ON TWO-DIMENSIONAL ANALOGUES FOR SHELL-LIKE BODIE

T. Meunargia
I. Vekua Institute of Applied Mathematics
I. Javakhishvili Tbilisi State University

The paper deals with the question of reduction of the three-dimensional problem of the geometrical and physical nonlinear theory of elasticity to the two-dimensional one, for shell-like elastic bodies.
I. Let R and $\stackrel{*}{R}$ denote the radius-vectors before and after deformation of the bodies Ω and $\stackrel{*}{\Omega}$ respectively, moreover

$$
\begin{gathered}
\stackrel{*}{R}\left(x_{1}, x_{2}, x_{3}\right)=R\left(x_{1}, x_{2}, x_{3}\right)+U\left(x_{1}, x_{2}, x_{3}\right), \\
\partial_{j} \stackrel{*}{R}_{=}^{\stackrel{*}{R}_{j}}=\partial_{j} R+\partial_{j} U=R_{j}+\partial_{j} U \\
\left(\partial_{j}=\frac{\partial}{\partial x_{j}}\right)
\end{gathered}
$$

where U is the displacement vector, $\left(x_{1}, x_{2}, x_{3}\right)$ are the curvilinear coordinates in the space.

The equation of equilibrium has the form [1]
where $\stackrel{*}{g}$ is the discriminant of the metric tensor of the domain $\stackrel{*}{\Omega}, \stackrel{*}{\sigma}^{i}$ are ,,contravariant stress vectors", Φ is an external force.

Under repeating indices summation is meant unless otherwise stated. The Latin letters take the values $1,2,3$, while the Greek letters take the values 1,2 .

The equilibrium equation can be written as

$$
\frac{1}{\sqrt{g}} \frac{\partial \sqrt{g} \boldsymbol{\sigma}^{i}}{\partial x_{i}}+\Phi=0, \quad \boldsymbol{\sigma}^{i}=\sigma^{i j}\left(R_{j}+\partial_{j} U\right)
$$

where g is the discriminant of the metric tensor of the domain $\Omega, \sigma^{i j}$ are contravariant components of the stress tensor,

$$
\boldsymbol{\sigma}^{i}=\sqrt{\frac{\stackrel{*}{g}}{g}} \stackrel{*}{\boldsymbol{\sigma}}{ }^{i}, \quad \Phi=\sqrt{\frac{\stackrel{*}{g}}{g}} \stackrel{*}{\boldsymbol{\Phi}} .
$$

The stress-strain relation has the form

$$
\sigma^{i j}=\left(E^{i j m n}+E^{i j m n p q} \varepsilon_{p q}\right) \varepsilon_{m n},
$$

where $E^{i j m n}$ and $E^{i j m n p q}$ are tensors of elasticity of the fourth and sixth rank, respectively, $\varepsilon_{i j}$ are covariant components of the strain tensor, moreover

$$
\begin{gathered}
E^{i j m n}=\lambda g^{i j} g^{m n}+\mu\left(g^{i m} g^{j n}+g^{i n} g^{j m}\right), \\
E^{i j m n p q}=\eta_{1} g^{i j} g^{m n} g^{p q}+\eta_{2} g^{i j}\left(g^{m p} g^{n q}+g^{m q} g^{n p}\right)+ \\
+\eta_{3} g^{m n}\left(g^{i p} g^{j q}+g^{i q} g^{j p}\right)+\eta_{4} g^{p q}\left(g^{i m} g^{j n}+g^{i n} g^{j m}\right), \\
\varepsilon_{m n}=\frac{1}{2}\left(R_{m} \partial_{n} U+R_{n} \partial_{m} U+\partial_{m} U \partial_{n} U\right),
\end{gathered}
$$

λ and μ are Lame's constants of elasticity, and $\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}$ are modules of elasticity of the second order for isotropic elastic bodies, $g^{i j}=R^{i} R^{j}$ are contravariant components of the metric tensor, R_{i} and R^{i} are co and contravariant base vectors.
II. 1. We consider the coordinate system of lines of curvature, which is connected normally to the midsurface S of the shell Ω, i.e.

$$
R\left(x_{1}, x_{2}, x_{3}\right)=r\left(x_{1}, x_{2}\right)+x_{3} n\left(x_{1}, x_{2}\right)
$$

where r and n are radius-vectors and a normal of the S, x_{3} is the thickness coordinate $-h \leq x_{3} \leq h, h=$ const is the semi-thickness.

