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On the Heun Equation Induced from Schwarz-Cristoffel Mapping
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We demonstrate that the Schwarz-Cristoffel mapping, which maps the given quadrilateral to
the upper half-plane, is a solution to the general Heun equation. Furthermore, we provide an
explicit formula for the accessory parameter of the Heun equation as a function of the singular
point.
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1. Formulation of the main result

We are examining the simplest Fuchsian second-order equations, with particular
attention to the role of the Schwarz-Cristoffel mapping for polygonal quadrilaterals
[4]. The final form of the obtained differential equation is a Fuchsian equation with
four regular singular points. It is known that the canonical form for such equations
is the Heun equation [7].

In recent years, the family of Heun equations (general, confluent, double conflu-
ent, biconfluent, triconfluent) has become the subject of intensive research, not only
due to its various applications in engineering sciences and mechanics (see [3], [8]
and literature cited there), astrophysics (see for example [6],[5]) and mathematical
physics [9] but also as an intriguing and significant entity in mathematics itself [7]
[2]. The numerical analysis of Heun functions and their integration into computer
algebra systems is still far from completion. On the other hand, achieving highly
accurate numerical values of hypergeometric functions is feasible through computer
algebra systems. Therefore, identifying a class of Heun equations whose solutions
are expressed through special functions seems important to us.

The general Heun equation depends on one accessory parameter. In this case, as
is known, the problem of monodromy arises depending on the accessory parameter
(and therefore the solution), which is known as the isomonodromy problem. For
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example, for the Heun equation, monodromy-preserving deformation leads to the
so-called Painleve transcendents [1].

A monodromy-preserving deformation of the Fuchsian system is the problem of
determining the coefficient matrix in such a way that the monodromy of the given
system remains unchanged when the locations of the singular points are varied. The
deformation equation becomes a system of differential equations for the accessory
parameters as functions of the positions of the singular points.

In this paper, we focus on a special type of the general Heun equation. In this
case, the solutions of the Heun equation are expressed in terms of hypergeometric
functions, with these functions arising from Schwarz-Christoffel mapping and pos-
sessing a profound geometric character. Namely, let Q be a polygonal quadrilateral
with vertices w1, w2, w3, w4 enumerated in the clockwise order. Suppose the vertex
w4 lies at the origin and one side coincides with a line segment of the positive
direction of the x-axis. Let the inner angles of Q at the vertices w1, w2, w3, w4 be
πτ1, πτ2, πτ3, πτ4, respectively.

In this notation the following theorem hold.

Theorem 1.1 : The solution of the Heun equation

f ′′(z) +
(

γ

z
+

δ

z − 1
+

2
z − a

)
f ′(z) +

αβz − q

z(z − 1)(z − a)
f(z) = 0,

are

fj(z) =
(z + 1)τ2+τ4−1

z + a
wj(z),

where wj , j = 1, 2, 3, 4 are the vertices of the polygonal quadralateral Q and

w1(z) = 2F1 (τ4, 1− τ3; τ1 + τ4;−z) ,

w2(z) = zτ3−1
2F1

(
τ2, 1− τ3; τ1 + τ2;−

1
z

)
,

w3(z) = zτ2+τ3−1
2F1 (τ2, 1− τ1; τ2 + τ3;−z) ,

w4(z) = z−τ4
2F1

(
τ4, 1− τ1; τ3 + τ4;−

1
z

)
.

The coefficients of the equation satisfy the relation α + β = γ + δ + 1,

α = 1 + τ1, β = 2− τ2, γ = τ1 + τ4, δ = τ1 + τ3

and the accessory parameter q and singular points a connected by the relation

q = (1 + aτ1)(τ2 − 1) + (τ3 − 1). (1)

In the next section we give the proof of this Theorem.
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2. Proof the theorem

Consider the conformal mapping of the lower half-plane onto a polygonal domain
realized by the Schwarz-Cristoffel mapping (SC-mapping). Namely, suppose P be
the interior of a polygon Γ with clockwise enumerated vertices w1, . . . , wn in the
complex plane and with external angles πβ1, . . . , πβn. Let f be a conformal map
of the lower half-plane H− onto P with f(∞) = wn. Then

f(x) = A + C

x∫
∞

n−1∏
j=1

(
1− ζ

zj

)−βj

dζ, (2)

for some complex constants A and C, where wk = f(zk) and the preimages zj of
the vertices wj , for j = 1, . . . , n − 1 satisfy the conditions 1 = z1 < z2 < · · · <
zn−1 < zn = ∞.

