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In this article the orbits of creation, annihilation and numerical operators at the states of
quantum Hilbert spaces are created. The Hilbert space of finite orbits and the Frechet-Hilbert
space of all orbits for these operators are created. The orbital operators corresponding to these
operators in the spaces of orbits are defined and studied. Generalization of well-known canon-
ical commutation relations for orbital operators corresponding to creation and annihilation
operators are established.

Keywords: Creation operator, annihilation operator, numerical operator, orbits of
operator, canonical commutation relation.

AMS Subject Classification: 81S05, 46N50, 47B47,47B93.

1. Introduction

Introduced by Paul Dirac creation and annihilation operators have widespread
applications in quantum mechanics, notably in the study of quantum harmonic os-
cillators and many-particle systems. Modern quantum physics almost unthinkable
without them. We create finite orbits and orbits of creation, annihilation and nu-
merical operators at the states of quantum Hilbert space L2(R) (”quantum Hilbert
space” means simply the Hilbert space associated with a given quantum system ([1],
Sect.13.1, p.255)). The Hilbert space of finite orbits and the Frechet-H ilbert space
(note that,initially, Frechet-Hilbert spaces were always supposed to be the strict
projective limits of a sequence of Hilbert spaces; in modern literature, however,
the requirement that the projective limit is strict, is omitted) of all orbits which
elements are the orbits of these operators at some elements of the space L2(R)
are definite and studied. Moreover, the notion of orbital operators corresponding
to these operators in the spaces of orbits is introduced and studied. We establish
well-known canonical commutation relations for orbital operators corresponding to
the creation and annihilation operators in the Hilbert space of finite orbits and in
the Frechet-Hilbert space of all orbits. The orbital spaces and orbital operators for
Hamiltonian of quantum harmonic oscillator are constructed in [2].

The definitions of finite orbits and of the operator at the states was introduced,
respectivelly, in [3] and [4]. We present the following reasoning from [4]: let H be
a Hilbert space and F : D(F ) ⊂ H → H be a linear operator with the domain of
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definition D(F ). We shall call the sequence orb(F, x) = (x, Fx, F 2x, · · · ) the orbit
of the operator F at the point x, i.e. orb(F, x) is an element of the Frechet-Hilbert
space HN . If F jx ∈ H for j = 0, 1, · · · , n, then we denote the finite sequence
(x, Fx, · · · , Fnx) by orbn(F, x) and call n-orbit of the operator F at the point
x ∈ H, i.e. orbn(F, x) is an element of the space Hn+1. The space of such elements
we denote by D(Fn), n ∈ N0 = {0, 1, 2, · · · }, besides F 0 is the identical operator.
Algebraically D(Fn) is a subset of H. In what follows we consider the space D(Fn)
with the inner product

〈orbn(F,ϕ), orbn(F, χ)〉n

=< ϕ,χ > + < Fϕ,Fχ > + · · ·+ < Fnϕ, Fnχ >, n ∈ N0,

and with the corresponding norm

||orbn(F, x)||n = (||x||2 + ||Fx||2 + · · ·+ ||Fnx||2)1/2,

where < ·, · > and norm || · || are inner product and norm in the space of H, i.e.
the space (D(Fn), || · ||n) is isometrically embedded in the space Hn+1.

In [5] the following concept was introduced: “Let X be a linear metric space. Let
F be a linear continuous operator mapping X into itself. Let x ∈ X and consider
the set ϑ(F, x) = {Fnx;n ∈ N0}. We shall call ϑ(F, x) an orbit of x with respect
to the operator F.” Note that, in this case the set ϑ(F, x) is a subset of a linear
metric space X. Thus, in [4] the notion of an orbit of the operator F at a point and
in [5] the notion of orbit of x with respect to the operator are introduced, i.e. these
notions are different as subsets, are different as terms and with notations. In [4]
the continuity of the operator F is not assumed. We also consider the concepts of
an orbital operator Fn [3] that acts in the Hilbert spaces of finite orbits and orbital
operator F∞ that acts in the Frechet-Hilbert spaces of all orbits [4] (see also [6]).

