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A Note on Diophantine Equations and Maximization of Products
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A sufficient condition for solvability in natural numbers of linear Diophantine equation is
obtained and a problem on maximizing the product of powers natural numbers whose corre-
sponding weighted sum is given is investigated.
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1. Introduction

For natural numbers n > 1, pi > 0, i = 1, . . . , n and L ≥
∑n

k=1 pk we find a
condition for solvability of the Diophantine equation

n∑
i=1

pixi = L . (DE)

in natural numbers xi, i = 1, . . . , n and calculate the maximal value of the product

n∏
i=1

xpi

i

when xi, i = 1, . . . , n are natural numbers, satisfying (DE).
A solution of a related extremum problem when pi = 1, i = 1, . . . , n and L ≥ n is

contained in [2, Proposition 3.1].
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2. Main result

Below for a real number x by [x] is denoted the integer part of x.

Theorem 2.1 : Let n > 1, L and pi, i = 1, . . . , n be natural numbers, such that

L ≥ m :=
n∑

k=1

pk

Let, moreover

q :=
L

m
, r := L− [q]m .

and assume that the following condition is satisfied:
(NC) for some proper subset J ⊂ {1, . . . , n} we have

∑
k∈J

pk = r .

We agree
∑

k∈∅ pk := 0 .
Then
(1) the natural numbers xk, k = 1, . . . , n defined by equalities

xk = 1 + [q], for k ∈ J and xk = [q] for k ∈ {1, . . . , n} \ J . (SO)

satisfy (DE).
(2) Maximum of the product

n∏
i=1

xpi

i

when xi, i = 1, . . . , n are natural numbers, satisfying (DE), is

(1 + [q])r[q]m−r

and this maximum is attained when xi, i = 1, . . . , n are defined by (SO).

Proof : (1) If J = ∅, then r = 0 and for the natural numbers xi, i = 1, . . . , n
defined by (SO) we have:

n∑
i=1

pixi =
n∑

i=1

piq = mq = L ,

hence, they satisfy (DE) in this case.
If J 6= ∅, then 0 < r < m and for the natural numbers xi, i = 1, . . . , n defined by
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(SO) we have:

n∑
i=1

pixi =
∑
i∈J

pixi +
∑

i∈{1,...,n}\J

pixi

=
∑
i∈J

pi(1 + [q]) +
∑

i∈{1,...,n}\J

pi[q] = r(1 + [q]) + (m− r)[q] = r + m[q] = L ,

hence, they satisfy (DE) in this case too.
(2) Note first of all that from the mean-arithmetic–mean-geometric inequality

for positive numbers L and xi, i = 1, . . . , n satisfying (DE) we have:

n∏
i=1

xpi

i ≤
(

L

m

)m

. (1)

When r = 0; i.e., when m divides L, the statement follows from inequality (1).
In general, the statement can be derived from [2, Proposition 3.1], which asserts,

in particular, that the maximum of the product

m∏
i=1

yi

when yi, i = 1, . . . ,m are natural numbers such that
∑m

i=1 yi = L is

(1 + [q])r[q]m−r

and this maximum is attained for natural numbers yi, i = 1, . . . ,m for which the
equalities

card ({i ∈ {1, . . . ,m} : yi = 1 + [q]}) = r

and card ({i ∈ {1, . . . ,m} : yi = [q]}) = m− r

hold. �

Remark 1 : Note that
(a) The condition (NC) of Theorem 2.1(1) provides only a sufficient condition for

solvability in natural numbers of the equation (DE), which may not be necessary.
For example, for the equation

2x1 + 3x2 = 16

the condition (NC) of Theorem 2.1(1) is not satisfied, but it has the solution x1 = 5
and x2 = 2.

The same example shows that the first part of Theorem 2.1(2) is not true without
assuming the condition (NC).
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(b) Theorem 2.1(1) for the equation

2x1 + 3x2 = 37

gives the solution (8, 7); however this equation has other solutions too:

(3k − 1, 13− 2k), k = 1, 2, 4, 5, 6 .

It can be checked directly that

(3k − 1)2(13− 2k)3 < 82 · 73 = 21352, for k = 1, 2, 4, 5, 6 ;

in particular, that Theorem 2.1(2) is true in this case.
(c) Using the inequality (1) we get that maximum of the product

n∏
i=1

xpi

i

when xi, i = 1, . . . , n are natural numbers satisfying (DE) is not greater than[(
L

m

)m]
.

From this and Theorem 2.1(2) we conclude that

(1 + [q])r[q]m−r ≤
[(

L

m

)m]
.

It can be shown, that in this inequality the equality we have only in very special
cases; cf. [1], where the case pi = 1, i = 1, . . . , n is treated.
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