The dependence between covariant and contravariant base vectors of the shell Ω and the midsurface S, are expressed as follows

$$
R_{\alpha}=\left(1-k_{\alpha} x_{3}\right) r_{\alpha}, R^{\alpha}=\frac{r^{\alpha}}{1-k_{\alpha} x_{3}}, \quad R_{3}=R^{3}=n,(\alpha=1,2)
$$

(on α no summation!)
where k_{1} and k_{2} are main curvatures of the midsurface S, i.e.

$$
\begin{gathered}
R_{i}=\left(1-k_{i} x_{3}\right) r_{i}, \quad R^{i}=\frac{r^{i}}{1-k_{i} x_{3}}, \quad g^{i j}=\frac{a^{i j}}{\left(1-k_{i} x_{3}\right)\left(1-k_{j} x_{3}\right)}, \\
\sqrt{g}=\sqrt{a}\left(1-k_{1} x_{3}\right)\left(1-k_{2} x_{3}\right), \quad a=a_{11} a_{22}-a_{12}^{2}, \\
a^{i j}=r^{i} r^{j}=\left\{\begin{array}{l}
a^{\alpha \beta}, \quad i=\alpha, j=\beta ; \\
0, \quad i=3, j=\beta, \quad \text { or } i=\alpha, j=3 ; \\
1, \quad i=j=3,
\end{array}\right. \\
a_{\alpha \beta}=r_{\alpha} r_{\beta}, \quad a_{\alpha 3}=a_{3 \beta}=0, \quad a_{33}=0, \quad k_{3}=0
\end{gathered}
$$

(on i, j, α, β no summation!).
For the tensor $\varepsilon_{i j}$ we obtain

$$
\varepsilon_{i j}=\frac{1}{2}\left(1-k_{i} x_{3}\right)\left(1-k_{j} x_{3}\right)\left(r_{j} \frac{\partial_{i} U}{1-k_{i} x_{3}}+r_{i} \frac{\partial_{j} U}{1-k_{j} x_{3}}+\frac{\partial_{i} U}{1-k_{i} x_{3}} \frac{\partial_{j} U}{1-k_{j} x_{3}}\right)
$$

(on i, j no summation!) i.e.

$$
\begin{gathered}
\varepsilon_{\alpha \beta}=\frac{1}{2}\left(1-k_{\alpha} x_{3}\right)\left(1-k_{\beta} x_{3}\right)\left(r_{\beta} \frac{\partial_{\alpha} U}{1-k_{\alpha} x_{3}}+r_{\alpha} \frac{\partial_{\beta} U}{1-k_{\beta} x_{3}}+\frac{\partial_{\alpha} U}{1-k_{\alpha} x_{3}} \frac{\partial_{\beta} U}{1-k_{\beta} x_{3}}\right)= \\
=\left(1-k_{\alpha} x_{3}\right)\left(1-k_{\beta} x_{3}\right) e_{\alpha \beta} \\
\varepsilon_{\alpha 3}=\frac{1}{2}\left(1-k_{\alpha} x_{3}\right)\left(n \frac{\partial_{\alpha} U}{1-k_{\alpha} x_{3}}+r_{\alpha} \partial_{3} U+\partial_{3} U \frac{\partial_{\alpha} U}{1-k_{\alpha} x_{3}}\right)= \\
=\left(1-k_{\alpha} x_{3}\right) e_{\alpha 3} \\
\varepsilon_{33}=n \partial_{3} U+\frac{1}{2}\left(\partial_{3} U\right)^{2}=e_{33} .
\end{gathered}
$$

2. Now, we assume the validity of the representations:

$$
\begin{gathered}
\partial_{1} U=\left(1-k_{1} x_{3}\right) \partial_{1} V\left(x_{1}, x_{2}\right), \\
\partial_{2} U=\left(1-k_{2} x_{3}\right) \partial_{2} V\left(x_{1}, x_{2}\right), \\
\partial_{3} U=\widehat{V}\left(x_{1}, x_{2}\right),
\end{gathered}
$$

where V and \hat{V} are the two-dimensional vectors of x_{1}, x_{2}.
Taking into consideration the condition

$$
\begin{gathered}
\partial_{1} \partial_{2} U=\partial_{2} \partial_{1} U \Rightarrow \partial_{2}\left(k_{1} \partial_{1} V\right)=\partial_{1}\left(k_{2} \partial_{2} V\right), \\
\partial_{3} \partial_{1} U=\partial_{1} \partial_{3} U \Rightarrow \partial_{1} \widehat{V}=-k_{1} \partial_{1} V \\
\partial_{3} \partial_{2} U=\partial_{2} \partial_{3} U \Rightarrow \partial_{2} \widehat{V}=-k_{2} \partial_{2} V
\end{gathered}
$$