In this article the study of the corresponding to a creation operator C and a
annihilation operator A is carried out within the framework of the orbital quantum
mechanics, the concept of which was formulated in [7].

In the second section finite orbits of the creation operator C and of the annihila-
tion operator A at the states, as well n-orbital operators Cn and An corresponding
to creation and annihilation operators in the Hilbert space of finite orbits are de-
fined. According to the definition of orbital operators Cn and An it is naturally to
determinate its value on the element (ϕ0, ϕ1 · · · , ϕn) ∈ (D(C))n+1 ∩ (D(A))n+1.
We need this while proving of canonical commmutation relations between Cn and
An because we must also consider the value Cn on the orbits of the operator A
and the value An on the orbits of the operator C at some states. When proving
the canonical commutative relation, one has to consider the value of the operato
Cn on the orbits of the operator A and the value of the operato An on the orbits
of the operator C. Some relations between orbital operators Nn corresponding to
numerical operator N and with the operators Cn and An are also established. The
generalized canonical commutation relations between Cn and An are proved that
in the case n = 0 coincides with the classical one.

In the third section orbits of creation and annihilation operators at states, the
Frechet-Hilbert spaces of all orbits D(C∞) and D(A∞) , the orbital operators C∞
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and A∞ in these spaces are studied and generalized canonical commutation relation
is proved. The analogous relationship between orbital operator N∞, C∞ and A∞

is established.

2. Orbital operators corresponding to the creation and annihilation
operators in the Hilbert space of finite orbits

A creation operator is a differential operator that has the following form ([8], p.541)

C = −d/dx+ x/2. (1)

An annihilation operator is usually denoted by ([8], p.541)

A = d/dx+ x/2. (2)

Note that under the names of creation and annihilation operators, the lightly mod-
ified operators 1√

2
(d/dx+x) and 1√

2
(−d/dx+x) are often considered and denoted,

respectively, by a∗ and a ([1], ch., 11.4). As well, they are denoted by A† and A
([10], ch. V). They are often also denoted by â† and â, or by a+ and a. The anni-
hilation operator thus defined reduces the number of particles in a given state by
one, and the creation operator increases this number by one. Neither the creation
nor the annihilation operator are defined as mappings on the entire Hilbert space
L2(R) into itself. After all, for ϕ ∈ L2(R) the functions Cϕ and Aϕ may fail to be
in L2(R). By definition, the domain of definition D(C) of the operator C consists
of all ψ ∈ L2(R) such that Cψ ∈ L2(R). The operators C and A are unbounded
operators in L2(R).

It is well-known that the creation and the annihilation operators do not commute,
but satisfy the relation

[A,C] = AC − CA = I (3)

onD([A,C]) = D(AC)∩D(CA), D(CA) = {u ∈ D(A), A(u) ∈ D(C)} and likewise
for D(AC). In (3) [A,C] is the commutator and I is identity operator on the space
L2(R). Really

AC = x2/4− d2/dx2 + 1/2I, CA = x2/4− d2/dx2 − 1/2I, AC − CA = I.

The relation (3) is known as the canonical commutation relation.
n-orbits of the annihilation and creation operators (1) and (2) in the state ϕ are

defined as

orbn(A,ϕ) = (ϕ,Aϕ,A2ϕ, · · · , Anϕ) = (ϕ, (d/dx+ x/2)ϕ, · · · , (d/dx+ x/2)nϕ),

and

orbn(C,ϕ) = (ϕ,Cϕ,C2ϕ, · · · , Cnϕ)

= (ϕ, (−d/dx+ x/2)ϕ, · · · , (−d/dx+ x/2)nϕ) (4).
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It is well known ([8], formula (56)) that

Cψj =
√
j + 1ψj+1, (5)

where

ψj(x) = (−1)j(2π)−1/4(j!)−1/2exp(x2/4)djexp(−x2/2)/dxj , j ∈ N0, (6)

are wave functions of harmonic oscillator.
For an acting in a Hilbert space H operator F we introduce the acting in Hn+1

operator Fn, which is defined as

Fn(ϕ0, ϕ1, · · · , ϕn) := (Fϕ0, Fϕ1, · · · , Fϕn),

(ϕ0, ϕ1, · · · , ϕn) ∈ D(Fn) = (D(F ))n+1.

