Ω be a domain of R2. If the operator (3.6) is Lp-
dissipative, we have

Re⟨(A hk(x)ξhξk)λ, λ⟩ − (1− 2/p)2 Re⟨(A hk(x)ξhξk)ω, ω⟩(Re⟨λ, ω⟩)2
−(1− 2/p)Re(⟨(A hk(x)ξhξk)ω, λ⟩ − ⟨(A hk(x)ξhξk)λ, ω⟩)Re⟨λ, ω⟩

> 0

for almost every x ∈ Ω and for any ξ ∈ R2, λ, ω ∈ Cm, |ω| = 1.

By means of Lemma 18 and Theorem 22 it is possible to prove the following
criterion for the Lp-dissipativity of the two-dimensional elasticity:

Theorem 23 ([6]) The operator (3.5) is Lp-dissipative if and only if(
1

2
− 1

p

)2

6 2(ν − 1)(2ν − 1)

(3− 4ν)2
.

By two last theorems one can make easily a comparison between E and ∆
from the point of view of the Lp-dissipativity.

Corollary 15 ([6]) There exists k > 0 such that E − k∆ is Lp-dissipative if
and only if (

1

2
− 1

p

)2

<
2(ν − 1)(2ν − 1)

(3− 4ν)2
.

There exists k < 2 such that k∆− E is Lp-dissipative if and only if(
1

2
− 1

p

)2

<
2ν(2ν − 1)

(1− 4ν)2
.
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3.1.4 A class of systems of partial differential operators

In this Section we consider a system of partial differential operators of the form

Au = ∂h(A
h(x)∂hu), (3.7)

where A h(x) = {ahij(x)} (i, j = 1, . . . ,m) are matrices with complex locally
integrable entries defined in a domain Ω ⊂ Rn (h = 1, . . . , n). We note that
elasticity system is not a system of this kind.

One can characterize the Lp-dissipativity of such operators by reducing
the study to one dimensional case. The next two Subsections are devoted to
auxiliary results for systems of ordinary differential equations.

Dissipativity for systems of ordinary differential equations

The results of this Subsection concern the operator

Au = (A (x)u′)′, (3.8)

where A (x) = {aij(x)} (i, j = 1, . . . ,m) is a matrix with complex locally
integrable entries defined in the bounded or unbounded interval (a, b).

The corresponding sesquilinear form L (u,w) is given by

L (u,w) =

∫ b

a

⟨A u′, w′⟩ dx.

Theorem 24 ([6]) The operator A is Lp-dissipative if and only if

Re⟨A (x)λ, λ⟩ − (1− 2/p)2 Re⟨A (x)ω, ω⟩(Re⟨λ, ω⟩)2
−(1− 2/p)Re(⟨A (x)ω, λ⟩ − ⟨A (x)λ, ω⟩)Re⟨λ, ω⟩ > 0

for almost every x ∈ (a, b) and for any λ, ω ∈ Cm, |ω| = 1.

A consequence of this Theorem is

Corollary 16 ([6]) If the operator A is Lp-dissipative, then

Re⟨A (x)λ, λ⟩ > 0

for almost every x ∈ (a, b) and for any λ ∈ Cm.

We can precisely determine the angle of dissipativity of the matrix ordinary
differential operator (3.8) with complex coefficients.
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Theorem 25 ([6]) Let the operator (3.8) be Lp-dissipative. The operator zA
is Lp-dissipative if and only if

ϑ− 6 arg z 6 ϑ+,

where

ϑ− = arccot

(
ess inf
(x,λ,ω)∈Ξ

(Q(x, λ, ω)/P (x, λ, ω))

)
− π,

ϑ+ = arccot

(
ess sup
(x,λ,ω)∈Ξ

(Q(x, λ, ω)/P (x, λ, ω))

