Canonical Commutation Relation for Orbital Operators Corresponding to Creation and Annihilation Operators

Duglas Ugulava ${ }^{\text {a* }}$, David Zarnadze ${ }^{\text {a }}$
${ }^{a}$ Muskhelishvili Institute of Computational Mathematics of the Georgian Technical University, Gr. Peradze str., 4, Tbilisi 0159, Georgia
(Received November 10, 2022; Revised April 14, 2023; Accepted April 28, 2023)

Abstract

In this article the orbits of creation, annihilation and numerical operators at the states of quantum Hilbert spaces are created. The Hilbert space of finite orbits and the Frechet-Hilbert space of all orbits for these operators are created. The orbital operators corresponding to these operators in the spaces of orbits are defined and studied. Generalization of well-known canonical commutation relations for orbital operators corresponding to creation and annihilation operators are established.

Keywords: Creation operator, annihilation operator, numerical operator, orbits of operator, canonical commutation relation.
AMS Subject Classification: 81S05, 46N50, 47B47,47B93.

1. Introduction

Introduced by Paul Dirac creation and annihilation operators have widespread applications in quantum mechanics, notably in the study of quantum harmonic oscillators and many-particle systems. Modern quantum physics almost unthinkable without them. We create finite orbits and orbits of creation, annihilation and numerical operators at the states of quantum Hilbert space $L^{2}(\mathbb{R})$ ("quantum Hilbert space" means simply the Hilbert space associated with a given quantum system ([1], Sect.13.1, p.255)). The Hilbert space of finite orbits and the Frechet-H ilbert space (note that,initially, Frechet-Hilbert spaces were always supposed to be the strict projective limits of a sequence of Hilbert spaces; in modern literature, however, the requirement that the projective limit is strict, is omitted) of all orbits which elements are the orbits of these operators at some elements of the space $L^{2}(\mathbb{R})$ are definite and studied. Moreover, the notion of orbital operators corresponding to these operators in the spaces of orbits is introduced and studied. We establish well-known canonical commutation relations for orbital operators corresponding to the creation and annihilation operators in the Hilbert space of finite orbits and in the Frechet-Hilbert space of all orbits. The orbital spaces and orbital operators for Hamiltonian of quantum harmonic oscillator are constructed in [2].

The definitions of finite orbits and of the operator at the states was introduced, respectivelly, in [3] and [4]. We present the following reasoning from [4]: let H be a Hilbert space and $F: D(F) \subset H \rightarrow H$ be a linear operator with the domain of

[^0]definition $D(F)$. We shall call the sequence $\operatorname{orb}(F, x)=\left(x, F x, F^{2} x, \cdots\right)$ the orbit of the operator F at the point x, i.e. $\operatorname{orb}(F, x)$ is an element of the Frechet-Hilbert space H^{N}. If $F^{j} x \in H$ for $j=0,1, \cdots, n$, then we denote the finite sequence $\left(x, F x, \cdots, F^{n} x\right)$ by $\operatorname{orb}_{n}(F, x)$ and call n-orbit of the operator F at the point $x \in H$, i.e. $\operatorname{orb}_{\mathrm{n}}(F, x)$ is an element of the space H^{n+1}. The space of such elements we denote by $D\left(F^{n}\right), n \in N_{0}=\{0,1,2, \cdots\}$, besides F^{0} is the identical operator. Algebraically $D\left(F^{n}\right)$ is a subset of H. In what follows we consider the space $D\left(F^{n}\right)$ with the inner product
\[

$$
\begin{gathered}
\left\langle\operatorname{orb}_{n}(F, \varphi), \operatorname{orb}_{n}(F, \chi)\right\rangle_{n} \\
=<\varphi, \chi>+<F \varphi, F \chi>+\cdots+<F^{n} \varphi, F^{n} \chi>, n \in N_{0},
\end{gathered}
$$
\]

and with the corresponding norm

$$
\left\|\operatorname{orb}_{n}(F, x)\right\|_{n}=\left(\|x\|^{2}+\|F x\|^{2}+\cdots+\left\|F^{n} x\right\|^{2}\right)^{1 / 2}
$$

where $<\cdot, \cdot>$ and norm $\|\cdot\|$ are inner product and norm in the space of H, i.e. the space $\left(D\left(F^{n}\right),\|\cdot\|_{n}\right)$ is isometrically embedded in the space H^{n+1}.

In [5] the following concept was introduced: "Let X be a linear metric space. Let F be a linear continuous operator mapping X into itself. Let $x \in X$ and consider the set $\vartheta(F, x)=\left\{F^{n} x ; n \in \mathbb{N}_{0}\right\}$. We shall call $\vartheta(F, x)$ an orbit of x with respect to the operator F." Note that, in this case the set $\vartheta(F, x)$ is a subset of a linear metric space X. Thus, in [4] the notion of an orbit of the operator F at a point and in [5] the notion of orbit of x with respect to the operator are introduced, i.e. these notions are different as subsets, are different as terms and with notations. In [4] the continuity of the operator F is not assumed. We also consider the concepts of an orbital operator $F_{n}[3]$ that acts in the Hilbert spaces of finite orbits and orbital operator F^{∞} that acts in the Frechet-Hilbert spaces of all orbits [4] (see also [6]).

In this article the study of the corresponding to a creation operator C and a annihilation operator A is carried out within the framework of the orbital quantum mechanics, the concept of which was formulated in [7].