for $V\left(x_{1}, x_{2}\right)$ we obtain the following equation

$$
\left(k_{1}-k_{2}\right) \frac{\partial^{2} V}{\partial x_{1} \partial x_{2}}+\frac{\partial k_{1}}{\partial x_{2}} \frac{\partial V}{\partial x_{1}}-\frac{\partial k_{2}}{\partial x_{1}} \frac{\partial V}{\partial x_{2}}=0
$$

Now, from the system of Gauss equations

$$
\begin{aligned}
& \frac{\partial k_{1}}{\partial x_{2}}=\left(k_{2}-k_{1}\right) \frac{\partial \ln \sqrt{a_{11}}}{\partial x_{2}} \\
& \frac{\partial k_{2}}{\partial x_{1}}=\left(k_{1}-k_{2}\right) \frac{\partial \ln \sqrt{a_{22}}}{\partial x_{1}}
\end{aligned}
$$

we have

$$
\left(k_{1}-k_{2}\right)\left[\frac{\partial^{2} V}{\partial x_{1} \partial x_{2}}-\frac{\partial \ln \sqrt{a_{11}}}{\partial x_{2}} \frac{\partial V}{\partial x_{1}}-\frac{\partial \ln \sqrt{a_{22}}}{\partial x_{1}} \frac{\partial V}{\partial x_{2}}\right]=0 .
$$

The general solution of this equation has the form [2]
$V\left(x_{1}, x_{2}\right)=u\left(x_{1}\right)+v\left(x_{2}\right)-\int_{x_{1}^{0}}^{x_{1}} u(t) \frac{\partial R\left(t, x_{2}^{0}, x_{1}, x_{2}\right)}{\partial t} d t-\int_{x_{2}^{0}}^{x_{2}} v(\tau) \frac{\partial R\left(x_{1}^{0}, t, x_{1}, x_{2}\right)}{\partial \tau} d \tau$.
where $R\left(t, \tau, x_{1}, x_{2}\right)$ is a Riemann function, $u\left(x_{1}\right)$ and $v\left(x_{2}\right)$ are arbitrary vectors.

For the vector $U\left(x_{1}, x_{2}, x_{3}\right)$ we obtain

$$
\begin{aligned}
U\left(x_{1}, x_{2}, x_{3}\right) & =\int_{x_{1}^{0}}^{x_{2}}\left[1-x_{3} k_{1}\left(x_{1}, x_{2}\right)\right] \frac{\partial V\left(x_{1}, x_{2}\right)}{\partial x_{1}} d x_{1}+ \\
& +\int_{x_{2}^{0}}^{x_{2}}\left[1-x_{3} k_{2}\left(x_{1}^{0}, x_{2}\right)\right] \frac{\partial V\left(x_{1}^{0}, x_{2}\right)}{\partial x_{2}} d x_{2}+ \\
& +\left(x_{3}-x_{3}^{0}\right) \widehat{V}\left(x_{1}^{0}, x_{2}^{0}\right)+U\left(x_{1}^{0}, x_{2}^{0}, x_{3}^{0}\right),
\end{aligned}
$$

and

$$
\widehat{V}=-\int_{x_{1}^{0}}^{x_{1}} k_{1}\left(x_{1}, x_{2}\right) \frac{\partial V}{\partial x_{1}} d x_{2}-\int_{x_{2}^{0}}^{x_{2}} k_{2}\left(x_{1}^{0}, x_{2}\right) \frac{\partial V\left(x_{1}^{0}, x_{2}\right)}{\partial x_{2}} d x_{2}+\widehat{V}\left(x_{1}^{0}, x_{2}^{0}\right)
$$

Now for $e_{m n}$ we have the following two-dimensional expressions:

$$
\begin{gathered}
e_{\alpha \beta}=\frac{1}{2}\left(r_{\alpha} \partial_{\beta} V+r_{\beta} \partial_{\alpha} V+\partial_{\alpha} V \partial_{\beta} V\right), \\
e_{\alpha 3}=\frac{1}{2}\left(n \partial_{\alpha} V+r_{\alpha} V \widehat{V}+\widehat{V} \partial_{\alpha} V\right) \\
e_{33}=n \widehat{V}+\frac{1}{2} \widehat{V}^{2}
\end{gathered}
$$

