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This paper represents two stage fuzzy methodology for the optimal planning of order of es-
tablishment of temporary logistics hubs (TLHs). At the first stage, a q-rung orthopair fuzzy
TOPSIS approach for formation and representing of expert’s knowledge on the parameters of
the order of establishment of temporary logistics hubs is developed, when resources (mobile
storage units used as TLHs) are limited. At the second stage, based on the constructed fuzzy
TOPSIS aggregation a new objective function is formulated. Constructed criterion maximizes
TLHs’ total identification level of the order of establishment. This criterion together with sec-
ond criterion - minimization of number of selected TLHs’, creates the multi-objective facility
location set covering problem. Two stage approach is illustrated by the simulation example of
emergency temporary logistics hubs’ selection preferences identification for a city in Georgia.
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1. Introduction

Effective disaster salvage requires implementing different disaster response facili-
ties immediately after a disaster has occurred. Of the numerous types of facilities
prevalent in humanitarian operations, this study focuses on those intended for relief
distribution. These facilities can be categorized as permanent or temporary based
on the length of their operational horizon. Permanent facilities operate before the
disaster and have long or even infinite operational horizons, whereas temporary re-
sponse facilities only operate once the location of the disaster is known and have a
short operational horizon. While determining the location for a permanent facility
is a strategic decision, doing so for a temporary facility is a tactical/operational
decision with which decision makers are faced after a disaster.

The appropriateness of a logistics hub’s location can determine the success or
failure of a humanitarian relief operation. However, the unpredictability of disas-
ters makes it difficult to ascertain the precise location of logistics hubs beforehand.
Moreover, high inventory holding costs, as well as limited funds and operating re-
sources, often restrict the number of permanent facilities. Therefore, the temporary
nature of such facilities is an indispensable part of humanitarian relief operations
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[1]. A temporary logistics hub is defined as a place designated for the storing, sort-
ing, consolidating, deconsolidating and distributing of emergency relief materials
to disaster-affected areas in the short term. They act as an intermediator between
the central warehouse or relief supply points and the affected areas in need of
emergency relief.

A typical location problem includes ascertaining the number, spatial location and
the allocation of demand for open facilities. However, locating TLHs during disas-
ter response also requires determining the order of establishment of the facilities
when resources are limited. Often mobile storage units that can be easily assem-
bled, disassembled and transported are used as TLHs. Fire retardant, waterproof,
rot proof and UV stabilized, these mobile storage units too are usually expensive to
be stockpiled in large quantities. For example, during the initial response stage of
the 2015 Nepal Earthquake, the number of mobile storage units available in coun-
try was limited, which resulted in the effective establishment of regional logistics
hubs facing several hindrances, including delay and mobile storage units having
insufficient capacity.

In location decision making, traditional network models take into account quan-
titative factors and aim to minimize the total cost or to maximize profitability or
coverage. Non-quantitative criteria, such as work force qualifications, geographical
characteristics and road networks, are also important in deciding location. In the
aftermath of a disaster, the decision-making process typically involves multiple de-
cision makers with varying interests and opinions. Indeed, the growing complexity
and uncertainty of decision situations make it less and less possible for a deci-
sion maker to consider all the relevant aspects of a problem, thereby necessitating
the participation of multiple experts in the decision-making process [2]. As such,
achieving a proper balance among them is a significant challenge. Furthermore,
disaster response operation in most emerging countries is resource constrained and
requires the effective allocation of resources to ensure their effective utilization.
While optimization approaches can be used for evaluating quantitative factors, this
evaluation of qualitative factors is often accompanied by ambiguity and vagueness
[3]. This is particularly so in the aftermath of a disaster, when the environment
is chaotic, and there is limited information and time. Moreover, in [4] authors
state that intangible factors can change a network configuration resulting from a
mathematical model. Essentially, disaster managers have to make myriad reactive
operational decisions to solve complex dilemmas with little to no information under
immensely stressful conditions as they respond to emergencies. This highlights the
need for a simple and inclusive methodology. Under these circumstances, an appro-
priate decision-making strategy would require that the resolutions and opinions of
a group of decision makers be taken into account when evaluating the subjective
and objective attributes in the TLH selection process.

