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1. Introduction

Simulation of the wide range of applied problems results to nonlinear integro-
differential equations or systems of such equations. These equations, involving par-
tial derivatives of the unknown function, often include integrals of the function
and its derivatives. Many scientific works focus on investigating and approximate
solution of such models (see, for example, [1] - [7] and references therein). These
equations find applications in various fields, including the mathematical model-
ing of electromagnetic field penetration into substances. A variable magnetic field
propagated into a medium induces a corresponding electric field, which generates
currents that heat the material, subsequently affecting its resistance. It is crucial to
account for this resistance when dealing with significant temperature oscillations.
In the quasi-stationary scenario, the corresponding system of Maxwell’s equations
takes the form (see, for example, [8]):

∂H

∂t
= −rot(νmrotH), (1)
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cν
∂θ

∂t
= νm (rotH)2 . (2)

Here, H = (H1,H2,H3) is the magnetic field vector, θ represents temperature,
and cν and νm are parameters denoting the thermal heat capacity and electro-
conductivity of the material, respectively. System (1) characterizes the diffusion of
the magnetic field, while equation (2) describes temperature changes due to Joule
heating, excluding thermal conductivity considerations.

When cν and νm are functions of the temperature θ, meaning cν = cν(θ) and
νm = νm(θ), above-mentioned equations can be reformulated as in [9]:

∂H

∂t
= −rot

a

 t∫
0

|rotH|2 dτ

 rotH

 , (3)

where the function a = a(S) is defined for S ∈ [0,∞).
Studies of models like (3) began in [9], where the existence of a generalized

solution to the first boundary value problem for the one-dimensional space case
was demonstrated for a(S) = 1+S, along with uniqueness proofs for more general
cases.

In [10], a generalization of the system similar to (3) was proposed, where the
temperature within the body was considered constant and dependent only on time,
resulting in an, so called, averaged integro-differential system to model the magnetic
field’s penetration. This model is expressed as [10]:

∂H

∂t
= −rot

a

 t∫
0

1∫
0

|rotH|2 dxdτ

 rotH

 . (4)

Assuming a magnetic field H of the form H = (0, 0, U), where U = U(x, t) is
a scalar function dependent on time and a single spatial variable, the curl of H
becomes rotH =

(
0,−∂U

∂x , 0
)

and thus, the one-dimensional analog of the system
(4) simplifies to:

∂U

∂t
= a

 t∫
0

1∫
0

(
∂U

∂x

)2

dxdτ

 ∂2U

∂x2
. (5)

It’s important to note that the study of integro-differential equations like (3) and
(4) is quite complex, and only special cases have been investigated so far. Studies on
the existence and uniqueness of solutions for the initial-boundary value problems
related to these equations can be found in [9] - [14], where theorems of existence,
based on a priori estimates and using methods such as Galerkin’s method and
compactness arguments, are discussed. Note that the existence and uniqueness of
the solutions of the initial-boundary value problems for the equations of type (5)
were first studied in [14]. The existence theorems demonstrated in these studies
rely on methods involving a priori estimates, utilizing techniques similar to those
employed for nonlinear parabolic equations as discussed in [15] and [16].

The semi-discrete and finite difference schemes as well as Galerkin finite element
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approximation for numerical resolution of the initial-boundary value problems to
the (5) type models and models like them have been explored in [17] - [22]. It is also
worth mentioning that based on researches given in [23] and [24], in [25] and [26]
the machine learning approaches such as Gaussian Processes and Neural Network
applications for linear partial differential equations (PDEs) were studied corre-
spondingly. Additionally, the discussions on the questions of existence, uniqueness,
regularity as well as an asymptotic behavior of the solutions of the initial-boundary
value problems to the models similar to equation (5) can be found, for example, in
[22], [27] - [34] and references therein.