The ,contravariant stress vector" $\boldsymbol{\sigma}^{i}$ has the form

$$
\boldsymbol{\sigma}^{i}=\left(1-k_{j} x_{3}\right) \sigma^{i j}\left(r_{j}+\partial_{j} v\right)=\frac{T^{i}}{1-k_{i} x_{3}}
$$

(on i no summation!), where

$$
\begin{gathered}
T^{i}=\left(M^{i j m n}+M^{i j m n p q} e_{p q}\right) e_{m n}\left(r_{j}+\partial_{j} V\right), \\
\partial_{j} V=\left\{\begin{array}{l}
\partial_{\alpha} V, \quad j=\alpha, \\
\widehat{V}, \quad j=3 .
\end{array}\right.
\end{gathered}
$$

Here

$$
\begin{gathered}
M^{i j m n}=\lambda a^{i j} a^{m n}+\mu\left(a^{i m} a^{j n}+a^{i n} a^{j m}\right) \\
M^{i j m n p q}=\eta_{1} a^{i j} a^{m n} a^{p q}+\eta_{2} a^{i j}\left(a^{p m} a^{n q}+a^{m q} a^{n p}\right)+ \\
+\eta_{3} a^{m n}\left(a^{i p} a^{j q}+a^{i q} a^{j p}\right)+\eta_{4} a^{p q}\left(a^{i m} a^{j n}+a^{i n} a^{j m}\right) .
\end{gathered}
$$

At last, we obtain the following two-dimensional equation of equilibrium:

$$
\frac{1}{\sqrt{a}}\left(\frac{\partial \sqrt{a}\left(1-k_{2} x_{3}\right) T^{1}}{\partial x_{1}}+\frac{\partial \sqrt{a}\left(1-k_{1} x_{3}\right) T^{2}}{\partial x_{2}}\right)+
$$

$$
+\frac{\partial\left(1-k_{1} x_{3}\right)\left(1-k_{2} x_{3}\right)}{\partial x_{3}} T^{3}+\left(1-k_{1} x_{3}\right)\left(1-k_{2} x_{3}\right) \Phi=0
$$

where

$$
\begin{aligned}
T^{\alpha}= & \left(M^{\alpha \beta m n}+M^{\alpha \beta m n p q} e_{p q}\right) e_{m n}\left(r_{\beta}+\partial_{\beta} V\right)+ \\
& +\left(M^{\alpha 3 m n}+M^{\alpha 3 m n p q} e_{p q}\right) e_{m n}(n+\widehat{V}) \\
T^{3}= & \left(M^{3 \beta m n}+M^{3 \beta m n p q} e_{p q}\right) e_{m n}\left(r_{\beta}+\partial_{\beta} V\right)+ \\
& +\left(M^{33 m n}+M^{33 m n p q} e_{p q}\right) e_{m n}(n+\widehat{V})
\end{aligned}
$$

3. Let us consider the boundary condition for the stresses.

The stress vector $\boldsymbol{\sigma}_{l}^{*}$ acting onto area with the mormal $\left.\stackrel{*}{l}\right)$ has the form

$$
\boldsymbol{\sigma}_{(l)}=\stackrel{*}{\boldsymbol{\sigma}}^{i} \stackrel{*}{l}_{i}\left(\stackrel{*}{l}_{i}=\stackrel{*}{l}_{R^{\prime}}^{i}\right)
$$

The normal $\stackrel{*}{l}$ after deformation can be defined as

$$
\stackrel{*}{l}=\frac{\stackrel{*}{S}_{1} \times \stackrel{*}{S}_{2}}{\left|\stackrel{*}{S}_{1} \times \stackrel{*}{S}_{2}\right|},
$$

where $\stackrel{*}{s}_{1}$ and $\stackrel{*}{s}_{2}$ are unit tangent vectors of the boundary surface $\partial \stackrel{*}{\Omega}$, with the surface element

$$
d \stackrel{*}{S}=\left|\stackrel{*}{S}_{1} \times \stackrel{*}{S}_{2}\right| d^{*} \stackrel{*}{S}_{1}{ }_{2}
$$