This study seeks to address the gaps in the existing literature and aid in the
decision-making process by developing a two stage methodology that determines the
order of establishment of TLHs, and which considers location problems in doing so.
At the first stage, a new fuzzy TOPSIS approach is proposed. In this stage, a fuzzy
multi-attribute group decision making approach is used to determine the order
of establishment of selected TLHs. On the second stage, an optimization model
to determine the number and spatial location of the TLHs is created. Finally, as
the humanitarian code of conduct dictates that humanitarian imperative comes
first such that the prime motivation of response to disaster is to alleviate human



Vol. 27, No. 2, 2023 69

suffering [5]. In line with the humanitarian code of conduct, the optimization model
in the second stage optimizes total unsatisfied demand. This is in contrary to
common approach of minimizing costs which has been adopted by recent studies
[6–8] focusing on temporary facilities. Moreover, a personal interview with the
logistics expert working in non-governmental organization stated that minimizing
unsatisfied demand should be the primary objective as humanitarian operations
are based on donations.

As such, the objectives, and contributions, of this study are threefold. Introduc-
ing the concept of the order of establishment of TLHs, this study develops and
implements a new fuzzy TOPSIS methodology aimed at the effective utilization
of mobile storage units when their availability is scarce. Second, this study shows
that amalgamating an optimization model with the multi-attribute decision mak-
ing approach enables the evaluation of both subjective and objective attributes,
and has enhanced applicability to real-life scenarios. To support this methodology
and contributions, this study implements a numerical illustration using data from
a simulation real-life disaster.

Multi-attribute group decision making (MAGDM) is to find an optimal alterna-
tive that has the highest degree of satisfaction from a set of feasible alternatives
characterized with multiple criteria, and these kinds of MAGDM problems arise
in many real-world situations. Considering the inherent vagueness of human pref-
erences as well as the objects being fuzzy and uncertain, Bellman and Zadeh [9]
introduced the theory of fuzzy sets in the MAGDM problems. Technique for Or-
der Preference by Similarity to Ideal Solution (TOPSIS) developed by Hwang and
Yoon [10] is one of the most useful distance measures based classical approaches to
multi-criteria/multi-attribute decision making (MCDM/MADM) problems. It is a
practical and useful technique for ranking and selection of a number of externally
determined alternatives through distance measures. The basic principle used in
the TOPSIS is that the chosen alternative should have the shortest distance from
positive-ideal solution (PIS) and farthest from the negative-ideal solution (NIS).
There exists a large amount of literature involving TOPSIS theory and applica-
tions. In the TOPSIS, the performance ratings and the weights of the criteria are
given as crisp values. In classical TOPSIS methods, crisp numerical values are used
to express the performance rating and criteria weights. But human judgment, pref-
erence values and criteria weights are often ambiguous and cannot be represented
using crisp numerical value in real-life situation. Resolve the ambiguity frequently
arising in information from human judgment and preference, fuzzy set theory has
been successfully used to handle imprecision and uncertainty in decision making
problems. In this work a novel decision-making TOPSIS approach is developed to
deal effectively with the interactive MCDM problems with q-rung orthopair fuzzy
information [11, 12].

The remainder of this paper is organized as follows. Preliminary Concepts are
provided in the next section. Section 3 presents the TLH location selection model
based on new fuzzy TOPSIS approach, which determines the order of establish-
ment of the selected facilities. For the optimal selection of TLHs bi-objective facility
location set covering problem is created in Section 4. In Section 5 a numerical sim-
ulation example for the illustration of new two stage methodology is demonstrated.
Finally, Section 6 discusses the contributions and conclusions of this study.
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2. Preliminary concepts

Intuitionistic fuzzy sets (IFS) were introduced by Atanassov [13], as a generalization
of Zadeh’s fuzzy sets (FS). Because each element of IFS, as Intuitionistic fuzzy
number (IFN) (µ, υ) is assigned a membership degree (µ), a non-membership degree
(υ) and a hesitancy degree (1 − µ − υ), IFS is more powerful in dealing with
uncertainty and imprecision than FS. IFS theory has been widely studied and
applied to a variety of areas. But an IFN (µ, υ) has a significant restriction - the
sum of the degrees of membership and the non-membership is equal or less than
1. In some cases, a decision maker (DM) may provide data for some attribute that
the sum of two degrees is greater than 1 (µ + υ > 1). Yager in [14, 15] presented
the concept of the Pythagorean fuzzy set (PFS) as extension of an IFS, where the
pair of a Pythagorean fuzzy number (PFN) (µ, υ) has a less significant restrict -
a square sum of the degrees of membership and the non-membership is equal or
less than 1 (µ2 + υ2 ≤ 1). In general, for practical problems, the PFSs can decide
significant ones that IFSs cannot do. Therefore, PFSs are more able to process
uncertain information and solve complex decision-making problems. PFNs have
much less, but significant restriction. When the evaluation psychology of a DM
is too complicated and contradictory for complex decision making, the attribute’s
corresponding information is still difficult to express with PFNs. Recently, again
Yager decided this problem in [11, 12]. He proposed concept of a q-rung orthopair
fuzzy set (q-ROFS), where q ≥ 1 and the sum of the qth power of the degrees
of membership and the non-membership cannot be greater than 1. For a q-rung
orthopair fuzzy number (q-ROFN) we have (µq + υq ≤ 1). It is obvious that the
q-ROFSs are more general than IFSs and PFSs. The IFSs and PFSs are the special
cases of the q-ROFSs when q = 1 and q = 2, respectively. Therefore, q-ROFNs are
more convenient and able to describe DM’s evaluation information than IFNs and
PFNs.