)
,

P (x, λ, ω) = Re⟨A (x)λ, λ⟩ − (1− 2/p)2 Re⟨A (x)ω, ω⟩(Re⟨λ, ω⟩)2

−(1− 2/p)Re(⟨A (x)ω, λ⟩ − ⟨A (x)λ, ω⟩)Re⟨λ, ω⟩,
Q(x, λ, ω) = Im⟨A (x)λ, λ⟩ − (1− 2/p)2 Im⟨A (x)ω, ω⟩(Re⟨λ, ω⟩)2

−(1− 2/p)Im(⟨A (x)ω, λ⟩ − ⟨A (x)λ, ω⟩)Re⟨λ, ω⟩

and Ξ is the set

Ξ = {(x, λ, ω) ∈ (a, b)× Cm × Cm | |ω| = 1, P 2(x, λ, ω) +Q2(x, λ, ω) > 0}.

Another consequence of Theorem 24 is the possibility of making a
comparison between A and the operator I(d2/dx2).

Corollary 17 ([6]) There exists k > 0 such that A − kI(d2/dx2) is Lp-
dissipative if and only if

ess inf
(x,λ,ω)∈(a,b)×Cm×Cm

|λ|=|ω|=1

P (x, λ, ω) > 0.

There exists k > 0 such that kI(d2/dx2)−A is Lp-dissipative if and only if

ess sup
(x,λ,ω)∈(a,b)×Cm×Cm

|λ|=|ω|=1

P (x, λ, ω) <∞.

There exists k ∈ R such that A− kI(d2/dx2) is Lp-dissipative if and only if

ess inf
(x,λ,ω)∈(a,b)×Cm×Cm

|λ|=|ω|=1

P (x, λ, ω) > −∞.
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Criteria formulated in terms of eigenvalues of the matrix A (x)

In the particular case in which the coefficients aij of operator (3.8) are real,
we can give a necessary and sufficient condition for the Lp-dissipativity of A
in terms of eigenvalues of the matrix A .

Theorem 26 ([6]) Let A be a real matrix {ahk} with h, k = 1, . . . ,m. Let us
suppose A = A t and A > 0 (in the sense ⟨A (x)ξ, ξ⟩ > 0, for almost every
x ∈ (a, b) and for any ξ ∈ Rm). The operator A is Lp-dissipative if and only if(

1

2
− 1

p

)2

(µ1(x) + µm(x))
2 6 µ1(x)µm(x)

almost everywhere, where µ1(x) and µm(x) are the smallest and the largest
eigenvalues of the matrix A (x) respectively. In the particular case m = 2 this
condition is equivalent to(

1

2
− 1

p

)2

(trA (x))2 6 detA (x)

almost everywhere.

We have also:

Corollary 18 ([6]) Let A be a real and symmetric matrix. Denote by µ1(x)
and µm(x) the smallest and the largest eigenvalues of A (x) respectively. There
exists k > 0 such that A− kI(d2/dx2) is Lp-dissipative if and only if

ess inf
x∈(a,b)

[
(1 +

√
p p′/2)µ1(x) + (1−

√
p p′/2)µm(x)

]
> 0. (3.9)

In the particular case m = 2 condition (3.9) is equivalent to

ess inf
x∈(a,b)

[
trA (x)−

√
p p′

2

√
(trA (x))2 − 4 detA (x)

]
> 0.

If we require something more about the matrix A we have also

Corollary 19 ([6]) Let A be a real and symmetric matrix. Suppose A > 0
almost everywhere. Denote by µ1(x) and µm(x) the smallest and the largest
eigenvalues of A (x) respectively. If there exists k > 0 such that A−kI(d2/dx2)
is Lp-dissipative, then

ess inf
x∈(a,b)

[
µ1(x)µm(x)−

(
1

2
− 1

p

)2

(µ1(x) + µm(x))
2

]
> 0. (3.10)
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If, in addition, there exists C such that

⟨A (x)ξ, ξ⟩ 6 C|ξ|2 (3.11)

for almost every x ∈ (a, b) and for any ξ ∈ Rm, the converse is also true. In
the particular case m = 2 condition (3.10) is equivalent to

ess inf
x∈(a,b)

[
detA (x)−

(
1

2
− 1

p

)2

(trA (x))2

]
> 0.