For the orbit of creation operator (1) in the state ψj we have

orbn(C,ψj) = {ψj , Cψj , · · · , Cnψj}

= (ψj ,
√
j + 1ψj+1,

√
j + 1

√
j + 2ψj+2, · · · ,

√
j + 1 · · ·

√
j + nψj+n)

and

Cnorbn(C,ψj) = (Cψj , C
2ψj , · · · , Cn+1ψj)

= (
√
j + 1ψj+1,

√
j + 1

√
j + 2ψj+2, · · · ,

√
j + 1 · · ·

√
j + n+ 1ψj+n+1).

It is well-known([8], formula (53)), that

Aψj =
√
jψj−1. (7)

Therefore

orbn(A,ψj) = (ψj , Aψj , A
2ψj , · · · , Anψj)

= (ψj ,
√
jψj−1,

√
j
√
j − 1ψj−2, · · · ,

√
j
√
j − 1 · · ·

√
j − n+ 1ψj−n)

and

Anorbn(A,ψj) = (Aψj , A
2ψj , · · · , An+1ψj)

= (
√
jψj−1,

√
j
√
j − 1ψj−2, · · · ,

√
j
√
j − 1 · · ·

√
j + nψj−n−1).
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We have

ACψj = A(
√
j + 1ψj+1) =

√
j + 1Aψj+1 = (j + 1)ψj .

The operator

N = CA = x2/4− d2/dx2 − 1/2,

is called the number operator. We have

Nψj = CAψj = C(
√
jψj−1) =

√
jCψj−1 = jψj

and

Nn(ϕ0, · · · , ϕn) = (Nϕ0, · · · , Nϕn) for (ϕ0, · · · , ϕn) ∈ D(Nn) = (D(N))n+1.

Theorem 2.1 : The following representations are valid:
a. If (ϕ0, ϕ1, · · · , ϕn) ∈ D(Nn), then

Nn(ϕ0, ϕ1, · · · , ϕn) = CnAn(ϕ0, ϕ1, · · · , ϕn).

b. For the functions ψj, defined by formula (6), we have

Nnorbn(A,ψj) = (jψj , (j − 1)
√
jψj−1,

(j − 2)
√
j
√
j − 1ψj−2, · · · , (j − n)

√
j
√
j − 1 · · ·

√
j − n+ 1ψj−n), j ∈ N0,

ψj−n = 0, if j < n.

c. For the functions ψj, defined by formula (6), we have

Nnorbn(C,ψj) = (jψj ,
√
j + 1(j + 1)ψj+1,

√
j + 1

√
j + 2(j + 2)ψj+2, · · · ,

√
j + 1

√
j + 2 · · ·

√
j + n(j + n)ψj+n).

d. orbn(C +A,ψ) 6= orbn(C,ψj) + orbn(A,ψj), if n ≥ 2.

Proof : a. Let (ϕ0, ϕ1, · · · , ϕn) ∈ D(Nn), then

Nn(ϕ0, ϕ1, · · · , ϕn) = (Nϕ0, Nϕ1, · · · , Nϕn) = (CAϕ0, CAϕ1, · · · , CAϕn)

= Cn(Aϕ0, Aϕ1, · · · , Aϕn) = CnAn(ϕ0, ϕ1, · · · , ϕn).

b. Taking into account that Nψj = CAψj = C(
√
jψj−1) = jψj , j ∈ N0, we have
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Nn or bn(A,ψj)

= CnAn(ψj ,
√
jψj−1,

√
j
√
j − 1ψj−2, · · · ,

√
j
√
j − 1 · · · ,√

j − n+ 1ψj−n)

= (Nψj , N
√
jψj−1, N

√
j
√
j − 1ψj−2, · · · , N

√
j
√
j − 1 · · · ,√

j − n+ 1ψj−n)

= (jψj , (j − 1)
√
jψj−1, (j − 2)

√
j
√
j − 1ψj−2, · · · ,

(j − n)
√
j
√
j − 1 · · ·

√
j − n+ 1ψj−n), ψj−n(x) = 0, if j < n;

c.