Definition 2.1: [11] Let S a fixed ordinary set q-rung orthopair fuzzy set A on
S be defined as membership grades:

A =
{
〈s, µA(s), νA(s)〉

s ∈ S

}
, (1)

where the functions µA(s) indicates support for membership of s in A and νA(s)
indicates support against membership of s in A, where

q ≥ 1, 0 ≤ µA(s) ≤ 1, 0 ≤ νA(s) ≤ 1, 0 ≤ (µA(s))q + (νA(s))q ≤ 1. (2)

Hesq(s) = (1 − ((µA(s))q + (νA(s))q)1/q is called a hesitancy associated with a q-
rung orthopair membership grades and Strq(s) = ((µA(s))q + (νA(s))q)1/q is called
a strength of commitment viewed at rung q.

In [11], Yager showed that Attanassov’s intuitionistic fuzzy sets [3] are q = 1
-rung orthopair and Yager’s Pythagorean fuzzy sets [14] are q = 2 -rung orthopair
fuzzy sets. For convenience, the authors for every s ∈ S called α = 〈s, µα(s), να(s)〉
a q-rung orthothair fuzzy number (q-ROFN) denoted by α = (µα, να).

Let us denote by L the lattice of non-empty intervals L ={
[a; b]/(a, b) ∈ [0, 1]2, a ≤ b

}
. The partial order relation ≤L is defined as
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[a; b] ≤L [c; d] ⇔ a ≤ c and b ≤ d. The top and bottom elements are 1L = [1; 1]
and 0L = [0; 0], respectively. For the lattice of all q-ROFNs the corresponding
partial order relation ≤Lq-ROFNs is defined as:

(µ1, ν1) ≤Lq-ROFNs (µ2, ν2) ⇔ µ1 ≤ µ2 and ν1 ≥ ν2. (3)

The top and bottom elements are 1Lq-ROFNs = (1; 0) and 0Lq-ROFNs = (0; 1), respec-
tively.

Definition 2.2: [11] Suppose α = (µα, να) be a q-ROFN. a) A score function Sc
of α is defined as

Sc(α) = µq
α − νq

α; (4)

b) An accuracy function Ac of α is defined as follows:

Ac(α) = µq
α + νq

α. (5)

Based on these definitions a comparison method of q-ROFNs (total order relation
≤t on the lattice Lq−ROFNs) is defined.

Definition 2.3: [11] Suppose α = (µα, να) and β = (µβ, νβ) are any two q-
ROFNs and Sc(α), Sc(β) are the score functions and Ac(α), Ac(β) are the accuracy
functions of α and β, respectively, then

a) If Sc(α) > Sc(β), then β <t α;

b) If Sc(α) = Sc(β), then

If Ac(α) > Ac(β), then β <t α;

If Ac(α) = Ac(β), then β =t α.

(6)

On the lattice Lq−ROFNs the following basic operations can be defined.

Definition 2.4: [6] Suppose for α = (µα, να), α1, α2 ∈ Lq−ROFNs we have:

1. αc = (να, µα) ;

2. α1 ⊕q α2 =
(
(µq

α1
+ µq

α2
− µq

α1
· µq

α2
)1/q, να1 · να2

)
;

3. α1 ⊗q α2 =
(
µα1 · µα2 , (νq

α1
+ νq

α2
− νq

α1
· νq

α2
)1/q
)

;

4. Min(α1, α2) = (min (µα1 , µα2) , max (να1 , να2)) ;

5. Max(α1, α2) = (max (µα1 , µα2) , min (να1 , να2)) ;

6. λ · α =
(
(1− (1− µq

α)λ)1/q, νλ
α

)
, λ > 0;

7. αλ =
(
µλ

α, (1− (1− νq
α)λ)1/q

)
, λ > 0.