Generally speaking, assumption (3.11) cannot be omitted even if A > 0.

Example 10 Consider (a, b) = (1,∞), m = 2, A (x) = {aij(x)} where

a11(x) = (1− 2/
√
pp′)x+ x−1, a12(x) = a21(x) = 0,

a22(x) = (1 + 2/
√
pp′)x+ x−1.

We have

µ1(x)µ2(x)−
(
1

2
− 1

p

)2

(µ1(x) + µ2(x))
2 = (8 + 4x−2)/(p p′)

and (3.10) holds. But (3.9) is not satisfied, because

(1 +
√
p p′/2)µ1(x) + (1−

√
p p′/2)µ2(x) = 2x−1.

Corollary 20 ([6]) Let A be a real and symmetric matrix. Denote by µ1(x)
and µm(x) the smallest and the largest eigenvalues of A (x) respectively. There
exists k > 0 such that kI(d2/dx2)− A is Lp-dissipative if and only if

ess sup
x∈(a,b)

[
(1−

√
p p′/2)µ1(x) + (1 +

√
p p′/2)µm(x)

]
<∞. (3.12)

In the particular case m = 2 condition (3.12) is equivalent to

ess sup
x∈(a,b)

[
trA (x) +

√
p p′

2

√
(trA (x))2 − 4 detA (x)

]
<∞.

In the case of a positive matrix A , we have

Corollary 21 ([6]) Let A be a real and symmetric matrix. Suppose A > 0
almost everywhere. Denote by µ1(x) and µm(x) the smallest and the largest
eigenvalues of A (x) respectively. There exists k > 0 such that kI(d2/dx2)−A
is Lp-dissipative if and only if

ess sup
x∈(a,b)

µm(x) <∞.
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Lp-dissipativity of the operator (3.7)

We describe now necessary and sufficient conditions for the Lp-dissipativity of
the system of partial differential operators (3.7).

By yh we denote the (n−1)-dimensional vector (x1, . . . , xh−1, xh+1, . . . , xn)
and we set ω(yh) = {xh ∈ R | x ∈ Ω}.

Lemma 19 ([6]) The operator (3.7) is Lp-dissipative if and only if the
ordinary differential operators

A(yh)[u(xh)] = d(A h(x)du/dxh)/dxh

are Lp-dissipative in ω(yh) for almost every yh ∈ Rn−1 (h = 1, . . . , n). This
condition is void if ω(yh) = ∅.

Theorem 27 ([6]) The operator (3.7) is Lp-dissipative if and only if

Re⟨A h(x0)λ, λ⟩ − (1− 2/p)2 Re⟨A h(x0)ω, ω⟩(Re⟨λ, ω⟩)2
−(1− 2/p)Re(⟨A h(x0)ω, λ⟩ − ⟨A h(x0)λ, ω⟩)Re⟨λ, ω⟩ > 0 (3.13)

for almost every x0 ∈ Ω and for any λ, ω ∈ Cm, |ω| = 1, h = 1, . . . , n.

Remark 10 In the scalar case (m = 1), operator (3.7) can be considered as
an operator we dealt with in Section 2.2.