Then we have

$$
\begin{aligned}
& \stackrel{*}{l}=\frac{1}{\left|\stackrel{*}{s}_{1} \times \stackrel{*}{S}_{2}\right|}\left(\frac{d \stackrel{*}{R}}{d \stackrel{*}{s}_{1}} \times \frac{d \stackrel{*}{R}}{d \stackrel{*}{s}_{2}}\right)=\frac{1}{\left|\stackrel{*}{s}_{1} \times \stackrel{*}{s} 2_{2}\right|}\left(\frac{d \stackrel{*}{R}}{d s_{1}} \times \frac{d \stackrel{*}{R}}{d s_{2}}\right) \frac{d s_{1}}{d \stackrel{*}{s}_{1}} \frac{d s_{2}}{d \stackrel{*}{s}_{2}}= \\
& =\stackrel{*}{R}_{i} \times \stackrel{*}{R}_{j} \frac{d x_{i}}{d s_{1}} \frac{d x_{j}}{d s_{2}} \frac{d s_{1} d s_{2}}{d \stackrel{*}{S}}=\sqrt{\stackrel{*}{g}} \in_{i j k} \stackrel{*}{R}{ }^{k} \frac{d x_{i}}{d s_{1}} \frac{d x_{j}}{d s_{2}} \frac{d s_{1} d s_{2}}{d \stackrel{*}{S}}=
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{\frac{\stackrel{*}{g}}{g}\left(s_{1} \times s_{2}\right) R_{k} \stackrel{*}{R} \frac{k s_{1} d s_{2}}{d \stackrel{*}{S}}=\sqrt{\frac{\stackrel{*}{g}}{g} s_{1} \times s_{2}}\left|s_{1} \times s_{2}\right|} R_{k} \stackrel{*}{R} \frac{k s_{1} \times s_{2} \mid d s_{1} d s_{2}}{d \stackrel{*}{S}} \Rightarrow \\
& \Rightarrow \stackrel{*}{l}=\sqrt{\frac{\stackrel{*}{g}}{g}\left(l R_{k}\right) \stackrel{*}{R}{ }^{k} \frac{d S}{d \stackrel{*}{S}} \Rightarrow, ~ f r} \\
& \Rightarrow \stackrel{*}{l}_{i}={\stackrel{*}{l} \stackrel{*}{R}_{i}=\sqrt{\frac{*}{g}} l_{i} \frac{d S}{d \stackrel{*}{S}}}_{\left(l_{i}=l R_{i}\right), ~}^{\text {, }}
\end{aligned}
$$

where $l=\frac{s_{1} \times s_{2}}{\left|s_{1} \times s_{2}\right|}$ is the normal of the boundary surface before deformation, $d S$ is the element of this surface,

$$
d S=\left|s_{1} \times s_{2}\right| d s_{1} d s_{2}
$$

$\epsilon_{i j k}$ are the Levi-Civita symbols.
Now the strees vector can be written as

$$
\stackrel{*}{\boldsymbol{\sigma}}_{(l)}=\stackrel{*}{\sigma}^{\frac{*}{l}}{ }_{i}=\sqrt{\frac{\stackrel{*}{g}}{g}} \boldsymbol{\sigma}^{i} l_{i} \frac{d S}{d \stackrel{*}{S}}=\boldsymbol{\sigma}^{i} l_{i} \frac{d S}{d \stackrel{*}{S}},
$$

i.e.,

$$
\stackrel{*}{\boldsymbol{\sigma}}_{(\stackrel{*}{(l)}} \frac{d \stackrel{*}{S}}{d S}=\boldsymbol{\sigma}^{i} l_{i}=\boldsymbol{\sigma}^{\alpha} l_{\alpha}+\boldsymbol{\sigma}^{3} l_{3},
$$

where

$$
l_{\alpha}=l R_{\alpha}, \quad l_{3}=l n
$$

On the surfaces $x_{3}= \pm h$ we have $l=n$ and so

$$
\boldsymbol{\sigma}_{(n)}\left(x_{1}, x_{2}, \pm h\right)=\boldsymbol{\sigma}^{3}\left(x_{1}, x_{2}, \pm h\right)
$$

The stress vector $\boldsymbol{\sigma}_{(l)}$ acting on the lateral surface $d \widehat{S}=d \widehat{s} d x_{3}$ with the normal \hat{l} has the form

$$
\boldsymbol{\sigma}_{(\widehat{l})}=\boldsymbol{\sigma}^{\alpha}\left(\widehat{l} R_{\alpha}\right)
$$