(7)

We define the distance between q-ruing orthopiar fuzzy numbers α1, α2 ∈
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Lq−ROFNs:

dq(α1, α2) = 1/2 · (|(µα1)
q − (µα2)

q + |(να1)
q − (να2)

q|). (8)

It is not difficult to prove that this measure satisfies all properties of a distance
function.

3. Description of Fuzzy TOPSIS approach for the identifying the order of
establishment of TLHs under Q-rung orthopair Fuzzy information

Timely servicing from emergency service centers to the affected geographical areas
(demand points as customers, for example critical infrastructure objects) is a key
task of the emergency management system. Scientific research in this area focuses
on distribution networks decision-making problems, which are known as a general
direction - Facility Location Problem (FLP) [16]. In our case, FLP’s models have
to support the generation of optimal locations of TLHs in complex and uncertain
situations. There are several publications about application of fuzzy methods in the
FLP. However, all of them have a common approach. They represent parameters
as fuzzy values (triangular fuzzy numbers [17] and others) and develop methods
for facility location problems called in this case Fuzzy Facility Location Problem
(FFLP). Fuzzy TOPSIS approaches for facility location selection problem for dif-
ferent fuzzy environments are developed in [18–23]. Different Problems on fuzzy
facility location selection problem are considered by the authors of this work in
[24–29]. In this work we consider a new model of MAGDM based on the q-rung
orthopair fuzzy TOPSIS approach the TLHs’ Selection Preferences Identification.
This section first introduces the MAGDM problem under q-rung orthopair fuzzy
environment. Then, an effective decision-making approach is proposed to deal with
such MAGDM problems. At length, an algorithm of the proposed method is also
presented

At the first stage, we are focusing on a multi-attribute decision making approach
for the identifying the order of establishment of TLHs under uncertain and extreme
environment.

The formation of expert’s input data for construction of attributes is an impor-
tant task of the centers’ selection problem. To decide on the location of service cen-
ters, it is assumed that a set of candidate TLHs already exists. This set is denoted by
CS = {cs1, cs2, . . . , csm}, where we can locate TLH site and S = {s1, s2, . . . , sn}
is the set of all attributes (transformed in benefit attributes) which define CS’s
selection. For example: “access by public and special transport modes to the can-
didate site”, “security of the candidate site from accidents, theft and vandalism”,
“connectivity of the location with other modes of transport (highways, railways,
seaports, airports, etc.)”, “costs in vehicle resources, required products and etc.
for the location of a candidate site”, “impact of the candidate site location on
the environment, such as important objects of critical infrastructure, air pollution
and others”, “proximity of the candidate site location from the central locations”,
“proximity of the candidate site location from customers”, “availability of raw ma-
terial and labor resources in the candidate site”, “ability to conform to sustainable
freight regulations imposed by managers for e.g. restricted delivery hours, special
delivery zones”, “ability to increase size to accommodate growing customers” and
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others. Let W = {w1, w2, . . . , wn} be the weights of attributes. For each expert ek

from invited group of experts (service dispatchers and so on) E = {e1, e2, . . . , et},
let αk

ij be the fuzzy rating of his/her evaluation in q-ROFNs for each candidate
site csi, (i = 1, . . . ,m), with respect to each attribute sj (j = 1, . . . , n). For the
expert ek we construct binary fuzzy relation Ak = {αk

ij, i = 1, . . . ,m; j = 1, . . . , n}
decision making matrix, elements of which are represented in q-ROFNs. If some
attribute sj is cost type then we transform experts’ evaluations and αk

ij is changed
by (αk

ij)
c. Experts’ data must be aggregated in etalon decision making matrix -

A = {αij, i = 1, . . . ,m; j = 1, . . . , n}. Our task is to build fuzzy TOPSIS ap-
proach, which for each candidate site csi (i = 1, . . . ,m), aggregates presented
objective and subjective data into scalar values – candidate site’s identification
level of the order of establishment (ILOE) during disaster response. This aggrega-
tion can be formally represented as a TOPSIS relative closeness of candidate site
defined on αij, j = 1, . . . , n:

ILOE(csi) = relative closeness of candidate site(csi) (9)

≡ TOPSIS aggregation (αi1, . . . , αin), i = 1, . . . ,m.