Consider a particular case of the mapping (2). Namely, let Q be a quadrilateral
with inner angles πτj enumerated in the clockwise order. Suppose

z1 = 1, z2 = 1 + θ, z3 = 1 + θ + rθ,

where θ, r > 0 is a parametrization of preimages of the vertices of the quadrilateral
Q, i.e., the inequality

1 = z1 < z2 < z3

is satisfied. Then the Schwarz-Christoffel transformation is given by

f(x) = A + C

x∫
∞

(1− ζ)τ1−1

(
1− ζ

1 + θ

)τ2−1 (
1− ζ

1 + θ + rθ

)τ3−1

dζ, (3)

A,C ∈ C.
Let Q be a polygonal quadrilateral with vertices w1, w2, w3, w4 enumerated in

the clockwise order. As in the section 1 suppose the vertex w4 lies at the origin and
one side coincides with a line segment of the positive direction of the x-axis. Let the
inner angles of Q at the vertices w1, w2, w3, w4 are πτ1, πτ2, πτ3, πτ4, respectively.
If we take A = 0 and C = 1 in (3), then the function

g(x) =

x∫
∞

(1− ζ)τ1−1

(
1− ζ

1 + θ

)τ2−1 (
1− ζ

1 + θ + rθ

)τ3−1

dζ, r, θ > 0.

maps the lower half-plane onto quadrilateral Q, described above, and the side
lengths of Q are given by the following formulas

l1 = cB(τ4, τ1)2F1 (τ4, 1− τ3; τ4 + τ1;−r) ,

l2 = rτ3−1cB(τ1, τ2)2F1

(
τ2, 1− τ3; τ1 + τ2;−

1
r

)
,
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l3 = rτ2+τ3−1cB(τ2, τ3)2F1 (τ2, 1− τ1; τ2 + τ3;−r) ,

l4 = r−τ4cB(τ3, τ4)2F1

(
τ4, 1− τ1; τ3 + τ4;−

1
r

)
,

where

c = θ−τ4(1 + θ)1−τ2(1 + θ + rθ)1−τ3

and the ratio of the lengths of the adjacent sides of the quadrilateral is independent
of θ. Here B is the Euler beta-function [4].

If we denote by

w(z) = 2F1 (a, b; c; z)

the solution of the standard hypergeometric differential equation

z(z − 1)
d2w

dz2
+ ((a + b + 1)z − c)

dw

dz
+ abw = 0 (4)

then the function

w(z) = 2F1 (τ4, 1− τ3; τ1 + τ4;−z)

will be the solution of the following equation

z(1 + z)
d2w

dz2
+ ((τ4 + 1− τ3 + 1)z + τ1 + τ4)

dw

dz
+ τ4(1− τ3)w = 0,

which can be rewritten in the following form

d2w

dz2
+

(
τ4 − τ3 + 2

z + 1
+

τ1 + τ4

z
− τ1 + τ4

z + 1

)
dw

dz
+

τ4(1− τ3)
z(1 + z)

w = 0.

After some simplification, we obtain

d2w

dz2
+

(
τ1 + τ4

z
+

τ2 + τ4

z + 1

)
dw

dz
+

τ4(1− τ3)
z(1 + z)

w = 0, (5)

where τ1 + τ2 + τ3 + τ4 = 2.
We interpret the solution

w1(z) = 2F1 (τ4, 1− τ3; τ1 + τ4;−z)

of the equation (5) as the vertice w1 which we obtain using the Schwarz-Christoffel



Vol. 27, No. 2, 2023 103

mapping technique, while the other three vertices also satisfy the equation (5):

w2(z) = zτ3−1
2F1

(
τ2, 1− τ3; τ1 + τ2;−

1
z

)
,

w3(z) = zτ2+τ3−1
2F1 (τ2, 1− τ1; τ2 + τ3;−z) ,

w4(z) = z−τ4
2F1

(
τ4, 1− τ1; τ3 + τ4;−

1
z

)
.