In the second section finite orbits of the creation operator C and of the annihilation operator A at the states, as well n-orbital operators C_{n} and A_{n} corresponding to creation and annihilation operators in the Hilbert space of finite orbits are defined. According to the definition of orbital operators C_{n} and A_{n} it is naturally to determinate its value on the element $\left(\varphi_{0}, \varphi_{1} \cdots, \varphi_{n}\right) \in(D(C))^{n+1} \cap(D(A))^{n+1}$. We need this while proving of canonical commmutation relations between C_{n} and A_{n} because we must also consider the value C_{n} on the orbits of the operator A and the value A_{n} on the orbits of the operator C at some states. When proving the canonical commutative relation, one has to consider the value of the operato C_{n} on the orbits of the operator A and the value of the operato A_{n} on the orbits of the operator C. Some relations between orbital operators N_{n} corresponding to numerical operator N and with the operators C_{n} and A_{n} are also established. The generalized canonical commutation relations between C_{n} and A_{n} are proved that in the case $n=0$ coincides with the classical one.

In the third section orbits of creation and annihilation operators at states, the Frechet-Hilbert spaces of all orbits $D\left(C^{\infty}\right)$ and $D\left(A^{\infty}\right)$, the orbital operators C^{∞}
and A^{∞} in these spaces are studied and generalized canonical commutation relation is proved. The analogous relationship between orbital operator N^{∞}, C^{∞} and A^{∞} is established.
2. Orbital operators corresponding to the creation and annihilation operators in the Hilbert space of finite orbits

A creation operator is a differential operator that has the following form ([8], p.541)

$$
\begin{equation*}
C=-d / d x+x / 2 \tag{1}
\end{equation*}
$$

An annihilation operator is usually denoted by ([8], p.541)

$$
\begin{equation*}
A=d / d x+x / 2 \tag{2}
\end{equation*}
$$

Note that under the names of creation and annihilation operators, the lightly modified operators $\frac{1}{\sqrt{2}}(d / d x+x)$ and $\frac{1}{\sqrt{2}}(-d / d x+x)$ are often considered and denoted, respectively, by a^{*} and a ([1], ch., 11.4). As well, they are denoted by A^{\dagger} and A ([10], ch. V). They are often also denoted by \hat{a}^{\dagger} and \hat{a}, or by a^{+}and a. The annihilation operator thus defined reduces the number of particles in a given state by one, and the creation operator increases this number by one. Neither the creation nor the annihilation operator are defined as mappings on the entire Hilbert space $L^{2}(\mathbb{R})$ into itself. After all, for $\varphi \in L^{2}(\mathbb{R})$ the functions $C \varphi$ and $A \varphi$ may fail to be in $L^{2}(\mathbb{R})$. By definition, the domain of definition $D(C)$ of the operator C consists of all $\psi \in L^{2}(\mathbb{R})$ such that $C \psi \in L^{2}(\mathbb{R})$. The operators C and A are unbounded operators in $L^{2}(\mathbb{R})$.

It is well-known that the creation and the annihilation operators do not commute, but satisfy the relation

$$
\begin{equation*}
[A, C]=A C-C A=I \tag{3}
\end{equation*}
$$

on $D([A, C])=D(A C) \cap D(C A), D(C A)=\{u \in D(A), A(u) \in D(C)\}$ and likewise for $D(A C)$. In (3) $[A, C]$ is the commutator and I is identity operator on the space $L^{2}(\mathbb{R})$. Really

$$
A C=x^{2} / 4-d^{2} / d x^{2}+1 / 2 I, C A=x^{2} / 4-d^{2} / d x^{2}-1 / 2 I, \quad A C-C A=I
$$

The relation (3) is known as the canonical commutation relation.
n-orbits of the annihilation and creation operators (1) and (2) in the state φ are defined as

$$
\operatorname{orb}_{n}(A, \varphi)=\left(\varphi, A \varphi, A^{2} \varphi, \cdots, A^{n} \varphi\right)=\left(\varphi,(d / d x+x / 2) \varphi, \cdots,(d / d x+x / 2)^{n} \varphi\right)
$$

and

$$
\begin{gather*}
\operatorname{orb}_{n}(C, \varphi)=\left(\varphi, C \varphi, C^{2} \varphi, \cdots, C^{n} \varphi\right) \\
=\left(\varphi,(-d / d x+x / 2) \varphi, \cdots,(-d / d x+x / 2)^{n} \varphi\right) \tag{4}
\end{gather*}
$$

It is well known ([8], formula (56)) that

$$
\begin{equation*}
C \psi_{j}=\sqrt{j+1} \psi_{j+1} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{j}(x)=(-1)^{j}(2 \pi)^{-1 / 4}(j!)^{-1 / 2} \exp \left(x^{2} / 4\right) d^{j} \exp \left(-x^{2} / 2\right) / d x^{j}, j \in N_{0} \tag{6}
\end{equation*}
$$

are wave functions of harmonic oscillator.
For an acting in a Hilbert space H operator F we introduce the acting in H^{n+1} operator F_{n}, which is defined as

$$
\begin{gathered}
F_{n}\left(\varphi_{0}, \varphi_{1}, \cdots, \varphi_{n}\right):=\left(F \varphi_{0}, F \varphi_{1}, \cdots, F \varphi_{n}\right) \\
\left(\varphi_{0}, \varphi_{1}, \cdots, \varphi_{n}\right) \in D\left(F_{n}\right)=(D(F))^{n+1}
\end{gathered}
$$