The proposed scheme of new fuzzy TOPSIS comprises the following steps:
Step 1 : Selection of location attributes. Involves the selection of location attributes
for evaluating potential locations for candidate TLHs. These attributes are ob-
tained from discussion with experts and members of the city transportation group.
We use five attributes (n = 5) defined above by short names: s1 = “Accessibility”,
s2 = “Security”, s3 = “Connectivity to multimodal transport”, s4 = “Costs”,
s5 = “Proximity to customers”. The fourth attribute is cost type and the others
are benefit types. As mentioned above, cost type evaluation data must be trans-
formed in the benefit forms.
Step 2 : Selection of candidate TLHs locations. Involves selection of potential lo-
cations for implementing TLHs. The decision makers use their knowledge, prior
experience in transportation or other aspects of the geographical area of extreme
events and the presence of sustainable freight regulations to identify candidate
locations for implementing TLHs. For example, if certain areas are restricted for
delivery by municipal administration, then these areas are barred from being con-
sidered as potential locations for implementing urban service centers. Ideally, the
potential locations are those that cater for the interest of all city stakeholders,
which are city residents, logistics operators, municipal administrations, etc.
Step 3: Assignment of ratings to the attributes with respect to the candidate TLHs.
Let Ak = {αk

ij ∈ q − ROFNs, i = 1, . . . ,m; j = 1, . . . , n} be the performance
ratings of each expert ek (k = 1, 2, .., t) for each candidate TLH csi (i = 1, 2, ..,m)
with respect to attributes sj (j = 1, 2, . . . , n).
Step 4: Computation of the q-ROF decision matrix for the attributes and the can-
didate TLHs. Let the ratings of all experts be described by positive numbers ωk,
ωk > 0, k = 1, . . . , t. If ratings of the attributes evaluated by the k-th expert are
αk

ij then the aggregated fuzzy ratings (αij) of candidate TLHs with respect to each
attribute are given by q-ROF weighted sum.

α′
ij =

t∑
k=1

⊕qα
k
ij

(
ωk/

t∑
l=1

ωl

)
. (10)
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The fuzzy decision matrix {α′
ij} for the candidate TLHs CS and the attributes

S is constructed as follows:

s1 s2 . . . sn

cs1

cs2

. . .
csm


a′11 a′12 . . . a′1n

a′21 a′22 . . . a′2n

. . . . . . . . . . . . . . . .
a′m1 a′m2 . . . a′mn

 (11)

Step 5: Computation of the q-ROF weighted decision matrix for the attributes and
the candidate TLHs. Following to the basic idea of classical TOPSIS, q-rung or-
thopair fuzzy decision matrix elements {α′

ij} must be transformed to the weighted
q-rung orthopair fuzzy decision matrix elements {αij} by the formula

αij =

(
wj/

n∑
l=1

wl

)
· α′

ij . (12)

Construct the q-rung fuzzy decision matrix {αij} and calculate Sc and Ac func-
tions values (Definition 2.2) of elements αij . Calculate total q0-rung for the elements
{αij}.
Step 6 : Identification of q-rung orthopair fuzzy PIS and NIS. TOPSIS approach
starts with the definition of the q0-rung orthopair fuzzy PIS and the q0-rung or-
thopair fuzzy NIS. Using formulas (7) of Definition 2.4 the PIS is defined as a
q0-rung orthopair fuzzy set on attributes S: cs+ = {sj , α

+
j ≡ Max

i
[(αij)]|j =

1, 2, . . . , n} and the NIS is defined as a q0-rung orthopair fuzzy set on attributes
S: cs− = {sj , α

−
j ≡ Min

i
[(αij)]|j = 1, 2, . . . , n}. In the real MCDM/MADM models

PIS and NIS are usually not be feasible alternatives (TLHs). They are extreme
hypothetical alternatives.
Step 7. Calculate the distances between the alternative, as candidate TLH and the
q0-rung orthopair fuzzy PIS, as well as q0-rung orthopair fuzzy NIS, respectively.