In fact, if Au =
∑n

h=1 ∂h(a
h∂hu), a

h being a scalar function, A can be
written in the form (2.25) with A = {chk}, chh = ah, chk = 0 if h ̸= k. The
conditions obtained in Section 2.2 can be directly compared with (3.13). We
know that operator A is Lp-dissipative if and only if (2.27) holds. In this
particular case (2.27) is clearly equivalent to the following n conditions

4

p p′
(Re ah) ξ2 + (Re ah) η2 − 2(1− 2/p)(Imah) ξη > 0 (3.14)

almost everywhere and for any ξ, η ∈ R, h = 1, . . . , n. On the other hand, in
this case, (3.13) reads as

(Re ah)|λ|2 − (1− 2/p)2(Re ah)(Re(λω)2

−2(1− 2/p)(Imah)Re(λω)Im(λω) > 0 (3.15)

almost everywhere and for any λ, ω ∈ C, |ω| = 1, h = 1, . . . , n. Setting
ξ + iη = λω and observing that |λ|2 = |λω|2 = (Re(λω))2 + (Im(λω))2, we
see that conditions (3.14) (and then (2.27)) are equivalent to (3.15).

Theorem 27 permits to determine the angle of dissipativity of the operator
(3.7):
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Theorem 28 ([6]) Let A be Lp-.dissipative. The operator zA is Lp-dissipative
if and only if ϑ− 6 arg z 6 ϑ+, where

ϑ− = max
h=1,...,n

arccot

(
ess inf

(x,λ,ω)∈Ξh

(Qh(x, λ, ω)/Ph(x, λ, ω))

)
− π,

ϑ+ = min
h=1,...,n

arccot

(
ess sup

(x,λ,ω)∈Ξh

(Qh(x, λ, ω)/Ph(x, λ, ω))

)
,

and

Ph(x, λ, ω) = Re⟨A h(x)λ, λ⟩ − (1− 2/p)2 Re⟨A h(x)ω, ω⟩(Re⟨λ, ω⟩)2
−(1− 2/p)Re(⟨A h(x)ω, λ⟩ − ⟨A h(x)λ, ω⟩)Re⟨λ, ω⟩,

Qh(x, λ, ω)=Im⟨A h(x)λ, λ⟩ − (1− 2/p)2Im⟨A h(x)ω, ω⟩(Re⟨λ, ω⟩)2
−(1− 2/p)Im(⟨A h(x)ω, λ⟩ − ⟨A h(x)λ, ω⟩)Re⟨λ, ω⟩,

Ξh = {(x, λ, ω) ∈ Ω× Cm × Cm | |ω| = 1, P 2
h (x, λ, ω) +Q2

h(x, λ, ω) > 0}.

If A has real coefficients, we can characterize the Lp-dissipativity in terms
of the eigenvalues of the matrices A h(x):

Theorem 29 ([6]) Let A be the operator (3.7), where A h are real matrices
{ahij} with i, j = 1, . . . ,m. Let us suppose A h = (A h)t and A h > 0
(h = 1, . . . , n). The operator A is Lp-dissipative if and only if(

1

2
− 1

p

)2

(µh
1(x) + µh

m(x))
2 6 µh

1(x)µ
h
m(x)

for almost every x ∈ Ω, h = 1, . . . , n, where µh
1(x) and µ

h
m(x) are the smallest

and the largest eigenvalues of the matrix A h(x) respectively. In the particular
case m = 2 this condition is equivalent to(

1

2
− 1

p

)2

(trA h(x))2 6 detA h(x)

for almost every x ∈ Ω, h = 1, . . . , n.

3.2 Higher order differential operators

There are many papers dealing with the contractivity of semigroups generated
by scalar or vector second order partial differential operators, but Langer and
Maz’ya [20] are the only ones for the time being to consider similar questions
for higher order differential operators. As we shall see in this Section, higher
order case has some peculiarities.
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3.2.1 Noncontractivity of higher order operators

The following simple example suggests that we cannot have L1-contractivity
for higher order operators in one dimension:

∂

∂t
u(x, t) + (−1)m

∂2m

∂x2m
u(x, t) = 0, x ∈ R, t > 0.