For the orbit of creation operator (1) in the state ψ_{j} we have

$$
\begin{gathered}
\operatorname{orb}_{n}\left(C, \psi_{j}\right)=\left\{\psi_{j}, C \psi_{j}, \cdots, C^{n} \psi_{j}\right\} \\
=\left(\psi_{j}, \sqrt{j+1} \psi_{j+1}, \sqrt{j+1} \sqrt{j+2} \psi_{j+2}, \cdots, \sqrt{j+1} \cdots \sqrt{j+n} \psi_{j+n}\right)
\end{gathered}
$$

and

$$
\begin{gathered}
C_{n} \operatorname{orb}_{n}\left(C, \psi_{j}\right)=\left(C \psi_{j}, C^{2} \psi_{j}, \cdots, C^{n+1} \psi_{j}\right) \\
=\left(\sqrt{j+1} \psi_{j+1}, \sqrt{j+1} \sqrt{j+2} \psi_{j+2}, \cdots, \sqrt{j+1} \cdots \sqrt{j+n+1} \psi_{j+n+1}\right)
\end{gathered}
$$

It is well-known([8], formula (53)), that

$$
\begin{equation*}
A \psi_{j}=\sqrt{j} \psi_{j-1} \tag{7}
\end{equation*}
$$

Therefore

$$
\begin{gathered}
\operatorname{orb}_{n}\left(A, \psi_{j}\right)=\left(\psi_{j}, A \psi_{j}, A^{2} \psi_{j}, \cdots, A^{n} \psi_{j}\right) \\
=\left(\psi_{j}, \sqrt{j} \psi_{j-1}, \sqrt{j} \sqrt{j-1} \psi_{j-2}, \cdots, \sqrt{j} \sqrt{j-1} \cdots \sqrt{j-n+1} \psi_{j-n}\right)
\end{gathered}
$$

and

$$
\begin{gathered}
A_{n} \operatorname{orb}_{n}\left(A, \psi_{j}\right)=\left(A \psi_{j}, A^{2} \psi_{j}, \cdots, A^{n+1} \psi_{j}\right) \\
=\left(\sqrt{j} \psi_{j-1}, \sqrt{j} \sqrt{j-1} \psi_{j-2}, \cdots, \sqrt{j} \sqrt{j-1} \cdots \sqrt{j+n} \psi_{j-n-1}\right)
\end{gathered}
$$

We have

$$
A C \psi_{j}=A\left(\sqrt{j+1} \psi_{j+1}\right)=\sqrt{j+1} A \psi_{j+1}=(j+1) \psi_{j}
$$

The operator

$$
N=C A=x^{2} / 4-d^{2} / d x^{2}-1 / 2
$$

is called the number operator. We have

$$
N \psi_{j}=C A \psi_{j}=C\left(\sqrt{j} \psi_{j-1}\right)=\sqrt{j} C \psi_{j-1}=j \psi_{j}
$$

and

$$
N_{n}\left(\varphi_{0}, \cdots, \varphi_{n}\right)=\left(N \varphi_{0}, \cdots, N \varphi_{n}\right) \text { for }\left(\varphi_{0}, \cdots, \varphi_{n}\right) \in D\left(N_{n}\right)=(D(N))^{n+1}
$$

Theorem 2.1: The following representations are valid:
a. If $\left(\varphi_{0}, \varphi_{1}, \cdots, \varphi_{n}\right) \in D\left(N_{n}\right)$, then

$$
N_{n}\left(\varphi_{0}, \varphi_{1}, \cdots, \varphi_{n}\right)=C_{n} A_{n}\left(\varphi_{0}, \varphi_{1}, \cdots, \varphi_{n}\right)
$$

b. For the functions ψ_{j}, defined by formula (6), we have

$$
N_{n} \operatorname{orb}_{n}\left(A, \psi_{j}\right)=\left(j \psi_{j},(j-1) \sqrt{j} \psi_{j-1}\right.
$$

$$
\left.(j-2) \sqrt{j} \sqrt{j-1} \psi_{j-2}, \cdots,(j-n) \sqrt{j} \sqrt{j-1} \cdots \sqrt{j-n+1} \psi_{j-n}\right), j \in \mathbb{N}_{0}
$$

$$
\psi_{j-n}=0, \text { if } j<n
$$

c. For the functions ψ_{j}, defined by formula (6), we have

$$
N_{n} \operatorname{orb}_{n}\left(C, \psi_{j}\right)=\left(j \psi_{j}, \sqrt{j+1}(j+1) \psi_{j+1}\right.
$$

$$
\left.\sqrt{j+1} \sqrt{j+2}(j+2) \psi_{j+2}, \cdots, \sqrt{j+1} \sqrt{j+2} \cdots \sqrt{j+n}(j+n) \psi_{j+n}\right)
$$

d. $\operatorname{orb}_{n}(C+A, \psi) \neq \operatorname{orb}_{n}\left(C, \psi_{j}\right)+\operatorname{orb}_{n}\left(A, \psi_{j}\right)$, if $n \geq 2$.

Proof: a. Let $\left(\varphi_{0}, \varphi_{1}, \cdots, \varphi_{n}\right) \in D\left(N_{n}\right)$, then

$$
\begin{aligned}
N_{n}\left(\varphi_{0}, \varphi_{1}, \cdots, \varphi_{n}\right) & =\left(N \varphi_{0}, N \varphi_{1}, \cdots, N \varphi_{n}\right)=\left(C A \varphi_{0}, C A \varphi_{1}, \cdots, C A \varphi_{n}\right) \\
& =C_{n}\left(A \varphi_{0}, A \varphi_{1}, \cdots, A \varphi_{n}\right)=C_{n} A_{n}\left(\varphi_{0}, \varphi_{1}, \cdots, \varphi_{n}\right)
\end{aligned}
$$

b. Taking into account that $N \psi_{j}=C A \psi_{j}=C\left(\sqrt{j} \psi_{j-1}\right)=j \psi_{j}, \quad j \in \mathbb{N}_{0}$, we have