Lemma 2.1:
Assume that equation (5) has a solution w(z). Then the function f(z) = g(z)w(z)

is the solution of the equation

f ′′ +
(

τ1 + τ4

z
+

τ2 + τ4

z + 1
− 2g′

g

)
f ′+(

2(g′)2 − gg′′

g2
−

(
τ1 + τ4

z
+

τ2 + τ4

z + 1

)
g′

g
+

τ4(1− τ3)
z(1 + z)

)
f = 0.

(6)

Indeed,

f ′ = g′w + gw′ =
g′

g
f + gw′ ⇒ w′ =

f ′

g
− g′

g2
f,

f ′′ = g′′w + 2g′w′ + gw′′ =
g′′

g
f +

2g′

g
f ′ − 2(g′)2

g2
f + gw′′

⇒ w′′ =
f ′′

g
− 2g′

g2
f ′ +

2(g′)2 − gg′′

g3
f.

Substitute these results into equation (5):

f ′′

g
− 2g′

g2
f ′+

2(g′)2 − gg′′

g3
f +

(
τ1 + τ4

z
+

τ2 + τ4

z + 1

) (
f ′

g
− g′

g2
f

)
+

τ4(1− τ3)
z(1 + z)

f

g
= 0.

From this it follows, that f(z) satisfies the equation

f ′′ − 2g′

g
f ′ +

2(g′)2 − gg′′

g2
f +

(
τ1 + τ4

z
+

τ2 + τ4

z + 1

)
f ′ −

(
τ1 + τ4

z
+

τ2 + τ4

z + 1

)
g′

g
f

+
τ4(1− τ3)
z(1 + z)

f = 0.
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Hence, we obtain equation (6).

Lemma 2.2: Let g(z) = (z + 1)m(z + a)n. Then the function f(z) from Lemma
2.1 is a solution of the equation

f ′′ +
(

τ1 + τ4

z
+

τ1 + τ3

z + 1
+

2
z + a

)
f ′

+
(1 + τ1)(2− τ2)z + ((1 + aτ1)(1− τ2) + (1− τ3))

z(z + 1)(z + a)
f = 0.

(7)

The proof of Lemma 2.2 follows from the following obvious equalities. Namely,

g′

g
=

m

z + 1
+

n

z + a
,

2(g′)2 − gg′′

g2
=

m(m + 1)
(z + 1)2

+
n(n + 1)
(z + a)2

+
2mn

(z + 1)(z + a)
.

We need to set n and m non-zero parameters so that the following identity hold

2(g′)2 − gg′′

g2
−

(
τ1 + τ4

z
+

τ2 + τ4

z + 1

)
g′

g
+

τ4(1− τ3)
z(1 + z)

=
Az + B

z(z + 1)(z + a)
,

where the left hand side of the last equation is the coefficient of f(z) in the equation
(7) and A and B are some constants. After this, we make the choice of the numbers
n and m such that they satisfy the identity

Az + B =
m((m + 1)− (τ2 + τ4))z(z + a)

(z + 1)
+

n(n + 1)z(z + 1)
(z + a)

+n(2m− (τ2 + τ4))z − n(τ1 + τ4)(z + 1) + (τ4(1− τ3)−m(τ1 + τ4))(z + a).

It is possible only when n(n + 1) = 0 and m((m + 1)− (τ2 + τ4)) = 0, i.e, n = −1
and m = τ2 + τ4 − 1. From this it follows that

Az + B = (1 + τ1)(2− τ2)z + ((1 + aτ1)(1− τ2) + (1− τ3)).

The Lemma 2.2 is proved.
To complete the proof of the Theorem 2.1, it is sufficient to introduce the notation

provided in the theorem for the coefficients of the equation (7). In particular, denote
by α = 1 + τ1, β = 2− τ2, γ = τ1 + τ4, δ = τ1 + τ3, then α + β − γ − δ = 1 and for
the accessory parameter and singular point a we obtain the relation (1).
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