The normal \hat{l} before deformation can be defined as:

$$
\widehat{l}=\frac{d R}{d \widehat{s}} \times n
$$

where

$$
\begin{gathered}
\frac{d R}{d \widehat{s}}=\widehat{s}=\frac{d R}{d s} \frac{d s}{d \widehat{s}}=\frac{d\left(r+x_{3} n\right)}{d s} \frac{d s}{d \widehat{s}}=\left(s+x_{3} \frac{d n}{d s}\right) \frac{d s}{d \widehat{s}} \Rightarrow \\
\Rightarrow \widehat{s}=\left[\left(1-k_{3} x_{3}\right) s+\tau_{s} x_{3} l\right] \frac{d s}{d \widehat{s}}
\end{gathered}
$$

Therefore,

$$
\begin{gathered}
\widehat{l}=\left[\left(1-k_{3} k_{s}\right) l-x_{3} \tau_{s} s\right] \frac{d s}{d \widehat{s}}, \\
(\widehat{l} \times \widehat{s}=n, \quad l \times s=n) .
\end{gathered}
$$

where \hat{l}, \widehat{s} and l, s are the unit vectors of the tangential normal and tangent of the lateral curve of the surfaces $x_{3}=$ const and $x_{3}=0$ (midsurface), respectively, k_{s} and τ_{s} are the normal curvature and geodesic torsion of the midsurface, $d \widehat{s}$ and $d s$ are linear elements of the surfaces $x_{3}=$ const and $x_{3}=0$, respectively, moreover

$$
d \widehat{s}=\sqrt{1-2 x_{3} k_{s}+x_{3}^{2}\left(k_{s}^{2}+\tau_{s}^{2}\right)} d s \Rightarrow
$$

$$
\Rightarrow d \widehat{s}=\sqrt{a_{11}\left(1-k_{1} x_{3}\right)^{2}\left(\frac{d x_{1}}{d s}\right)^{2}+a_{22}\left(1-k_{2} x_{3}\right)^{2}\left(\frac{d x_{2}}{d s}\right)^{2}} d s
$$

On the other hand, we have [3]

$$
\begin{gathered}
\widehat{l}=\frac{d R}{d \widehat{s}} \times n=\frac{d R}{d s} \times n \frac{d s}{d \widehat{s}}=R_{\alpha} \times n \frac{d x_{\alpha}}{d s} \frac{d s}{d \widehat{s}}=\sqrt{g} \in_{\alpha 3 \beta} R^{\beta} \frac{d x_{\alpha}}{d s} \frac{d s}{d \widehat{s}}= \\
=\sqrt{\frac{g}{a}} \sqrt{a} \in_{\alpha 3 \beta} R^{\beta} \frac{d x_{\alpha}}{d s} \frac{d s}{d \widehat{s}}=\sqrt{\frac{g}{a}}\left(r_{\alpha} \times n\right) r_{\beta} R^{\beta} \frac{d x_{\alpha}}{d s} \frac{d s}{d \widehat{s}}= \\
=\sqrt{\frac{g}{a}}(s \times n) r_{\beta} R^{\beta} \frac{d s}{d \widehat{s}}=\sqrt{\frac{g}{a}}\left(l_{\beta}\right) R^{\beta} \frac{d s}{d \widehat{s}} \Rightarrow \\
\Rightarrow \widehat{l} R_{\beta}=\widehat{l}_{\beta}=\sqrt{\frac{g}{a}} l_{\beta} \frac{d s}{d \widehat{s}} .
\end{gathered}
$$

Therefore,

$$
\begin{gathered}
\boldsymbol{\sigma}_{(\widehat{l})}=\boldsymbol{\sigma}^{\alpha} \widehat{l}_{\alpha}=\sqrt{\frac{g}{a}} \boldsymbol{\sigma}^{\alpha} l_{\alpha} \frac{d s}{d \widehat{s}} \Rightarrow \\
\Rightarrow \boldsymbol{\sigma}_{(\widehat{l})} \frac{d s}{d \widehat{s}}=\left(1-k_{1} x_{3}\right)\left(1-k_{2} x_{3}\right)\left(\boldsymbol{\sigma}^{1} l_{1}+\boldsymbol{\sigma}^{2} l_{2}\right) \Rightarrow \\
\boldsymbol{\sigma}_{\widehat{(l)}} \frac{d s}{d \widehat{s}}=\left(1-k_{2} x_{3}\right) T^{1} l_{1}+\left(1-k_{1} x_{3}\right) T^{2} l_{2} .
\end{gathered}
$$