$$
\begin{aligned}
& N_{n} \text { or } b_{n}\left(A, \psi_{j}\right) \\
& =C_{n} A_{n}\left(\psi_{j}, \sqrt{j} \psi_{j-1}, \sqrt{j} \sqrt{j-1} \psi_{j-2}, \cdots, \sqrt{j} \sqrt{j-1} \cdots\right. \\
& \left.\quad \sqrt{j-n+1} \psi_{j-n}\right) \\
& =\left(N \psi_{j}, N \sqrt{j} \psi_{j-1}, N \sqrt{j} \sqrt{j-1} \psi_{j-2}, \cdots, N \sqrt{j} \sqrt{j-1} \cdots\right. \\
& \left.\quad \sqrt{j-n+1} \psi_{j-n}\right) \\
& =\left(j \psi_{j},(j-1) \sqrt{j} \psi_{j-1},(j-2) \sqrt{j} \sqrt{j-1} \psi_{j-2}, \cdots,\right. \\
& \left.\quad(j-n) \sqrt{j} \sqrt{j-1} \cdots \sqrt{j-n+1} \psi_{j-n}\right), \quad \psi_{j-n}(x)=0, \text { if } j<n ;
\end{aligned}
$$

c.

$$
\begin{aligned}
& N_{n} \text { or } b_{n}\left(C, \psi_{j}\right) \\
& =C_{n} A_{n}\left(\psi_{j}, \sqrt{j+1} \psi_{j+1}, \sqrt{j+1} \sqrt{j+2} \psi_{j+2}, \cdots, \sqrt{j+1} \sqrt{j+2} \cdots\right. \\
& \left.\quad \sqrt{j+n} \psi_{j+n}\right) \\
& =\left(N \psi_{j}, N \sqrt{j+1} \psi_{j+1}, N \sqrt{j+1} \sqrt{j+2} \psi_{j+2}, \cdots, N \sqrt{j+1} \sqrt{j+2} \cdots\right. \\
& \left.\quad \sqrt{j+n} \psi_{j+n}\right) \\
& =\left(j \psi_{j}, \sqrt{j+1}(j+1) \psi_{j+1}, \sqrt{j+1} \sqrt{j+2}(j+2) \psi_{j+2}, \cdots\right. \\
& \left.\quad \sqrt{j+1} \sqrt{j+2} \cdots \sqrt{j+n}(j+n) \psi_{j+n}\right)
\end{aligned}
$$

d. The proof is clear.

We prove now the generalized canonical commutation relations between operators C_{n} and A_{n}. These relations, in the case $n=0$ coincide with the classical one.

Theorem 2.2: For the commutator $\left[A_{n}, C_{n}\right]=A_{n} C_{n}-C_{n} A_{n}$ the following relations are hold:
a. If $\left(\varphi_{0}, \varphi_{1}, \cdots, \varphi_{n}\right) \in D\left(\left[A_{n}, C_{n}\right]\right)=D\left(A_{n} C_{n}\right) \cap D\left(C_{n} A_{n}\right)$, then

$$
A_{n} C_{n}\left(\varphi_{0}, \varphi_{1}, \cdots, \varphi_{n}\right)-C_{n} A_{n}\left(\varphi_{0}, \varphi_{1}, \cdots, \varphi_{n}\right)=\left(\varphi_{0}, \varphi_{1}, \cdots, \varphi_{n}\right)
$$

b. If $\operatorname{orb}_{n}(A, \varphi) \in D\left(C_{n} A_{n}\right)$ and $\operatorname{orb}_{n}(C, \varphi) \in D\left(A_{n} C_{n}\right)$, then
$A_{n} C_{n} \operatorname{orb}_{n}(C, \varphi)-C_{n} A_{n} \operatorname{orb}_{n}(A, \varphi)=\left(I \psi, A C^{2} \varphi-C A^{2} \varphi, \cdots, A C^{n+1} \varphi-C A^{n+1} \varphi\right)$.
c. If $\operatorname{orb}_{n}(A, \varphi) \in D\left(A_{n} C_{n}\right)$ and $\operatorname{orb}_{n}(C, \varphi) \in D\left(C_{n} A_{n}\right)$, then

$$
A_{n} C_{n} \operatorname{orb}_{n}(C, \varphi)-C_{n} A_{n} \operatorname{orb}_{n}(A, \varphi)=\left(I \psi, A C A \varphi-C A C \varphi, \cdots, A C A^{n} \varphi-C A C^{n} \varphi\right)
$$

Proof: a. $A_{n} C_{n}\left(\varphi_{0}, \varphi_{1}, \cdots, \varphi_{n}\right)-C_{n} A_{n}\left(\varphi_{0}, \varphi_{1}, \cdots, \varphi_{n}\right)$

$$
\begin{aligned}
& =A_{n}\left(C \varphi_{0}, C \varphi_{1}, \cdots, C \varphi_{n}\right)-C_{n}\left(A \varphi_{0}, A \varphi_{1}, \cdots, A \varphi_{n}\right) \\
& =\left(A C \varphi_{0}, A C \varphi_{1}, \cdots, A C \varphi_{n}\right)-\left(C A \varphi_{0}, C A \varphi_{1}, \cdots, C A \varphi_{n}\right) \\
& =\left((A C-C A) \varphi_{0},(A C-C A) \varphi_{1}, \cdots,(A C-C A) \varphi_{n}\right)=\left(\varphi_{0}, \varphi_{1}, \cdots, \varphi_{n}\right)
\end{aligned}
$$