The solution u is given by

u(x, t) =

∫
R
Kt(x− y)u(y, 0) dy ,

where the kernel Kt is such that

K̂t(ξ) = e−ξ2mt, ξ ∈ R, t > 0,

K̂t being the Fourier transform of Kt.
Since for m > 1 we have

1 = K̂t(0) =

∫
R
Kt(x) dx, 0 = K̂ ′′

t (0) = −
∫
R
x2Kt(x) dx,

the L1-norm ∥Kt∥ has to be > 1 and therefore the semigroup generated by the
operator

(−1)m+1 d
2m

dx2m

can not be contractive.
Maz’ya and Langer considered multi-dimensional operators with locally

integrable coefficients and they found that if 1 6 p < ∞, p ̸= 2, no linear
partial differential operator of order higher than two which contains (C̊∞(Ω))N

in its domain of definition can generate a contraction semigroup on (Lp(Ω))N .
This result is obtained at first by a deep study of the one-dimensional case,

where the following necessary and sufficient conditions can be proved:

Theorem 30 ([20]) Let k ∈ N and p ∈ [1,∞). The integral∫
w(k)|w|p−1 sgnw dx

preserves sign as w ranges over real-valued elements of C̊∞(Ω) if and only if
p = 2 or k ∈ {0, 1, 2}.

Suppose now we have a linear partial differential operator A

A =
∑
|α|6k

aαD
α, (3.16)

where the coefficients aα are in L1
loc(Ω), Ω being a domain in Rn.
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Theorem 31 ([20]) Suppose that p ∈ [1,∞), p ̸= 2. If

Re

∫
Ω

⟨Au, u⟩ |u|p−2 dx

does not change sign as u ranges over C̊∞(Ω), then A is of order 0, 1 or 2.

If u does not range over C̊∞(Ω), but only over (C̊∞(Ω))+ (the class
of nonnegative functions of C̊∞(Ω)), then we have a quite different result,
provided the operator has real-valued coefficients:

Theorem 32 ([20]) Suppose that p ∈ (1,∞), p ̸= 2 and that A is a linear
partial differential operator with real-valued coefficient functions. Assume that∫

Ω

(Au)up−1 dx

does not change sign as u ranges over (C̊∞(Ω))+. Then either A is of order
0, 1 or 2, or A is of order 4 and 3

2
6 p 6 3.

From Theorem 31 it follows the non contractivity of higher order operators
of the form (3.16), where aα areN×N -matrices whose entries belong to L1

loc(Ω)
(N being a positive integer). In fact for such operators we have:

Theorem 33 ([20]) If 1 6 p < ∞, p ̸= 2, no linear partial differential
operator of order higher than two which contains (C̊∞(Ω))N in its domain
of definition can generate a contraction semigroup on (Lp(Ω))N .

3.2.2 The cone of nonnegative functions

Sometimes it is known that the solutions of the Cauchy problem{
s′(t) = A[s(t)]
s(0) = s0

(3.17)

are nonnegative on some interval. This is why the problem of contractivity on
the cone of nonnegative functions arises.

It is well known that the solutions of a Cauchy problem are norm
decreasing, provided that the related semigroup is contractive. The next
lemma can be considered as a parallel result in the cone of nonnegative
functions, when the theory of semigroups cannot be applied anymore.

In this Section the spaces Lp are real.
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Lemma 20 ([20]) Suppose that the Cauchy problem (3.17) has a unique
solution of class C1(R+, Lp) for every s0 inD(A).

If 1 < p <∞, then
d

dt
∥s(t)∥p

∣∣∣∣
t=0+

6 0

for every s(0) ∈ (D(A))+ if and only if∫
Ω

(Au)up−1 dx 6 0 (3.18)

for every u ∈ (D(A))+. In the case p = 1, (3.18) holds for every u ∈ (D(A))+

if
lim inf
t→0+

t−1(∥s(t)∥1 − ∥s(0)∥1) 6 0 (3.19)

for every s(0) ∈ (D(A))+.