Nn or bn(C,ψj)

= CnAn(ψj ,
√
j + 1ψj+1,

√
j + 1

√
j + 2ψj+2, · · · ,

√
j + 1

√
j + 2 · · · ,√

j + nψj+n)

= (Nψj , N
√
j + 1ψj+1, N

√
j + 1

√
j + 2ψj+2, · · · , N

√
j + 1

√
j + 2 · · · ,√

j + nψj+n)

= (jψj ,
√
j + 1(j + 1)ψj+1,

√
j + 1

√
j + 2(j + 2)ψj+2, · · · ,√

j + 1
√
j + 2 · · ·

√
j + n(j + n)ψj+n).

d. The proof is clear.
We prove now the generalized canonical commutation relations between opera-

tors Cn and An. These relations, in the case n = 0 coincide with the classical one.
�

Theorem 2.2 : For the commutator [An, Cn] = AnCn−CnAn the following rela-
tions are hold:
a. If (ϕ0, ϕ1, · · · , ϕn) ∈ D([An, Cn]) = D(AnCn) ∩D(CnAn), then

AnCn(ϕ0, ϕ1, · · · , ϕn)− CnAn(ϕ0, ϕ1, · · · , ϕn) = (ϕ0, ϕ1, · · · , ϕn).

b. If orbn(A,ϕ) ∈ D(CnAn) and orbn(C,ϕ) ∈ D(AnCn), then

AnCnorbn(C,ϕ)−CnAnorbn(A,ϕ) = (Iψ,AC2ϕ−CA2ϕ, · · · , ACn+1ϕ−CAn+1ϕ).

c. If orbn(A,ϕ) ∈ D(AnCn) and orbn(C,ϕ) ∈ D(CnAn), then

AnCnorbn(C,ϕ)−CnAnorbn(A,ϕ) = (Iψ,ACAϕ−CACϕ, · · · , ACAnϕ−CACnϕ).
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Proof : a. AnCn(ϕ0, ϕ1, · · · , ϕn)− CnAn(ϕ0, ϕ1, · · · , ϕn)

= An(Cϕ0, Cϕ1, · · · , Cϕn)− Cn(Aϕ0, Aϕ1, · · · , Aϕn)

= (ACϕ0, ACϕ1, · · · , ACϕn)− (CAϕ0, CAϕ1, · · · , CAϕn)

= ((AC − CA)ϕ0, (AC − CA)ϕ1, · · · , (AC − CA)ϕn) = (ϕ0, ϕ1, · · · , ϕn).

b. AnCnorbn(C,ϕ)− CnAorbn(A,ϕ)

= AnCn(ϕ,Cϕ,C2ϕ, · · · , Cnϕ)− CnAn(ϕ,Aϕ,A2ϕ, · · · , Anϕ)

= An(Cϕ,C2ϕ, · · · , Cn+1ϕ)− Cn(Aϕ,A2ϕ, · · · , An+1ϕ)

= (ACϕ− CAϕ,AC2ϕ− CA2ϕ, · · · , ACn+1ϕ− CAn+1ϕ)

= (Iϕ,AC2ϕ− CA2ϕ, · · · , ACn+1ϕ− CAn+1ϕ).