b. $A_{n} C_{n} \operatorname{orb}_{n}(C, \varphi)-C_{n} A \operatorname{orb}_{n}(A, \varphi)$

$$
\begin{aligned}
& =A_{n} C_{n}\left(\varphi, C \varphi, C^{2} \varphi, \cdots, C^{n} \varphi\right)-C_{n} A_{n}\left(\varphi, A \varphi, A^{2} \varphi, \cdots, A^{n} \varphi\right) \\
& =A_{n}\left(C \varphi, C^{2} \varphi, \cdots, C^{n+1} \varphi\right)-C_{n}\left(A \varphi, A^{2} \varphi, \cdots, A^{n+1} \varphi\right) \\
& =\left(A C \varphi-C A \varphi, A C^{2} \varphi-C A^{2} \varphi, \cdots, A C^{n+1} \varphi-C A^{n+1} \varphi\right) \\
& =\left(I \varphi, A C^{2} \varphi-C A^{2} \varphi, \cdots, A C^{n+1} \varphi-C A^{n+1} \varphi\right)
\end{aligned}
$$

Analogously will be proved the statement
c. $A_{n} C_{n} \operatorname{orb}_{n}(A, \varphi)-C_{n} A_{n} \operatorname{orb}_{n}(C, \varphi)$

$$
\begin{aligned}
& =A_{n} C_{n}\left(\varphi, A \varphi, A^{2} \varphi, \cdots, A^{n} \varphi\right)-C_{n} A_{n}\left(\varphi, C \varphi, C^{2} \varphi, \cdots, C^{n} \varphi\right) \\
& =A_{n}\left(C \varphi, C A \varphi, \cdots, C A^{n} \varphi\right)-C_{n}\left(A \varphi, A C \varphi, \cdots, A C^{n} \varphi\right) \\
& =\left(A C \varphi-C A \varphi, A C A \varphi-C A C \varphi, \cdots, A C A^{n} \varphi-C A C^{n} \varphi\right) \\
& =\left(I \varphi, A C A \varphi-C A C \varphi, \cdots, A C A^{n} \varphi-C A C^{n} \varphi\right)
\end{aligned}
$$

The statements a. and b. give us the direct generalization of canonical commutation relation. The statements c. and d. also are generalization of the canonical commutation relation.

Corollary 2.3: From part a. of Theorem 2.2 it follows that:
a. If $\operatorname{orb}_{\mathrm{n}}(C, \varphi) \in D\left(\left[A_{n}, C_{n}\right]\right)=D\left(C_{n} A_{n}\right) \cap D\left(A_{n} C_{n}\right)$, then

$$
A_{n} C_{n} \operatorname{orb}_{\mathrm{n}}(C, \varphi)-C_{n} A_{n} \operatorname{orb}_{\mathrm{n}}(C, \varphi)=\operatorname{orb}_{\mathrm{n}}(C, \varphi)
$$

b. If $\operatorname{orb}_{\mathrm{n}}(A, \varphi) \in D\left(A_{n} C_{n}-C_{n} A_{n}\right)=D\left(C_{n} A_{n}\right) \cap D\left(A_{n} C_{n}\right)$, then

$$
A_{n} C_{n} \operatorname{orb}_{\mathrm{n}}(A, \varphi)-C_{n} A_{n} \operatorname{orb}_{\mathrm{n}}(A, \varphi)=\operatorname{orb}_{\mathrm{n}}(A, \varphi)
$$

c. $\left[N_{n}, C_{n}\right]=C_{n}$ and $\left[N_{n}, A_{n}\right]=-A_{n}$.

According to the well-known distributional property, we have

$$
\left[N_{n}, C_{n}\right]=\left[C_{n} A_{n}, C_{n}\right]=C_{n}\left[A_{n}, C_{n}\right]+\left[C_{n}, C_{n}\right] A_{n}=C_{n}
$$

As well

$$
\left[N_{n}, A_{n}\right]=\left[C_{n} A_{n}, A_{n}\right]=C_{n}\left[A_{n}, A_{n}\right]+\left[C_{n}, A_{n}\right] A_{n}=-A_{n}
$$

If we introduce in $D\left(C^{n}\right)$ the inner product

$$
\left\langle\operatorname{orb}_{n}(C, \varphi), \operatorname{orb}_{n}(C, \chi)\right\rangle_{n}
$$

$$
\begin{equation*}
=<\varphi, \chi>+<C \varphi, C \chi>+\cdots+<C^{n} \varphi, C^{n} \chi>, n \in N_{0}, \tag{8}
\end{equation*}
$$

and the corresponding norm

$$
\begin{equation*}
\left\|\operatorname{orb}_{n}(C, \varphi)\right\|_{n}=\left(\|\varphi\|^{2}+\left\|C^{2} \varphi\right\|^{2}+\cdots+\left\|C^{n} \varphi\right\|^{2}\right)^{1 / 2} \tag{9}
\end{equation*}
$$