Then, we proceed to calculate the distances between each alternative and q0-rung
orthopair fuzzy PIS and NIS. Using equation (8), we define distances between the
alternative csi and the q0-rung orthopair fuzzy PIS and NIS, as a weighted sum of
distances between extreme and evaluated q0-ROFNs:

D(csi, sc
+) =

n∑
j=1

wjdq(αij , α
+
j )

= 1/2 ·
n∑

j=1

wj(|(µαij
)q−(µα+

j
)q|+ |(ναij

)q − (να+
j
)q|),

D(csi, sc
−) =

n∑
j=1

wjdq(αij , α
−
j )

= 1/2 ·
n∑

j=1

wj(|(µαij
)q−(µα−j

)q|+ |(ναij
)q − (να+

j
)q|).

(13)
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Step 8. Calculate the relative closeness or TOPSIS aggregation as a site’s iden-
tification level of the order of establishment (ILOE) to identify of the order of
establishing temporary logistics hubs during disaster response, for every alterna-
tive.

In general, the bigger D(csi, sc
−) and the smaller D(csi, sc

+) the better the alter-
native csi to identify of order of its establishment. In the classical TOPSIS method,
authors usually need to calculate the relative closeness (RC) of the alternative csi.
We define candidate TLH’s ILOE as bellow:

ILOE(csi) ≡ RC(csi) =
D(csi, cs

−)
D(csi, cs−) + D(csi, cs+)

, i = 1, . . . ,m. (14)

4. Multi - objective location set covering problem for TLHs’ optimal
selection

At the second stage, we are concentrated on the location set covering problem
(LSCP) which was proposed by C. Toregas and C. Revell in 1972. This approach
seeks a solution for locating the least number of facilities to cover all demand
points within the service distance. In some of our works we are focusing on the
multi-objective fuzzy set covering problems [24, 30] for extreme conditions. In this
section we construct a new fuzzy LSCP model for TLHs’ optimal selection planning.

As we discussed in the previous section, constructed Fuzzy TOPSIS technology
forms TLH’s identification level of the order of establishment (ILOE). The ILOE
index reflects expert evaluations with respect to the candidate TLH, considering all
actual attributes. If u = {u1, u2, . . . , um} is a Boolean decision vector, which defines
some selection from candidate TLH’s CS = {cs1, cs2, . . . , csm} for facility location,
we can build TLH’s total identification level of the order of establishment as linear
sum of ILOE(csj)uj values: As a result, new objective function – total identification
level of the order of establishment -

∑m
j=1 ILOE(csj)uj is constructed. Maximizing

it will select a group of TLHs with the best total identification level of the order
of establishment from admissible covering selections. Classical facility location set
covering problem tries to minimize the number of TLHs, where service facilities
can be located -

∑m
j=1 uj . The problem aims to locate service facilities in minimal

travel time from candidate TLHs. Let us demand points covered by the TLHs
in distribution networks be denoted by A = {a1, . . . , ak}. The problem aims to
locate service facilities in minimal travel time from candidate TLHs. Let experts
evaluate movement fuzzy times (evaluated in triangular fuzzy numbers (TFNs) [17]
between demand points and candidate TLHs - t̃ij , ai ∈ A; csj ∈ CS. In extreme
environment for emergency planning a radius of service center is defined based not
on distance but on maximum allowed time T for movement, since the rapid help
and servicing is crucial for demand points in such situations. Respectively, a set of
candidate TLHs Ni, covering demand point ai ∈ A, is defined as Ni = {csj , csj ∈
CS/E(t̃ij) ≤ T}, i = 1, . . . ,m, where

E(t̃ij) = t̃2ij + (t̃3ij − 2t̃2ij + t̃1ij)/4 (15)

is an expected value [17] of a TFN t̃ij ≡ (t̃1ij , t̃
2
ij , t̃

3
ij). Then we can state bi-objective
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facility location set covering problem:

min z1 =
m∑

j=1

uj , max z2 =
m∑

j=1

ILOE(csj)·uj

∑
sj∈Ni

uj ≥ 1(i = 1, 2, . . . , k); uj ∈ {0, 1}, j = 1, 2, . . . ,m.

(16)

5. Numerical Simulation of Identifying the Order of Establishment and
Optimal Selection of TLHs

To facilitate the establishment of TLHs, this stage aims to determine the order in
which TLHs should be established. To do so, a fuzzy multi-attribute group decision
making approach uses the qualitative attributes selected in this section to evaluate
each TLH location alternative.