This paper aims to propose a novel strategy involving the application of machine
learning techniques for the numerical approximation of the initial-boundary value
problem with homogenous Dirichlet boundary conditions for equation (5) in the
case where the function a(S) is defined as 1 + S. In particular, the goal is to use a
Deep Neural Network (DNN) to approximate the solution of the initial-boundary
value problem of the nonlinear integro-differential equation with a specific diffusion
coefficient.

The rest of the article is organized as follows: In the next section, the problem
statement is done and theorems of large time behavior of solution and uniqueness
are stated. Section three discusses numerical approximation techniques by applying
a DNN to solve a nonlinear integro-differential equation (5).

2. Problem statement. Some asymptotic estimations and uniqueness of
solution

In the infinite cylinder (0, 1)× (0,∞) let us consider the following initial boundary
value problem for the nonlinear integro-differential equation (5):

U(0, t) = U(1, t) = 0, t ≥ 0,

U(x, 0) = U0(x), x ∈ [0, 1],
(6)

where U0(x) is the given initial condition.
We assume that U = U(x, t) is a solution to the problem (5), (6) that meets cer-

tain continuity and integrability prerequisites, which are detailed further in terms
of Sobolev spaces. In particular, we presume that U = U(x, t) is a solution of the
problem (5), (6) on [0, 1] × [0,∞) such that U(·, t), ∂U(·,t)

∂x , ∂U(·,t)
∂t , ∂2U(·,t)

∂x2 , ∂2U(·,t)
∂t ∂x

are all in C0([0,∞);L2(0, 1)), while ∂2U(·,t)
∂t2 is in L2((0,∞);L2(0, 1)).

The following statements addresses the asymptotic behavior and uniqueness of
solution [14], [17], [18], [28] - [32].

Theorem 2.1 : If U0 ∈ H1
0 (0, 1), then the solution of the problem (5), (6) satisfies

the following estimate

‖U‖L2(0,1) +
∥∥∥∥∂U

∂x

∥∥∥∥
L2(0,1)

≤ C exp
(
− t

2

)
.

Here and below in this section C denote positive constants independent from t
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and usual L2(0, 1) and Sobolev spaces Hk(0, 1), Hk
0 (0, 1) are used.

Note that Theorem 2.1 gives exponential stabilization of the solution of the
problem (5), (6) in the norm of the space H1(0, 1). The following theorem shows
the stabilization of solution in the norm of the space C1(0, 1).

Theorem 2.2 : If U0 ∈ H4(0, 1) ∩H1
0 (0, 1), then the solution of the problem (5),

(6) satisfies the following estimates:

∣∣∣∣∂U(x, t)
∂x

∣∣∣∣ ≤ C exp
(
− t

2

)
,

∣∣∣∣∂U(x, t)
∂t

∣∣∣∣ ≤ C exp
(
− t

2

)
.

Remark: Globally defined solutions for the problem (5), (6) can be acquired
through a standard process. Initially, local solutions are established over a maximal
time span. Subsequently, derived a-priori estimates are employed to demonstrate
that the solutions remain bounded within a finite time frame, as discussed in [15]
and [16].

Theorem 2.3 : If problem (5), (6) has a solution then it is unique.

As usual, to prove the uniqueness of solution it is assumed that there exist
two different U1 and U2 solutions of problem (5), (6) and ‖U1 − U2‖L2(0, 1) ≡ 0
equivalency is proven. The following identity is mainly used to prove the uniqueness
theorem [22]. 

1 +

t∫
0

1∫
0

(
∂U2

∂x

)2

dxdτ

 ∂U2

∂x

−

1 +

t∫
0

1∫
0

(
∂U1

∂x

)2

dxdτ

 ∂U1

∂x


(

∂U2

∂x
− ∂U1

∂x

)

=

1∫
0

d

dµ

1 +

t∫
0

1∫
0

[
∂U1

∂x
+ µ

(
∂U2

∂x
− ∂U1

∂x

)]2

dxdτ



×
[
∂U1

∂x
+ µ

(
∂U2

∂x
− ∂U1

∂x

)]
dµ

(
∂U2

∂x
− ∂U1

∂x

)
.