Analogously will be proved the statement
c. AnCnorbn(A,ϕ)− CnAnorbn(C,ϕ)

= AnCn(ϕ,Aϕ,A2ϕ, · · · , Anϕ)− CnAn(ϕ,Cϕ,C2ϕ, · · · , Cnϕ)

= An(Cϕ,CAϕ, · · · , CAnϕ)− Cn(Aϕ,ACϕ, · · · , ACnϕ)

= (ACϕ− CAϕ,ACAϕ− CACϕ, · · · , ACAnϕ− CACnϕ)

= (Iϕ,ACAϕ− CACϕ, · · · , ACAnϕ− CACnϕ).

The statements a. and b. give us the direct generalization of canonical commu-
tation relation. The statements c. and d. also are generalization of the canonical
commutation relation. �

Corollary 2.3: From part a. of Theorem 2.2 it follows that:
a. If orbn(C,ϕ) ∈ D([An, Cn]) = D(CnAn) ∩D(AnCn), then

AnCnorbn(C,ϕ)− CnAnorbn(C,ϕ) = orbn(C,ϕ).

b. If orbn(A,ϕ) ∈ D(AnCn − CnAn) = D(CnAn) ∩D(AnCn), then

AnCnorbn(A,ϕ)− CnAnorbn(A,ϕ) = orbn(A,ϕ).

c. [Nn, Cn] = Cn and [Nn, An] = −An.
According to the well-known distributional property, we have

[Nn, Cn] = [CnAn, Cn] = Cn[An, Cn] + [Cn, Cn]An = Cn.

As well

[Nn, An] = [CnAn, An] = Cn[An, An] + [Cn, An]An = −An.

If we introduce in D(Cn) the inner product

〈orbn(C,ϕ), orbn(C,χ)〉n
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=< ϕ,χ > + < Cϕ,Cχ > + · · ·+ < Cnϕ,Cnχ >, n ∈ N0, (8)

and the corresponding norm

||orbn(C,ϕ)||n = (||ϕ||2 + ||C2ϕ||2 + · · ·+ ||Cnϕ||2)1/2, (9)

where < ·, · > and || · || are inner product and norm in the space L2(R), then it will
turn into a prehilbert space. The same can be said about D(An). The operator Cn

is a linear unbounded operator in the space D(Cn) with a dense image. Analogously
is defined the Hilbert space D(An) in which, the inner product and the norm are
defined by formulas (8) and (9) with the replacement of C by A. The spaces D(Cn)
and D(An) can be turned into Hilbert spaces by changing the domains of the opera-
tors A and C. Namely, as the domain of definition of the operators (1) and (2) we
consider the set U∩V . The set U consits of all functions ϕ ∈ L2(R) which are abso-
lutely continouos on every finite interval on R and such that ϕ′ ∈ L2(R). The set V
consists of all functions ψ ∈ L2(R) such that xψ(x) ∈ L2(R). It is well-known that
the operator i d

dx with the domain of definition U is selfadjoint ([12], pp.396). Tak-
ing into account that a function ϕ ∈ U satisfies the equality ϕ(−∞) = ϕ(∞) = 0
([12], p.394), we verify that the operators d

dx and − d
dx with the domain of defini-

tion U are conjugate with each other. If we take into account yt selfadjointness of
the position operator of quantum mechanics Xψ(x) = xψ(x), ψ ∈ V , we obtain
that the annihilation and creation operators (1) and (2) with the domain of defini-
tion U ∩ V , are conjugate with each other. Every adjoint operator is closed ([12],
p.353). Therefore, the operators A and C with the domain of definition U ∩ V are
closed and we can turn D(Cn) into a Hilbert space with the inner product (8) and
corresponding norm (9). The same can be said about D(An).

Theorem 2.4 : If as the domain of definition of the operators (1) and (2) is
considered the set U ∩ V , then the sequence {orbn(A,ψk)} (resp. {orbn(C,ψk)}) ,
n, k ∈ N0, is an orthogonal basis on D(An), (resp. on D(Cn)).