where $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$ are inner product and norm in the space $L^{2}(\mathbb{R})$, then it will turn into a prehilbert space. The same can be said about $D\left(A^{n}\right)$. The operator C_{n} is a linear unbounded operator in the space $D\left(C^{n}\right)$ with a dense image. Analogously is defined the Hilbert space $D\left(A^{n}\right)$ in which, the inner product and the norm are defined by formulas (8) and (9) with the replacement of C by A. The spaces $D\left(C^{n}\right)$ and $D\left(A^{n}\right)$ can be turned into Hilbert spaces by changing the domains of the operators A and C. Namely, as the domain of definition of the operators (1) and (2) we consider the set $U \cap V$. The set U consits of all functions $\varphi \in L^{2}(\mathbb{R})$ which are absolutely continouos on every finite interval on \mathbb{R} and such that $\varphi^{\prime} \in L^{2}(\mathbb{R})$. The set V consists of all functions $\psi \in L^{2}(\mathbb{R})$ such that $x \psi(x) \in L^{2}(\mathbb{R})$. It is well-known that the operator $i \frac{d}{d x}$ with the domain of definition U is selfadjoint ([12], pp.396). Taking into account that a function $\varphi \in U$ satisfies the equality $\varphi(-\infty)=\varphi(\infty)=0$ ([12], p.394), we verify that the operators $\frac{d}{d x}$ and $-\frac{d}{d x}$ with the domain of definition U are conjugate with each other. If we take into account yt selfadjointness of the position operator of quantum mechanics $X \psi(x)=x \psi(x), \psi \in V$, we obtain that the annihilation and creation operators (1) and (2) with the domain of definition $U \cap V$, are conjugate with each other. Every adjoint operator is closed ([12], p.353). Therefore, the operators A and C with the domain of definition $U \cap V$ are closed and we can turn $D\left(C^{n}\right)$ into a Hilbert space with the inner product (8) and corresponding norm (9). The same can be said about $D\left(A^{n}\right)$.
Theorem 2.4: If as the domain of definition of the operators (1) and (2) is considered the set $U \cap V$, then the sequence $\left\{\operatorname{orb}_{\mathrm{n}}\left(A, \psi_{k}\right)\right\}\left(\right.$ resp. $\left.\left\{\operatorname{orb}_{\mathrm{n}}\left(C, \psi_{k}\right)\right\}\right)$, $n, k \in \mathbb{N}_{0}$, is an orthogonal basis on $D\left(A^{n}\right)$, (resp. on $D\left(C^{n}\right)$).

Proof: We prove Theorem for the operator A (for the operator C proof is carried out in a similar way). The orthogonality of the sequence $\left\{\operatorname{orb}_{\mathrm{n}}\left(A, \psi_{k}\right)\right\}$ in the space $D\left(A^{n}\right)$ follows from the orthogonality of $\left\{\psi_{k}(x)\right\}$ in $L^{2}(\mathbb{R})$ and from the formulae (5) and (7). Because of the sequence $\left\{\psi_{k}(x)\right\}$ is a basis in $L^{2}(\mathbb{R})$, we have for $\psi(x) \in L^{2}(\mathbb{R})$ that

$$
\psi(x)=\sum_{k=0}^{\infty} a_{k} \psi_{k}(x),
$$

where

$$
a_{k}=\int_{\mathbb{R}} \psi(x) \overline{\psi_{k}(x)} d x, k \in \mathbb{N}_{0} .
$$

Because of $A^{j} \psi \in L^{2}(\mathbb{R}), j=1,2, \cdots, n$, we have for $\psi \in L^{2}(\mathbb{R})$

$$
A^{j} \psi(x)=\sum_{k=0}^{\infty} b_{k}^{j} \psi_{k}(x),
$$

where

$$
b_{k}^{j}=\int_{\mathbb{R}} A^{j} \psi(x) \overline{\psi_{k}(x)} d x
$$

Due to the fact that the operators A and C are mutually conjugate to each other, we obtain

$$
b_{k}^{j}=\int_{\mathbb{R}} \psi(x) C^{j} \overline{\psi_{k}(x)} d x
$$

In its turn

$$
C^{j} \psi_{k}=C^{j-1} C \psi_{k}=C^{j-1} \sqrt{k+1} \psi_{k+1}=\sqrt{k+1} \sqrt{k+2} \cdots \sqrt{k+j} \psi_{k+j}
$$

Therefore

$$
\begin{aligned}
b_{k}^{j} & =\sqrt{(k+1)(k+2) \cdots(k+j)} \int_{\mathbb{R}} \psi(x) \overline{\psi_{k+j}(x)} d x \\
& =\sqrt{(k+1)(k+2) \cdots(k+j)} a_{k+j}
\end{aligned}
$$

and

$$
\begin{aligned}
A^{j} \psi(x) & =\sum_{k=0}^{\infty} \sqrt{(k+1)(k+2) \cdots(k+j)} a_{k+j} \psi_{k}(x)=\sum_{k=0}^{\infty} a_{k+j} A^{j} \psi_{k+j}(x) \\
& =\sum_{k=j}^{\infty} a_{k} A^{j} \psi_{k}(x)
\end{aligned}
$$

We have

$$
\begin{aligned}
A^{j} \psi_{k} & =A^{j-1}\left(A \psi_{k}\right)=\sqrt{k} A^{j-1} \psi_{k-1}=\sqrt{k(k-1)} A^{j-2} \psi_{k-2} \\
& =\sqrt{k!} A^{j-k} \psi_{0}, \quad j-k \geq 1
\end{aligned}
$$

But

$$
A \psi_{0}=\operatorname{const}\left(\frac{d}{d x} e^{-x^{2} / 4}+\frac{x}{2} e^{-x^{2} / 4}\right)=0
$$

Thus $A^{j} \psi_{k}(x)=0$, if $k=0,1, \cdots, j-1$, and it is proved that

$$
A^{j} \psi(x)=\sum_{k=0}^{\infty} a_{k} A^{j} \psi_{k}(x)
$$

Therefore, for the $\operatorname{orb}_{\mathrm{n}}(A, \psi)$ the following representation is valid

$$
\operatorname{orb}_{\mathrm{n}}(A, \psi)=\sum_{n=0}^{\infty} a_{k} \operatorname{orb}_{\mathrm{n}}\left(A, \psi_{k}\right)
$$

This equality proves the Theorem 2.4.