3. Numerical approximation

The proposed note seeks to build upon the research initiated in [25] and [26],
utilizing a Deep Neural Network to address the numerical solution of the following
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nonlinear integro-differential initial-boundary value problem:

∂U(x, t)
∂t

−

1 +

t∫
0

1∫
0

(
∂U(x, t)

∂x

)2

dxdτ

 ∂2U(x, t)
∂x2

= f(x, t), (x, t) ∈ Q,

U(0, t) = U(1, t) = 0, t ∈ [0, T ],

U(x, 0) = U0(x), x ∈ [0, 1],

(7)

in which Q defines the domain (0, 1) × (0, T ) with T being a positive constant,
and f and U0 represent prescribed functions.

The literature extensively covers both the qualitative and quantitative attributes
and computational solutions for the problem (7) and their more complex nonlinear
variants (see, for example, [9] - [14], [17], [18], [27], [34] and references therein).
One of the approaches for numerical solution of parabolic partial differential equa-
tion was suggested in [25] using the Gaussian Process as a numerical approximation
method for the Heat Equation. As mentioned earlier, we are interested in exploring
the capabilities of Machine Learning techniques, particularly DNNs, as an alterna-
tive method for solving PDEs. The goal is to train a DNN to predict the solution
at any given point (x, t) within the domain Q. A DNN may contain several layers,
including the input and output layers, with numerous hidden layers in between (as
exemplified in Fig. 1). The depth of the network correlates to the number of these
hidden layers.

Figure 1. Illustration of Neural Network architecture.

The DNN seeks to formulate an approximation of the problem (7) such that
u(x, t, ρ) ≈ U(x, t), where u(x, t, ρ) signifies the output from the DNN, and ρ
encompasses all the adjustable parameters of the DNN which are optimized dur-
ing the learning process. As noted in [26], training a DNN requires a substantial
dataset. However, the advantage of employing DNNs in solving PDEs lies in the
ability to infuse the training with physical laws, effectively reducing the amount of
data required for successful training as discussed in [23], [24].
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Adapting the approach from [23], [24], [26], the residual for the nonlinear equation
(7) to be evaluated at predefined training points is given as

R(x, t, ρ) =
∂u(x, t, ρ)

∂t

−

1 +

t∫
0

1∫
0

(
∂u(x, t, ρ)

∂x

)2

dxdτ

 ∂2u(x, t, ρ)
∂x2

− f(x, t).

(8)

Furthermore, a loss function F(x, t, ρ) that includes the residual (8) and the
initial and boundary conditions can be devised. This function is subject to opti-
mization by a DNN throughout its training phase.

In our first experiment for the right-hand side function f(x, t) in problem (7),
we have chosen a form that generates a known exact solution, specifically

U(x, t) = x(1− x) exp(−x− t),

and the initial condition is similarly derived as

U0(x) = x(1− x) exp(−x).

The neural network’s training procedure was executed using the NumPy package,
which is tailored for scientific computations, and TensorFlow, a framework dedi-
cated to machine learning applications. These package are wrapped in the Jupyter
Notebook script [23].

Figure 2 displays the exact (left) and numerical solution of problem (7), while
plots in Figure 3 show error between exact and approximate solutions (left) and
asymptotic behavior of solution of problem (7) (right) correspondingly.

Figure 2. Comparison of exact and approximate solutions.

The picture for asymptotic behavior is drawn from our second experiment once
considered right-hand side of the equation in (7) as f(x, y) = 0, and the initial
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function is given as follows

U(x, 0) = x(1− x) + x(e−x − e−1cos(10πx)).

The right plot in Figure 3 shows the vanishing of the solution of problem (7)
when t →∞ as it was expected due to Theorems 2.2 and 2.3.

Figure 3. Error surface for exact and approximated (left) and asymptotic behavior of solution (right).
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