We illustrate the effectiveness of the constructed new fuzzy TOPSIS model plus
TLHs optimal selection planning by the numerical simulation example. Let us con-
sider an emergency management administration of a city in Georgia that wishes to
locate some TLHs with respect to timely servicing in simulative disaster. Assume
that there are 6 demand points as customers (critical infrastructure objects) and
5 candidate TLHs in the urban area. Let us have 4 experts from Georgian Emer-
gency Management Agency (GEMA) for the evaluation of the travel times and the
ranking of candidate facility TLHs. The travel times between demand points and
candidate TLHs are evaluated in triangular fuzzy numbers (see Table 1). Let the
GEMA standard of location TLHs be that the TLH can reach the area edge within
5 minutes after receiving the dispatched instruction. Therefore, we set covering
radius T = 5 minutes. Covering sets of candidate sites Ni are defined (omitted
here).

Table 1. Fuzzy Travel times t̃ij from TLHs to demand points (in minutes).

a1 a2 a3 a4 a5 a6

cs1 (3,5,7) (2,4,6) (4,6,7) (4,7,9) (1,3,5) (1,3,4)
cs2 (6,10,14) (4,9,14) (2,4,6) (5,7,10) (1,4,8) (1,4,5)
cs3 (4,8,12) (4,7,11) (4,6,9) (2,4,7) (4,7,10) (4,6,8)
cs4 (4,7,10) (7,11,15) (6,9,13) (4,6,8) (2,4,6) (1,3,5)
cs5 (1,3,5) (2,4,6) (1,3,6) (2,4,7) (4,6,8) (5,9,12)

Let experts generate the attributes weights as values of overall importance based
on the consensus:

w1 = 0.25; w2 = 0.15; w3 = 0.25; w4 = 0.20; w5 = 0.15.

Each expert ek (k = 1, 2, 3) presented the ratings rk
ij for each candidate TLH csi

(i = 1, . . . , 5), with respect to each attribute sj (j = 1, . . . , 5).
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Table 2. Appraisal matrix A1 by expert-1.

s1 s2 s3 s4 s5

cs1 (0.7, 0.5) (0.8, 0.3) (0.7, 0.4) (0.7, 0.4) (0.8, 0.4)
cs2 (0.6, 0.5) (0.7, 0.4) (0.4, 0.6) (0.8, 0.4) (0.7, 0.4)
cs3 (0.7, 0.5) (0.9, 0.5) (0.9, 0.7) (0.7, 0.4) (0.8, 0.5)
cs4 (0.6, 0.5) (0.8, 0.4) (0.8, 0.5) (0.9, 0.5) (0.8, 0.5)
cs5 (0.8, 0.6) (0.7, 0.4) (0.9, 0.5) (0.7, 0.4) (0.8, 0.6)

Table 3. Appraisal matrix A2 by expert-2.

s1 s2 s3 s4 s5

cs1 (0.7, 0.5) (0.8, 0.4) (0.6, 0.3) (0.6, 0.3) (0.7, 0.4)
cs2 (0.6, 0.5) (0.7, 0.3) (0.7, 0.4) (0.9, 0.4) (0.8, 0.4)
cs3 (0.8, 0.5) (0.9, 0.5) (0.6, 0.4) (0.8, 0.4) (0.6, 0.2)
cs4 (0.6, 0.4) (0.8, 0.3) (0.9, 0.6) (0.7, 0.3) (0.6, 0.2)
cs5 (0.9, 0.7) (0.7, 0.4) (0.9, 0.4) (0.7, 0.3) (0.9, 0.6)

Table 4. Appraisal matrix A3 by expert-3.

s1 s2 s3 s4 s5

cs1 (0.7, 0.4) (0.8, 0.3) (0.7, 0.5) (0.7, 0.4) (0.9, 0.5)
cs2 (0.6, 0.5) (0.7, 0.4) (0.5, 0.3) (0.7, 0.2) (0.6, 0.3)
cs3 (0.6, 0.2) (0.9, 0.6) (0.7, 0.5) (0.7, 0.3) (0.6, 0.3)
cs4 (0.8, 0.4) (0.9, 0.4) (0.8, 0.5) (0.8, 0.5) (0.8, 0.3)
cs5 (0.9, 0.7) (0.6, 0.3) (0.9, 0.5) (0.9, 0.6) (0.7, 0.4)

Let experts have equal ratings {ωj = 1/3}. Using formula (10) experts’ evalua-
tions are aggregated in decision making matrix {αij} (Table 5).

