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In this work we give the polynomial algorithm for finding the near-optimal rearrangement
in the Steinitz functional for the vectors in the finite dimensional normed space. Maximum
inequality and a Transference theorem, obtained by the authors, as well as a Monte-Carlo
method are applied.
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1. Introduction

The main aim of this paper is to apply our maximum inequality and transference
theorem [1, 2], presented in the next section, to the following problem which is an
important subtask of many problems of machine learning, scheduling theory and
discrepancy theory ([3] - [8]). The main problem is to find or estimate the minimum
in π of the Steinitz functional

Φx (π) = max
1≤k≤n

∥∥∥∥∥
k∑

i=1

xπ(i)

∥∥∥∥∥ , (1)

where x = (x1, . . . , xn) is a fixed collection of elements of a finite dimensional
normed space X and π : {1, . . . , n} → {1, . . . , n} is a permutation. The problem
was posed by E. Steinitz [9] who was solving the question on sum range of a
conditionally convergent series in a finite dimensional space (the generalization of
the famous Riemann problem).

The peculiarity of the related applied problems is that d, the dimension of X,
can be very large, so that the brute force idea as a rule does not work. Though,
based on the maximal inequalities for the rearrangements of vector summands, we
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construct a polynomial-time algorithm for finding a near-optimal permutation in
(1).

2. The main maximal inequalities

In this section we give two maximal inequalities related to the problems of calcu-
lation or estimation of the Steinitz functional:

Theorem 2.1 : ([1, 2]) Let x1, . . . , xn ∈ X be a collection of elements of a normed
space X with

∑n
i=1 xi = 0.Then

a) For any collection of signs ϑ = (ϑ1, . . . , ϑn) , ϑi = ±1, there is a permutation
π : {1, . . . , n} → {1, . . . , n} such that

max
1≤k≤n

∥∥∥∥∥
k∑

i=1

xi

∥∥∥∥∥ + max
1≤k≤n

∥∥∥∥∥
k∑

i=1

ϑixi

∥∥∥∥∥ ≥ 2 max
1≤k≤n

∥∥∥∥∥
k∑

i=1

xπ(i)

∥∥∥∥∥ . (2)

There is an explicit one-to-one correspondence between ϑ and π = π(ϑ).
b) (Transference Theorem). There is a permutation σ : {1, . . . , n} → {1, . . . , n}
such that

max
1≤k≤n

∥∥∥∥∥
k∑

i=1

xσ(i)

∥∥∥∥∥ ≤ max
1≤k≤n

∥∥∥∥∥
k∑

i=1

ϑixσ(i)

∥∥∥∥∥
for any collection of signs ϑ = (ϑ1, . . . , ϑn) , ϑi = ±1.

Remark 1 : The correspondence between ϑ and π = π(ϑ) in part a) is given
as follows: if ϑki

= +1, i = 1 . . . , p, and ϑmj
= −1, j = 1 . . . , q, p + q = n, then

π = (k1, . . . , kp,mq, . . . ,m1).

2.1. The greedy algorithm is not in general the best

Given vectors x1, . . . , xn ∈ X, a greedy algorithm chooses at each step a vector
that minimizes the norm of the next partial sum. In other words, on step 1 it
chooses an element xn1 that has a minimum norm. On step 2 it selects an element
xn2 , xn2 6= xn1 such that

‖xn1 + xn2‖ ≤ ‖xn1 + xnk
‖

for any nk 6= n1, etc.
The following example constructed by Jakub Wojtaszchik (oral communication)
shows that a greedy algorithm is not in general the best one even in a two-
dimensional space.

Example 2.2 Consider n groups of vectors of l2∞, each consisting of the three fol-
lowing vectors: (1, 1) , (2,−3) and (−3, 2). Obviously, the greedy algorithm chooses
at the first n steps the vectors (1, 1) , . . . , (1, 1). Therefore, for the optimal per-
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mutation πo and greedy permutation πg we have respectively

max
1≤k≤n

∥∥xπo(1) + · · ·+ xπo(k)

∥∥ = 3;

and

max
1≤k≤n

∥∥xπg(1) + · · ·+ xπg(k)

∥∥ = n + 2.