Thus, we obtain the following system of two-dimensional equations of the geometrically and physically non-linear theory for shell-like elastic bodies:
a) Equilibrium equations

$$
\begin{aligned}
& \frac{1}{\sqrt{a}}\left(\frac{\partial \sqrt{a}\left(1-k_{2} x_{3}\right) T^{1}}{\partial x_{1}}+\frac{\partial \sqrt{a}\left(1-k_{1} x_{3}\right) T^{1}}{\partial x_{2}}\right)-2\left(H-K x_{3}\right) T^{3}+F=0 \\
& \left(2 H=k_{1}+k_{2}, K=k_{1} k_{2},\left(1-k_{1} x_{3}\right)\left(1-k_{2} x_{3}\right) \Phi=F=\stackrel{(0)}{F}+x_{3} \stackrel{(1)}{F}\right)
\end{aligned}
$$

b) Stress-strain relation

$$
\begin{gathered}
T^{i}\left(x_{1}, x_{2}\right)=\left(M^{i \beta m n}+M^{i \beta m n p q} e_{p q}\right) e_{m n}\left(r_{\beta}+\partial_{\beta} V\right)+ \\
+\left(M^{i 3 m n}+M^{i 3 m n p q} e_{p q}\right) e_{m n}(n+\widehat{V}),
\end{gathered}
$$

where

$$
\begin{gathered}
e_{\alpha \beta}=\frac{1}{2}\left(r_{\alpha} \partial_{\beta} V+r_{\beta} \partial_{\alpha} V+\partial_{\alpha} V \partial_{\beta} V\right), \\
e_{\alpha 3}=\frac{1}{2}\left(n \partial_{\alpha} V+n \widehat{V}+\widehat{V} \partial_{\alpha} V\right) \\
e_{33}=n \widehat{V}+\frac{1}{2} \widehat{V}^{2} .
\end{gathered}
$$

III. Special cases

1. Spherical shell $\left(k_{1}=k_{2}=-\frac{1}{R}\right)$

The vector of displacement U for the spherical shell has the form

$$
\begin{aligned}
& U\left(x_{1}, x_{2}, x_{3}\right)=\left(1+\frac{x_{3}}{R}\right) V\left(x_{1}, x_{2}\right) \Rightarrow \\
& \Rightarrow\left\{\begin{array}{l}
\partial_{\alpha} U=\left(1+\frac{x_{3}}{R}\right) \partial_{\alpha} V \quad(\alpha=1,2), \\
\partial_{3} U=\frac{1}{R} V
\end{array}\right.
\end{aligned}
$$

The equation of equilibrium can be written as:

$$
\frac{1}{\sqrt{a}} \frac{\partial \sqrt{a} T^{\alpha}}{\partial x_{\alpha}}+\frac{2}{R} T^{3}+F=0
$$

where

$$
\begin{gathered}
T^{i}\left(x_{1}, x_{2}\right)=\left(M^{i j m n}+M^{i j m n p q} e_{p q}\right) e_{m n}\left(r_{j}+\partial_{j} V\right) \quad\left(\partial_{3} V=\frac{1}{R} V\right) \\
e_{m n}\left(x_{1}, x_{2}\right)=\frac{1}{2}\left(r_{m} \partial_{n} V+r_{n} \partial_{m} V+\partial_{m} V \partial_{n} V\right) \\
F\left(x_{1}, x_{2}\right)=\left(1+\frac{x_{3}}{R}\right) \mathbf{\Phi}
\end{gathered}
$$

The stress vector has the form

$$
\begin{gathered}
\boldsymbol{\sigma}_{(l)}=\left(1+\frac{x_{3}}{R}\right) T^{\alpha} l_{\alpha} \frac{d s}{d \widehat{s}}=T^{\alpha} l_{\alpha}=T_{(l)} \\
\left(d \widehat{s}=\left(1+\frac{x_{3}}{R}\right) d s\right) .
\end{gathered}
$$

2. Cylindrical shell $\left(k_{1}=-\frac{1}{R}, k_{2}=0\right)$

The vector of displacement for the cylindrical shell has the form

$$
U\left(x_{1}, x_{2}, x_{3}\right)=\left(1+\frac{x_{3}}{R}\right) u\left(x_{1}\right)+v\left(x_{2}\right) .
$$

Then

$$
\left\{\begin{aligned}
\partial_{1} v & =\left(1+\frac{x_{3}}{R}\right) \frac{d u\left(x_{1}\right)}{d x_{1}} \\
\partial_{2} v & =\frac{d v\left(x_{2}\right)}{d x_{2}} \\
\partial_{3} v & =\frac{1}{R} u\left(x_{1}\right)
\end{aligned}\right.
$$