3. Orbital operators corresponding to the creation and annihilation operators in the Frechet-Hilbert space of all orbits

In this section the orbital operators corresponding to the creation and annihilation operators in the Frechet-Hilbert space of all orbits are constructed. Note that for the general operator F with the discrete spectrum, the space $D\left(F^{\infty}\right)$ circumstantially was studied in ([9], Chapt. 8), where $D\left(F^{\infty}\right)$ was the whole symbol and F^{∞}, if taken separately, meant nothing. $D\left(F^{\infty}\right)$ is the intersection $\cap_{n=0}^{\infty} D\left(F^{n}\right)$ of the spaces $D\left(F^{n}\right)$. This means that, on the function of $D\left(F^{\infty}\right)$ one can apply the operator F infinitely many times. In [4] we have defined the operator F^{∞} as follows

$$
F^{\infty}\left(\varphi, F \varphi, \cdots, F^{n} \varphi, \cdots\right)=\left(F \varphi, F^{2} \varphi, \cdots, F^{n+1} \varphi, \cdots\right)
$$

or

$$
\begin{equation*}
F^{\infty} \operatorname{orb}(F, \varphi)=\operatorname{orb}(F, F \varphi) \tag{10}
\end{equation*}
$$

Due tu this notation, the space $D\left(F^{\infty}\right)$ acquare new meaning that differs from the classical case. Namely, now $D\left(F^{\infty}\right)$ is also the domain of definition of the operator F^{∞}, defined by equality (10). According to ([10], Sect.X.6), $D\left(F^{\infty}\right)$ is the set of infinitely differentiated elements of F and is denoted as $C^{\infty}(F)$.

The space $D\left(F^{\infty}\right)$ is isomorphic to the space of all orbits $\operatorname{orb}(F, \varphi)=$ $\left\{\varphi, F \varphi, \cdots, F^{n}, \cdots\right\}$ of the operator F at the states φ and this isomorphism is obtained by the mapping $D\left(F^{\infty}\right) \ni \varphi \rightarrow \operatorname{orb}(F, \varphi)$. It is easy to prove that algebraically $D\left(H^{\infty}\right) \subset D\left(C^{\infty}\right) \subset D\left(C^{n}\right)$, where C is the creation operator and H is the Hamiltonian of quantum harmonic oscillator. $D\left(H^{\infty}\right)$ is isomorphic to the Schwartz space of rapidly decreasing functions [2] and is a nonempty set of the second category. The topology of the space $D\left(C^{\infty}\right)$ is generated with the sequence of norms (6). As well $D\left(C^{\infty}\right)$ is also the domain of definition of the operator C^{∞} defined by the equality

$$
\begin{gather*}
C^{\infty}\left(\varphi(x), C \varphi(x), \cdots, C^{n-1} \varphi(x), \cdots\right)=\operatorname{orb}(C, C \varphi) \\
\quad=\left(C \varphi(x), C^{2} \varphi(x), \cdots, C^{n+1} \varphi(x), \cdots\right) \tag{11}
\end{gather*}
$$

It will be also noted that the space $D\left(C^{\infty}\right)$ is represented as projective limit of the sequence of the Hilbert spaces $\left\{D\left(C^{n}\right)\right\}$ and is a Frechet-Hilbert space.
Problem 1. It is not known whether the Frechet space $D\left(C^{\infty}\right)$ is nuclear and countable-Hilbert (The example of a nuclear Frechet space that is not countableHilbert, was constructed in [11]).

In the case of annihilation operator A analogously is defined the space of all orbits $D\left(A^{\infty}\right)$. The space $D\left(A^{\infty}\right)$ is also the domain of definition of the operator A^{∞} defined by the equality

$$
\begin{equation*}
A^{\infty}\left(\varphi, A \varphi, \cdots, A^{n} \varphi, \cdots\right)=\left(A \varphi, A^{2} \varphi, \cdots, A^{n+1} \varphi, \cdots\right) \tag{12}
\end{equation*}
$$

This means that $A^{\infty}\left(\varphi, A \varphi, \cdots, A^{n} \varphi, \cdots\right)=(d / d x+x / 2)^{\infty} \operatorname{orb}(A, \varphi)$, where the operator $A^{\infty} \operatorname{orb}(A, \varphi)$ is really defined by the equality

$$
\begin{aligned}
& (d / d x+x / 2)^{\infty} \operatorname{orb}(A, \varphi) \\
& =\left((d / d x+x / 2) \varphi,(d / d x+x / 2)^{2} \varphi, \cdots,(d / d x+x / 2)^{n+1} \varphi, \cdots\right)
\end{aligned}
$$

According to the assertion a. of Theorem 2.1, we have

$$
\begin{gathered}
N^{\infty} \operatorname{orb}\left(C, \psi_{j}\right)=C^{\infty} A^{\infty} \operatorname{orb}(C, \psi)=\left(\frac{x^{2}}{4}-\frac{d^{2}}{d x^{2}}+\frac{1}{2}\right)^{\infty} \operatorname{orb}\left(C, \psi_{j}\right) \\
=\left(j \psi_{j}, \sqrt{j+1}(j+1) \psi_{j+1}, \cdots, \sqrt{j+1} \sqrt{j+2} \cdots \sqrt{j+n}(j+n) \psi_{j+n}, \cdots\right) .
\end{gathered}
$$

Problem 2. It is not known whether the locally convex space $D\left(A^{\infty}\right)$ is nuclear and countable-Hilbert.