In [10] we show that such sort of an example can be constructed in any 2-
dimensional normed space.

2.2. Corollaries to the Transference theorem (Theorem 2.1b)

The Transference theorem allows us to get a permutation theorem given a sign
theorem. Moreover, as we’ll see in Section 3, if the sign algorithm is constructive,
then a desired permutation can also be found constructively. As a first example we
consider the classical Steinitz permutation theorem that we get from the following
Barany-Grinberg-Sevostyanov sign theorem.

Theorem 2.3 : ([11, 12]) Let X be a normed space of dimension d, x1, . . . , xn ∈
X, ‖xi‖ ≤ 1, i = 1, . . . , n. Then there exists a collection of signs ϑ = (ϑ1, . . . , ϑn)
such that

max
1≤k≤n

‖ϑ1x1 + · · ·+ ϑkxk‖ ≤ 2d.

The permutation version of Theorem 2.3 found by the Transference theorem can
be stated as follows.

Corollary 2.4: (The Steinitz inequality). Let X be a normed space of dimension
d, x1, . . . , xn ∈ X, ‖xi‖ ≤ 1, i = 1, . . . , n, and x1 + · · · + xn = 0. Then there
exists a permutation σ : {1, . . . , n} → {1, . . . , n} such that

max
1≤k≤n

∥∥xσ(1) + · · ·+ xσ(k)

∥∥ ≤ 2d.

Remark 2 : Steinitz [9] proved his inequality straightforwardly, however a proof
through the sign version additionally allows to find the desired permutation con-
structively provided that the collection of signs in the sign version can be obtained
constructively, by use of the Transference theorem (see Section 3)

Another sign-permutation duality example is provided by the case of the space
ld∞.

Theorem 2.5 : (Spencer [13]). Let X = ld∞, x1, . . . , xn ∈ X, ‖xi‖ ≤ 1, i =
1, . . . , n. Then there exists a collection of signs ϑ = (ϑ1, . . . , ϑn) such that

max
1≤k≤n

‖ϑ1x1 + · · ·+ ϑkxk‖ ≤
√

2n ln2d.

Note that in the above theorem, Spencer also gives an effective way of finding
thetas.
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Due to the Transference theorem, the following dual permutational counterpart
is also valid.

Corollary 2.6: Let X = ld∞, x1, . . . , xn ∈ X, ‖xi‖ ≤ 1, i = 1, . . . , n and
x1 + · · · + xn = 0. Then there exists a permutation σ : {1, . . . , n} → {1, . . . , n}

such that

max
1≤k≤n

∥∥xσ(1) + · · ·+ xσ(k)

∥∥ ≤ √
2n ln2d.

3. An algorithm for near-optimal permutation

In this section we show that the algorithm for near-optimal permutation for the
Steinitz functional

Φx (π) = max
1≤k≤n

∥∥∥∥∥
k∑

i=1

xπ(i)

∥∥∥∥∥
can be reduced to the algorithm for the near-optimal sign algorithm. The reduction
is based on the Transference theorem (Theorem 2.1b).

Let us first introduce the notations:

|xπ| ≡ max
1≤k≤n

∥∥∥∥∥
k∑

i=1

xπ(i)

∥∥∥∥∥ , |xπϑ| ≡ max
1≤k≤n

∥∥∥∥∥
k∑

i=1

ϑixπ(i)

∥∥∥∥∥ .

Theorem 3.1 : Let X be a normed space, x1, . . . , xn ∈ X, ‖xi‖ ≤ 1, i =
1, . . . , n, and x1 + · · · + xn = 0. Assume that for any permutation π :
{1, . . . , n} → {1, . . . , n}, there is an algorithm with a polynomial complexity to
define ϑ = (ϑ1, . . . , ϑn) such that

|xπϑ| ≤ D, (3)

where D does not depend on π. Then for any ε > 0, there is an algorithm with a
polynomial complexity to define π : {1, . . . , n} → {1, . . . , n} such that

|xπ| ≤ D + ε.