The following result follows from Lemma 20 and Theorem 32

Theorem 34 ([20]) Let 1 < p < ∞, p ̸= 2 and suppose that C̊∞(Ω) is a
subset of the domain D(A) of the linear partial differential operator A. Assume
furthermore that the coefficients of A belong to L1

loc(Ω) and that the Cauchy
problem (3.17) has a unique solution for all nonnegative initial data in D(A).
If

d

dt
∥s(t)∥p

∣∣∣∣
t=0+

6 0

for every s(0) ∈ (D(A))+, then either A is of order 0, 1 or 2, or A is of order
4 and 3

2
6 p 6 3.

This theorem does not consider the case p = 1. In this case one can show
that if the operator A satisfies the condition of Theorem 34 and then (3.19)
holds, we have that the distribution

−
∑
|α|6k

(−1)|α|∂αaα

is a positive measure.
In the particular case of constant coefficients and smooth boundary, we

have also

Theorem 35 ([20]) Suppose that 1 < p < ∞, that Ω ⊂ Rn is open, bounded
and has C∞-boundary and that the real constant coefficients {aijkℓ} fulfill

aijkℓ = ajkiℓ = ajℓik
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for all i, j, k and ℓ, and also fulfill the relation∑
16i,j,k,ℓ6n

aijkℓξijξkℓ > 0

for all real symmetric n× n-matrices ξ = {ξij}. Then∫
Ω

(aijkℓ∂i∂j∂k∂ℓu)u
p−1 dx > 0

for all nonnegative functions u ∈ W 4,p(Ω)∩W 2,p
0 (Ω) if and only if 3

2
6 p 6 3.

Corollary 22 ([20]) Suppose that 3
2
6 p 6 3 and that Ω and the coefficients

of the operator
A = −aijkℓ∂ijkℓ,

with domain W 4,p(Ω) ∩W 2,p
0 (Ω), fulfill the hypotheses of Theorem 35. Then

any differentiable solution s of the Cauchy problem (3.17) with nonnegative
initial value s(0) ∈ D(A) fulfills

d

dt
∥s(t)∥p

∣∣∣∣
t=0+

6 0.

An operator satisfying the conditions of Corollary 22 is A = −∆2.
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330.

[20] Langer, M., Maz’ya, V., On Lp-contractivity of semigroups generated
by linear partial differential operators, J. of Funct. Anal., 164, 1999, 73–
109.

[21] Liskevich, V., On C0-semigroups generated by elliptic second order
differential expressions on Lp-spaces, Differential Integral Equations, 9,
1996, 811–826.

91



[22] Liskevich, V.A., Semenov, Yu.A, Some problems on Markov
semigroups. In: Demuth, M. (ed.) et al., Schrödinger operators, Markov
semigroups, wavelet analysis, operator algebras, Math. Top. 11, Akademie
Verlag, Berlin, 1996, 163–217.

[23] Liskevich, V., Sobol, Z., Vogt, H., On the Lp-theory of C0

semigroups associated with second order elliptic operators. II, J. Funct.
Anal., 193, 2002, 55–76.

[24] Lumer, G., Phillips, R.S., Dissipative operators in a Banach space,
Pacific J. Math. 11, 679–698 (1961)

[25] Maz’ya, V., The negative spectrum of the higher-dimensional
Schrödinger operator (Russian), Dokl. Akad. Nauk SSSR, 144, 1962, 721–
722.

[26] Maz’ya, V., On the theory of the multidimensional Schrödinger operator
(Russian), Izv. Akad. Nauk SSSR Ser. Mat., 28, 1964, 1145–1172.

[27] Maz’ya, V., Analytic criteria in the qualitative spectral analysis of the
Schrödinger operator, Proc. Sympos. Pure Math., 76.1, 2007, 257–288.

[28] Maz’ya, V., Shaposhnikova, T., Theory of multipliers in spaces
of differentiable functions, Monographs and Studies in Mathematics, 23,
Pitman, 1985.
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