The equilibrium equation looks like:

$$
\frac{1}{\sqrt{a}} \frac{\partial \sqrt{a} T^{1}}{\partial x_{1}}+\frac{1}{R} T^{3}=0
$$

$$
\frac{1}{\sqrt{a}} \frac{\partial \sqrt{a} T^{2}}{\partial x_{2}}+\boldsymbol{\Phi}=0 \quad\left(\boldsymbol{\Phi}=\boldsymbol{\Phi}\left(x_{1}, x_{2}\right)\right)
$$

where

$$
\begin{aligned}
& T^{i}=\left(M^{i 1 m n}+M^{i 1 m n p q} e_{p q}\right) e_{m n}\left(r_{1}+\frac{d u\left(x_{1}\right)}{d x_{1}}\right) \\
& \quad+\left(M^{i 2 m n}+M^{i 2 m n p q} e_{p q}\right) e_{m n}\left(r_{2}+\frac{d v\left(x_{2}\right)}{d x_{2}}\right) \\
& \quad+\left(M^{i 3 m n}+M^{i 3 m n p q} e_{p q}\right) e_{m n}\left(n+\frac{1}{R} u\left(x_{1}\right)\right) .
\end{aligned}
$$

Here

$$
\begin{gathered}
M^{i j m n}=\lambda \delta^{i j} \delta^{m n}+\mu\left(\delta^{i m} \delta^{j n}+\delta^{i n} \delta^{j m}\right), \\
M^{i j m n p q}=\eta_{1} \delta^{i j} \delta^{m n} \delta^{p q}+\eta_{2} \delta^{i j}\left(\delta^{m n} \delta^{n q}+\delta^{m n} \delta^{n p}\right)+ \\
+\eta_{3} \delta^{m n}\left(\delta^{i p} \delta^{j q}+\delta^{i q} \delta^{j p}\right)+\eta_{4} \delta^{p q}\left(\delta^{i m} \delta^{j n}+\delta^{i n} \delta^{j m}\right), \\
\left(\delta^{i j}=\left\{\begin{array}{ll}
1, & i=j \\
0, & i \neq j
\end{array}\right) .\right.
\end{gathered}
$$

For the $e_{i j}$ we obtain

$$
\begin{gathered}
e_{12}=\frac{1}{2}\left(r_{1} \frac{d u\left(x_{1}\right)}{d x_{1}}+r_{2} \frac{d v\left(x_{2}\right)}{d x_{2}}+\frac{d u}{d x_{1}} \frac{d v}{d x_{2}}\right)=e_{21}, \\
e_{13}=\frac{1}{2}\left(n \frac{d u}{d x_{1}}+\frac{r_{1} u}{R}+\frac{u}{R} \frac{d u}{d x_{1}}\right), \\
e_{23}=\frac{1}{2}\left(n \frac{d v}{d x_{2}}+\frac{r_{2} u}{R}+\frac{u}{R} \frac{d v}{d x_{2}}\right), \\
e_{11}=r_{1} \frac{d u}{d x_{1}}+\frac{1}{2}\left(\frac{d u}{d x_{1}}\right)^{2}, \quad e_{22}=r_{2} \frac{d v}{d x_{2}}+\frac{1}{2}\left(\frac{d v}{d x_{2}}\right)^{2}, \quad e_{33}=\frac{n u}{R}+\frac{u^{2}}{2 R^{2}} .
\end{gathered}
$$

The stress vector $\boldsymbol{\sigma}_{(\widehat{l})}$ has the form $\left(\hat{l}=r_{2}\right)$:

$$
\boldsymbol{\sigma}_{(\widehat{l})}=\boldsymbol{\sigma}_{\left(r_{2}\right)}=\left(1+\frac{x_{3}}{R}\right) T^{2} l_{2} \frac{d s}{d \widehat{s}}=T^{2} .
$$

R E F ERENCES

[1] Vekua I.N., Shell Theory: General Methods of Construction. Moscow, Nauka, 1982 (Russian)
[2] Vekua I.N., New Methods of Solution of Elliptic Equations. Moscow, Gostekhizdat, 1948 (Russian)
[3] Meunargia T.V., On The Method of Geometrically Nonlinear Theory of Non-Shallow Shells. Proceedings of A.Razmadze Mathematical Institute, vol.119, 1998

Received June 21, 2002; revised October 20, 2002; accepted December 5, 2002.