The complexity of the algorithm is ω · log(n
ε ), where ω is the complexity of the sign

algorithm (for finding ϑ).

Proof : According to (2), for any permutation π and any collection of signs ϑ,
there is a permutation π∗ = π∗(π, ϑ) such that

|xπ|+ |xπϑ| ≥ 2 |xπ∗ | , (4)

On the first step we take an arbitrary π0 and due to Theorem 2.3, find ϑ0 such
that

|xπ0ϑ0| ≤ D.
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By (4), there is a permutation π1 = π∗(π0, ϑ0) such that

|xπ1 | ≤
1
2
(|xπ0 |+ D).

Choosing ϑ1 so that

|xπ1ϑ1| ≤ D

and using again (4) for π1, we find a permutation π2 = π∗(π1, ϑ1) such that

|xπ2 | ≤
1
4
|xπ0 |+ (1− 1

4
)D.

After the N -th iteration we get

|xπN
| ≤ 1

2N
|xπ0 |+ (1− 1

2N
)D.

Therefore, taking N > log2

( |xπ0 |
ε

)
, we get the proof. �

3.1. Applying the Monte-Carlo

Let X = ld2, x1, . . . , xn ∈ X, ‖xi‖ ≤ 1, i = 1, . . . , n, and x1 + · · ·+ xn = 0.
We choose at random k collections ϑ

(1)
1 , . . . , ϑ

(1)
k , each of them being a collection

of n signs and choose among them ϑ1, that one for which
∣∣∣ϑ(1)

1 x
∣∣∣ attains its min-

imum. Then we create the permutation π2 = π2(π1, ϑ1), generated by the initial
permutation (denote it by π1) and ϑ1 according to Theorem 2.1 (a). Therefore,
we’ll have

|xπ2 | ≤
1
2
|xπ1 |+

1
2
|ϑ1xπ1

| .

Then we choose at random (independently) ϑ
(2)
1 , . . . , ϑ

(2)
k and among them choose

ϑ2 minimizing
∣∣∣ϑ(2)

i xπ2

∣∣∣. Carrying out these iterations l − 1, 1 < l < ∞, times, we
find a sequence of permutations π1, . . . , πl such that for the last permutation we
get the following inequality

|xπl
| ≤ 1

2l
|xπ1 |+ (1− 1

2l
)max

i≤l
|ϑixπi

| . (5)

We now show that πl for sufficiently large l is a near-optimal permutation. For
these purposes let us make sure that the following probability is small enough after
an appropriate choice of C, k and l:

P

(
max
i≤l

∣∣ϑixπ(i)

∣∣ > C
√

n

)
≤

l∑
i=1

P
(∣∣ϑixπ(i)

∣∣ > C
√

n
)
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≤
l∑

i=1

P
{(∣∣∣ϑ(i)

1 xπ(i)

∣∣∣ > C
√

n
)
∩ · · · ∩

(∣∣∣ϑ(i)
k x

π(i)

∣∣∣ > C
√

n
)}

=
l∑

i=1

{
P

(∣∣∣ϑ(i)
1 xπ(i)

∣∣∣ > C
√

n
)}k

.

The next step is to use the estimation of the tail probability for the Rademacher
random variables with values in a normed space (in our case it is the space ld2) (see
the monograph by M. Ledoux and M.Talagrand [14], p.101). Then we get

P

(
max
i≤l

∣∣ϑixπ(i)

∣∣ > C
√

n

)
≤ l · 2k+1exp

{
− Cn

32n

}
.

Up to now l and k were arbitrary. Letting l = k, as well as C = 32 · ln4, we get

P

(
max
i≤l

∣∣ϑixπ(i)

∣∣ > C
√

n

)
≤ k

2k−1
.

These computations along with (5) imply that with a large probability (which can
be made arbitrarily close to one) the following inequality holds

|xπl
| ≤ 1

2l
|xπ1 |+ C

√
n.

According to Theorem 2.1b, the order of
√

n is correct, and it is also known that
it can not be improved.

Therefore, we proved the following

Theorem 3.2 : The random algorithm described in this section leads to the nearly
optimal permutation. The algorithm runs in a polynomial time.
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