Proof : We prove Theorem for the operator A (for the operator C proof is carried
out in a similar way). The orthogonality of the sequence {orbn(A,ψk)} in the space
D(An) follows from the orthogonality of {ψk(x)} in L2(R) and from the formulae
(5) and (7). Because of the sequence {ψk(x)} is a basis in L2(R), we have for
ψ(x) ∈ L2(R) that

ψ(x) =
∞∑

k=0

akψk(x),

where

ak =
∫
R

ψ(x)ψk(x)dx, k ∈ N0.

Because of Ajψ ∈ L2(R), j = 1, 2, · · · , n, we have for ψ ∈ L2(R)

Ajψ(x) =
∞∑

k=0

bjkψk(x),
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where

bjk =
∫
R

Ajψ(x)ψk(x)dx.

Due to the fact that the operators A and C are mutually conjugate to each other,
we obtain

bjk =
∫
R

ψ(x)Cjψk(x)dx.

In its turn

Cjψk = Cj−1Cψk = Cj−1
√
k + 1ψk+1 =

√
k + 1

√
k + 2 · · ·

√
k + jψk+j .

Therefore

bjk =
√

(k + 1)(k + 2) · · · (k + j)
∫
R

ψ(x)ψk+j(x)dx

=
√

(k + 1)(k + 2) · · · (k + j)ak+j

and

Ajψ(x) =
∞∑

k=0

√
(k + 1)(k + 2) · · · (k + j)ak+jψk(x) =

∞∑
k=0

ak+jA
jψk+j(x)

=
∞∑

k=j

akA
jψk(x).

We have

Ajψk = Aj−1(Aψk) =
√
kAj−1ψk−1 =

√
k(k − 1)Aj−2ψk−2

=
√
k!Aj−kψ0, j − k ≥ 1.

But

Aψ0 = const
( d

dx
e−x2/4 +

x

2
e−x2/4

)
= 0.

Thus Ajψk(x) = 0, if k = 0, 1, · · · , j − 1, and it is proved that

Ajψ(x) =
∞∑

k=0

akA
jψk(x).

Therefore, for the orbn(A,ψ) the following representation is valid

orbn(A,ψ) =
∞∑

n=0

akorbn(A,ψk).
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This equality proves the Theorem 2.4. �

3. Orbital operators corresponding to the creation and annihilation
operators in the Frechet-Hilbert space of all orbits

In this section the orbital operators corresponding to the creation and annihilation
operators in the Frechet-Hilbert space of all orbits are constructed. Note that for the
general operator F with the discrete spectrum, the space D(F∞) circumstantially
was studied in ([9], Chapt. 8), whereD(F∞) was the whole symbol and F∞, if taken
separately, meant nothing. D(F∞) is the intersection ∩∞n=0D(Fn) of the spaces
D(Fn). This means that, on the function of D(F∞) one can apply the operator F
infinitely many times. In [4] we have defined the operator F∞ as follows

F∞(ϕ, Fϕ, · · · , Fnϕ, · · · ) = (Fϕ, F 2ϕ, · · · , Fn+1ϕ, · · · ),

or

F∞orb(F,ϕ) = orb(F, Fϕ). (10)

Due tu this notation, the space D(F∞) acquare new meaning that differs from the
classical case. Namely, now D(F∞) is also the domain of definition of the operator
F∞, defined by equality (10). According to ([10], Sect.X.6), D(F∞) is the set of
infinitely differentiated elements of F and is denoted as C∞(F ).

The space D(F∞) is isomorphic to the space of all orbits orb(F,ϕ) =
{ϕ, Fϕ, · · · , Fn, · · · } of the operator F at the states ϕ and this isomorphism is
obtained by the mapping D(F∞) 3 ϕ → orb(F,ϕ). It is easy to prove that alge-
braically D(H∞) ⊂ D(C∞) ⊂ D(Cn), where C is the creation operator and H
is the Hamiltonian of quantum harmonic oscillator. D(H∞) is isomorphic to the
Schwartz space of rapidly decreasing functions [2] and is a nonempty set of the
second category. The topology of the space D(C∞) is generated with the sequence
of norms (6). As well D(C∞) is also the domain of definition of the operator C∞

defined by the equality

C∞(ϕ(x), Cϕ(x), · · · , Cn−1ϕ(x), · · · ) = orb(C,Cϕ)