Theorem 3.1: For the commutator $\left[A^{\infty}, C^{\infty}\right]=A^{\infty} C^{\infty}-C^{\infty} A^{\infty}$, where C^{∞} and A^{∞} are defined, respectivaly, by equalities (11) and (12), the following relations hold:
a. If $\left(\varphi_{0}, \cdots, \varphi_{n}, \cdots\right) \in D\left(\left[A^{\infty}, C^{\infty}\right]\right)$, then

$$
\left[A^{\infty}, C^{\infty}\right]\left(\varphi_{0}, \cdots, \varphi_{n}, \cdots\right)=\left(\varphi_{0}, \cdots, \varphi_{n}, \cdots\right)
$$

b. If $\operatorname{orb}(A, \varphi) \in D\left(C^{\infty} A^{\infty}\right)$ and $\operatorname{orb}(C, \psi) \in D\left(A^{\infty} C^{\infty}\right)$, then

$$
\begin{aligned}
& \left(A^{\infty} C^{\infty} \operatorname{orb}(C, \varphi)-C^{\infty} A^{\infty} \operatorname{orb}(A, \varphi)\right. \\
& =\left(I \varphi, A C^{2} \varphi-C A^{2} \varphi, \cdots, A C^{n+1} \varphi-C A^{n+1} \varphi, \cdots\right)
\end{aligned}
$$

c. If $\operatorname{orb}(A, \varphi) \in D\left(A^{\infty}, C^{\infty}\right)$ and $\operatorname{orb}(C, \varphi) \in D\left(C^{\infty} A^{\infty}\right)$, then

$$
\begin{aligned}
& A^{\infty} C^{\infty} \operatorname{orb}(A, \varphi)-C^{\infty} A^{\infty} \operatorname{orb}(C, \varphi) \\
& =\left(I \varphi, A C A \varphi-C A C \varphi, \cdots, A C A^{n} \varphi-C A C^{n} \varphi, \cdots\right)
\end{aligned}
$$

The statement a. gives us the direct generalization of canonical commutation relation. The statements b. and c. also are generalization of canonical commutation relation.

Corollary 3.2: From the proposition a. of Theorem 3.1 it follows that
a. If $\operatorname{orb}(A, \varphi) \in D\left(\left[A^{\infty}, C^{\infty}\right]\right)$, then

$$
\left[A^{\infty}, C^{\infty}\right] \operatorname{orb}(A, \varphi)=\operatorname{orb}(A, \varphi)
$$

b. If $\operatorname{orb}(C, \varphi) \in D\left(\left[A^{\infty}, C^{\infty}\right]\right)$, then

$$
\left[A^{\infty}, C^{\infty}\right] \operatorname{orb}(C, \varphi)=\operatorname{orb}(C, \varphi)
$$

$c .\left[N^{\infty}, C^{\infty}\right]=C^{\infty}$ and $\left[N^{\infty}, A^{\infty}\right]=A^{\infty}$.

Really, according to the distributivity property, we have

$$
\left[N^{\infty}, C^{\infty}\right]=\left[C^{\infty} A^{\infty}, C^{\infty}\right]=C^{\infty}\left[A^{\infty}, C^{\infty}\right]+\left[C^{\infty}, C^{\infty}\right] A^{\infty}=C^{\infty}
$$

As well

$$
\left[N^{\infty}, A^{\infty}\right]=\left[C^{\infty} A^{\infty}, A^{\infty}\right]=C^{\infty}\left[A^{\infty}, A^{\infty}\right]+\left[C^{\infty}, A^{\infty}\right] A^{\infty}=-A^{\infty}
$$

References

[1] B.C. Hall. Quantum theory for mathematicians, Springer, Graduate texts in mathematics, 267, 2013
[2] D. Ugulava, D. Zarnadze. On a central algorithm for calculation of the inverse of the harmonic oscillator in the spaces of orbits, Journal of Complexity. 68 (2022), https:// doi.org. 10.1016/j.jco.2022.101599
[3] D. Ugulava, D. Zarnadze. Ill-posed problems and associated with them spaces of orbits and orbital operators, Rep. Enlarged Sess. Semin. I. Vekua Appl. Math., 328 (2018) 79-82
[4] D. Zarnadze, S. Tsotniashvili. Selfadjoint operators and generalized central algorithms in Frechet spaces, Georgian Math. J., 13 (2006) 363-382
[5] S. Rolevich. On orbits of elements, Studia Mathematica, XXXII (1969), 17-22.
[6] S.A. Wegner. Universal extrapolation spaces for C_{0}-semigroups, Ann. Univ. Ferrara Sez. VII Sci. Mat., 60, 2 (2014), 447-463
[7] D. Ugulava, D. Zarnadze. About the Concept of Orbital Quantum Mechanics, XI International Conference of the Georgian Mathematical Union, Batumi, August 23-28 (2021), p. 180
[8] J. Becnel, A. Sengupta. The Schwartz Space: Tools for Quantum Mechanics and Infinite Dimensional Analysis, Mathematics 3 (2015), 527-562; doi:10.3390/math3020527
[9] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators, Veb Deutscher Verlag, Berlin, 1978
[10] M. Reed, B. Simon. Methods of modern mathematical physics, 1 (1972), 2 (1975), Academic Press
[11] S. Dierolf, K. Floret. Uber die fortsetzbarkeit of stetiger normen., Arch. Math. (Basel), 35 (1980), 149-154
[12] L.A. Lusternik, V.I. Sobolev. Elements of Functional Analysis, New York, 1974. Translation from Russian, Moskow, Nauka, 1965

[^0]: *Corresponding author. Email: duglasugu@yahoo.com

