A Note on Diophantine Equations and Maximization of Products

George Chelidze ${ }^{* 1}$, Mikheil Nikoleishvili ${ }^{2}$, Vaja Tarieladze ${ }^{3}$
${ }^{1}$ Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University, 0159 Tbilisi, Georgia and Kutaisi International University, 4600, Kutaisi, Georgia
${ }^{2}$ Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University, 0159 Tbilisi, Georgia and Georgian Institute of Public Affairs (GIPA), 0105, Tbilisi, Georgia email: mikheil.nikoleishvili@gmail.com
${ }^{3}$ Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University, 0159 Tbilisi, Georgia email: vajatarieladze@yahoo.com, v.tarieladze@gtu.ge
(Received May 03, 2023; Revised July 20, 2023; Accepted November 16, 2023)

A sufficient condition for solvability in natural numbers of linear Diophantine equation is obtained and a problem on maximizing the product of powers natural numbers whose corresponding weighted sum is given is investigated.

Keywords: Extremum, maximum, arithmetic mean, geometric mean, integer party.
AMS Subject Classification: 01A60, 49J10, 05A10, 49J30, 49K10.

1. Introduction

For natural numbers $n>1, p_{i}>0, i=1, \ldots, n$ and $L \geq \sum_{k=1}^{n} p_{k}$ we find a condition for solvability of the Diophantine equation

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} x_{i}=L \tag{DE}
\end{equation*}
$$

in natural numbers $x_{i}, i=1, \ldots, n$ and calculate the maximal value of the product

$$
\prod_{i=1}^{n} x_{i}^{p_{i}}
$$

when $x_{i}, i=1, \ldots, n$ are natural numbers, satisfying $(D E)$.
A solution of a related extremum problem when $p_{i}=1, i=1, \ldots, n$ and $L \geq n$ is contained in [2, Proposition 3.1].

[^0]
2. Main result

Below for a real number x by $[x]$ is denoted the integer part of x.
Theorem 2.1: Let $n>1, L$ and $p_{i}, i=1, \ldots, n$ be natural numbers, such that

$$
L \geq m:=\sum_{k=1}^{n} p_{k}
$$

Let, moreover

$$
q:=\frac{L}{m}, r:=L-[q] m .
$$

and assume that the following condition is satisfied:
(NC) for some proper subset $J \subset\{1, \ldots, n\}$ we have

$$
\sum_{k \in J} p_{k}=r .
$$

We agree $\sum_{k \in \emptyset} p_{k}:=0$.
Then
(1) the natural numbers $x_{k}, k=1, \ldots, n$ defined by equalities

$$
\begin{equation*}
x_{k}=1+[q], \text { for } k \in J \text { and } x_{k}=[q] \text { for } k \in\{1, \ldots, n\} \backslash J . \tag{SO}
\end{equation*}
$$

satisfy (DE).
(2) Maximum of the product

$$
\prod_{i=1}^{n} x_{i}^{p_{i}}
$$

when $x_{i}, i=1, \ldots, n$ are natural numbers, satisfying $(D E)$, is

$$
(1+[q])^{r}[q]^{m-r}
$$

and this maximum is attained when $x_{i}, i=1, \ldots, n$ are defined by $(S O)$.
Proof: (1) If $J=\emptyset$, then $r=0$ and for the natural numbers $x_{i}, i=1, \ldots, n$ defined by $(S O)$ we have:

$$
\sum_{i=1}^{n} p_{i} x_{i}=\sum_{i=1}^{n} p_{i} q=m q=L,
$$

hence, they satisfy $(D E)$ in this case.
If $J \neq \emptyset$, then $0<r<m$ and for the natural numbers $x_{i}, i=1, \ldots, n$ defined by
(SO) we have:

$$
\begin{gathered}
\sum_{i=1}^{n} p_{i} x_{i}=\sum_{i \in J} p_{i} x_{i}+\sum_{i \in\{1, \ldots, n\} \backslash J} p_{i} x_{i} \\
=\sum_{i \in J} p_{i}(1+[q])+\sum_{i \in\{1, \ldots, n\} \backslash J} p_{i}[q]=r(1+[q])+(m-r)[q]=r+m[q]=L,
\end{gathered}
$$

hence, they satisfy $(D E)$ in this case too.
(2) Note first of all that from the mean-arithmetic-mean-geometric inequality for positive numbers L and $x_{i}, i=1, \ldots, n$ satisfying $(D E)$ we have:

$$
\begin{equation*}
\prod_{i=1}^{n} x_{i}^{p_{i}} \leq\left(\frac{L}{m}\right)^{m} \tag{1}
\end{equation*}
$$

When $r=0$; i.e., when m divides L, the statement follows from inequality (1).
In general, the statement can be derived from [2, Proposition 3.1], which asserts, in particular, that the maximum of the product

$$
\prod_{i=1}^{m} y_{i}
$$

when $y_{i}, i=1, \ldots, m$ are natural numbers such that $\sum_{i=1}^{m} y_{i}=L$ is

$$
(1+[q])^{r}[q]^{m-r}
$$

and this maximum is attained for natural numbers $y_{i}, i=1, \ldots, m$ for which the equalities

$$
\begin{gathered}
\quad \operatorname{card}\left(\left\{i \in\{1, \ldots, m\}: y_{i}=1+[q]\right\}\right)=r \\
\text { and } \operatorname{card}\left(\left\{i \in\{1, \ldots, m\}: y_{i}=[q]\right\}\right)=m-r
\end{gathered}
$$

hold.
Remark 1: Note that
(a) The condition (NC) of Theorem $2.1(1)$ provides only a sufficient condition for solvability in natural numbers of the equation $(D E)$, which may not be necessary. For example, for the equation

$$
2 x_{1}+3 x_{2}=16
$$

the condition (NC) of Theorem 2.1(1) is not satisfied, but it has the solution $x_{1}=5$ and $x_{2}=2$.

The same example shows that the first part of Theorem 2.1(2) is not true without assuming the condition (NC).
(b) Theorem 2.1(1) for the equation

$$
2 x_{1}+3 x_{2}=37
$$

gives the solution (8, 7); however this equation has other solutions too:

$$
(3 k-1,13-2 k), k=1,2,4,5,6 .
$$

It can be checked directly that

$$
(3 k-1)^{2}(13-2 k)^{3}<8^{2} \cdot 7^{3}=21352, \text { for } k=1,2,4,5,6
$$

in particular, that Theorem 2.1(2) is true in this case.
(c) Using the inequality (1) we get that maximum of the product

$$
\prod_{i=1}^{n} x_{i}^{p_{i}}
$$

when $x_{i}, i=1, \ldots, n$ are natural numbers satisfying $(D E)$ is not greater than

$$
\left[\left(\frac{L}{m}\right)^{m}\right]
$$

From this and Theorem 2.1(2) we conclude that

$$
(1+[q])^{r}[q]^{m-r} \leq\left[\left(\frac{L}{m}\right)^{m}\right] .
$$

It can be shown, that in this inequality the equality we have only in very special cases; cf. [1], where the case $p_{i}=1, i=1, \ldots, n$ is treated.

References

[1] G. Chelidze, M. Nikoleishvili, V. Tarieladze. On a problem of integer valued optimization. Seminar of I. Vekua Institute of Applied Mathematics REPORTS, 47 (2021), 21-25
[2] G. Chelidze, M. Nikoleishvili, V. Tarieladze. On AM-GM inequality and general problem of maximization of products. Transactions of A. Razmadze Mathematical Institute, 177 (2023), issue 2 (to appear).

[^0]: * Corresponding author. Email: g.chelidze@gtu.ge, giorgi.chelidze@kiu.edu.ge