= (Cϕ(x), C2ϕ(x), · · · , Cn+1ϕ(x), · · · ), (11)

It will be also noted that the space D(C∞) is represented as projective limit of the
sequence of the Hilbert spaces {D(Cn)} and is a Frechet-Hilbert space.
Problem 1. It is not known whether the Frechet space D(C∞) is nuclear and
countable-Hilbert (The example of a nuclear Frechet space that is not countable-
Hilbert, was constructed in [11]).

In the case of annihilation operator A analogously is defined the space of all
orbits D(A∞). The space D(A∞) is also the domain of definition of the operator
A∞ defined by the equality

A∞(ϕ,Aϕ, · · · , Anϕ, · · · ) = (Aϕ,A2ϕ, · · · , An+1ϕ, · · · ), (12)



Vol. 27, No. 1, 2023 19

This means that A∞(ϕ,Aϕ, · · · , Anϕ, · · · ) = (d/dx + x/2)∞orb(A,ϕ), where the
operator A∞orb(A,ϕ) is really defined by the equality

(d/dx+ x/2)∞orb(A,ϕ)

= ((d/dx+ x/2)ϕ, (d/dx+ x/2)2ϕ, · · · , (d/dx+ x/2)n+1ϕ, · · · ).

According to the assertion a. of Theorem 2.1, we have

N∞orb(C,ψj) = C∞A∞orb(C,ψ) = (
x2

4
− d2

dx2
+

1
2
)∞orb(C,ψj)

= (jψj ,
√
j + 1(j + 1)ψj+1, · · · ,

√
j + 1

√
j + 2 · · ·

√
j + n(j + n)ψj+n, · · · ).

Problem 2. It is not known whether the locally convex space D(A∞) is nuclear
and countable-Hilbert.

Theorem 3.1 : For the commutator [A∞, C∞] = A∞C∞ − C∞A∞, where C∞

and A∞ are defined, respectivaly, by equalities (11) and (12), the following relations
hold:

a. If (ϕ0, · · · , ϕn, · · · ) ∈ D([A∞, C∞]), then

[A∞, C∞](ϕ0, · · · , ϕn, · · · ) = (ϕ0, · · · , ϕn, · · · ).

b. If orb(A,ϕ) ∈ D(C∞A∞) and orb(C,ψ) ∈ D(A∞C∞), then

(A∞C∞orb(C,ϕ)− C∞A∞orb(A,ϕ)

= (Iϕ,AC2ϕ− CA2ϕ, · · · , ACn+1ϕ− CAn+1ϕ, · · · ).

c. If orb(A,ϕ) ∈ D(A∞, C∞) and orb(C,ϕ) ∈ D(C∞A∞), then

A∞C∞orb(A,ϕ)− C∞A∞orb(C,ϕ)

= (Iϕ,ACAϕ− CACϕ, · · · , ACAnϕ− CACnϕ, · · · ).

The statement a. gives us the direct generalization of canonical commutation re-
lation. The statements b. and c. also are generalization of canonical commutation
relation.

Corollary 3.2: From the proposition a. of Theorem 3.1 it follows that
a. If orb(A,ϕ) ∈ D([A∞, C∞]), then

[A∞, C∞]orb(A,ϕ) = orb(A,ϕ).

b. If orb(C,ϕ) ∈ D([A∞, C∞]), then

[A∞, C∞]orb(C,ϕ) = orb(C,ϕ).

c.[N∞, C∞] = C∞ and [N∞, A∞] = A∞.
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Really, according to the distributivity property, we have

[N∞, C∞] = [C∞A∞, C∞] = C∞[A∞, C∞] + [C∞, C∞]A∞ = C∞.

As well

[N∞, A∞] = [C∞A∞, A∞] = C∞[A∞, A∞] + [C∞, A∞]A∞ = −A∞.
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