Table 5. Accumulated q-rung orthopair fuzzy decision matrix {αij}

s1 s2 s3 s4 s5

cs1 (0.70,0.46) (0.80,0.33) (0.67,0.39) (0.67,0.36) (0.83,0.43)
cs2 (0.60,0.50) (0.70,0.36) (0.58,0.42) (0.83,0.32) (0.72,0.36)
cs3 (0.72,0.37) (0.90,0.53) (0.79,0.52) (0.74,0.36) (0.70,0.31)
cs4 (0.70,0.43) (0.84,0.36) (0.84,0.53) (0.83,0.42) (0.76,0.31)
cs5 (0.88,0.66) (0.67,0.36) (0.90,0.46) (0.80,0.42) (0.83,0.52)

Using the algorithm from Section 3 (steps 1-8) of new fuzzy TOPSIS, we cal-
culated values of candidate sites’ identification levels of the order of establishment
(ILOE):

ILOE(cs1) = 0.472, ILOE(cs2) = 0.803, ILOE(cs3) = 0.441,

ILOE(cs4) = 0.455, ILOE(cs5) = 0.377.

Determine the order of establishment of the TLHs finally, this step is to determine
the order of establishment of TLHs, and rank the location alternatives based on
the crisp values -ILOE. The location alternatives with larger crisp values should
be established first, followed by the location alternatives with lower values. The
higher crisp value indicates the better performance of alternatives over the selected
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attributes. Therefore, we obtain a total ordering of THLs:

cs2 � cs1 � cs4 � cs3 � cs5.

After these calculations a multi-objective location set covering programming
Problem (16) has been constructed:

z1 = u1 + u2 + u3 + u4 + u5 ⇒ min,

z2 = 0.472u1 + 0.803u2 + 0.441u3 + 0.455u4 + 0.377u5 ⇒ max,

u1 + u5 ≥ 1,

u2 + u5 ≥ 1,

u3 + u5 ≥ 1,

u1 + u2 + u4 ≥ 1,

ui ∈ {0, 1}, i = 1, 2, 3, 4, 5.

(17)

Based on the developed software for the problem (17) Pareto solutions [31] are
founded. There are:

a) {cs1, cs2}, z1 = 2; z2 = 1, 18, cs1 � cs5;
b) {cs1, cs2, cs3}, z1 = 3; z2 = 1, 716, cs2 � cs1 � cs3;
c) {cs1, cs2, cs3, cs4}, z1 = 4; z2 = 2, 171, cs2 � cs1 � cs4 � cs3;
d) {cs1, cs2, cs3, cs4, cs5}, z1 = 5; z2 = 2, 548, cs2 � cs1 � cs4 � cs3 � cs5.

(18)
It is clear that, increasing of THLs numbers in Pareto solutions gives us better

level of the second objective function - total identification level of the order of
establishment. Also, the orderings of opening THLs in Pareto optimal are given. But
the decision on the choice of the THLs as service centers depends on the decision-
making person’s preferences with respect to risks of administrative or other actions
in disaster-stricken zone.

6. Conclusion

Recently, temporary facilities for disaster response have received growing attention
from scholars and practitioners alike. However, optimal location selection and or-
dering are immensely complex due to the lack of information, growing number of
humanitarian responders and the need to evaluate subjective attributes during the
chaotic disaster response period. This study has presented with two stage method-
ology. On the first stage, fuzzy multi-attribute group decision making model –
new fuzzy TOPSIS model for determining the order of establishment of TLHs is
constructed. On the second stage, bi-objective set covering programming problem
is created for the optimal selection of TLHs form the ordering TLHs. Interviews
with decision makers (general, experts) revealed the differences in their opinion re-
garding the prominence of different attributes. This difference in decision opinion
was also observed when evaluating the performance of selected locations vs, the
attributes. Further analysis showed that the order of establishment varies signifi-
cantly when the locations are evaluated under different scenarios. To illustrate the
effectiveness of the constructed new fuzzy two stage methodology, a numerical sim-
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ulation example is constructed. An emergency management administration of a city
in Georgia wishes to locate some TLHs for the timely servicing to demand points
in simulation disaster. Four experts from Emergency Management Agency (EMA)
of Georgia for the evaluation of the ranking of candidate TLHs were including in
the evaluation procedure. This study introduces the concept to the order of estab-
lishment of TLHs and demonstrates its importance when resources are limited. It
develops and implements a methodology determining the order of establishment
of TLHs to support post-disaster decision making. In our future researches dif-
ferent fuzzy FLP mathematical models oriented on real disaster-striking regions’
evaluations will be studied.
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