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Exponential function is one of the most important functions in mathematics and is helpful
in theoretical investigations and practical applications. For example, exponential functions
are the solutions to the simplest types of dynamical systems. In particular, an exponential
function arises in simple models of bacterial growth, it can describe growth or decay, etc.
The main purpose of this paper is one exponential inequality, which arose in the study of the
properties of exponential functions.
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1. Introduction

The exponential function plays an important role in theoretical investigations and
practical applications. If we look at the scientific literature, it is easy to see that in
recent times many papers are devoted to further specifying the properties of the
exponential function, proving new inequalities involving exponential and hyper-
bolic functions; it can be said that this direction has become a subject of intensive
investigation. There exists a vast literature on such inequalities, for more informa-
tion on this subject and related topics, one may refer to [1], [2], [3], [4], [5], [6]], [7],
[8], [9] and the references therein.

Using various mathematical software, we observe that the inequality

e
4√2 t + e−

4√2 t

2
+ t− et ≥ 0

holds for any numerical value of the parameter t (see Fig. 1).
However, it is clear that we cannot consider this circumstance as an objective

proof of this fact, since the current practical calculations in mathematical software
are carried out with a certain accuracy, in many cases the values are rounded,
which, of course, causes certain errors that can distort the final result. Therefore, if
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we want to be sure that a fact is true for any value of the variable t, it is necessary
to find its analytical proof, which is what we do in this paper.

2. Main result

Let us formulate and prove the main result of the paper.

Theorem 2.1 : For every number t ∈ R1 the following inequality is valid

e
4√2 t + e−

4√2 t

2
+ t ≥ et. (1)

Proof : Let us expand the function et into a Taylor series. As this series converges
absolutely we can write:

et = 1 + t +
∞∑

n=1

t2n+1

(2n + 1)!
+

∞∑
n=1

t2n

(2n)!
= 1 + t +

∞∑
n=1

(
1 +

t

2n + 1

)
t2n

(2n)!
. (2)

Let’s choose positive numbers pn and qn so that for every t ∈ R1 the following
inequalities are fulfilled:

t

2n + 1
≤ pn + qnt2, n = 1, 2, . . . . (3)

Obviously, (3) will always hold as soon as the numbers pn and qn satisfy the
inequalities:

pn · qn ≥
1

4(2n + 1)2
, n = 1, 2, . . . .

In particular, suppose that

qn =
1

4(2n + 1)2pn
, n = 1, 2, . . . . (4)

          Fig. 1. Graph of the function y =
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Then, taking into account (3) and (4) from (2) we obtain

et ≤ 1 + t +
∞∑

n=1

(
1 + pn + qnt2

) t2n

(2n)!

= 1 + t +
∞∑

n=1

(1 + pn)
t2n

(2n)!
+

∞∑
n=1

1
4(2n + 1)2pn

t2n+2

(2n)!

= 1 + t + (1 + p1)
t2

2
+

∞∑
n=2

[
1 + pn +

n

2(2n− 1)pn−1

]
t2n

(2n)!
. (5)

Taking into account (5), our goal is to choose a sequence of positive numbers
(pn) such that

et ≤ t +
∞∑

n=0

2n/2t2n

(2n)!
, (6)

which obviously implies (1).
According to (5), (6) holds if the numbers (pn) satisfy the following conditions:

1 + p1 ≤
√

2, (7)

1 + pn +
n

2(2n− 1)pn−1
≤ 2n/2, n = 2, 3, . . . . (8)

Let’s select the sequence (pn) as follows

pn =
2.15√

(2n + 1)3
, n = 1, 2, . . . ,

and let’s check that the conditions (7) and (8) hold.
Condition (7):

1 + p1 =
2.15√

27
<
√

2,

i.e. condition (7) is fulfilled.
Condition (8):

1 + p2 +
1

3p1
= 1 +

2.15√
125

+
1

3 · 2.15√
27

< 2. (9)

Hence condition (8) for n = 2 is fulfilled.
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Now for every integer n > 2 we have to show that

1 +
2.15√

(2n + 1)3
+

n
√

2n− 1
4.3

≤ 2n/2. (10)

Using the method of mathematical induction, suppose that (10) is valid for a
fixed n and show its validity for (n + 1). That is, we have to prove the validity of
the following inequality

1 +
2.15√

(2n + 3)3
+

(n + 1)
√

2n + 1
4.3

≤ 2(n+1)/2, n = 2, 3, . . . .

Indeed, we have

1 +
2.15√

(2n + 3)3
+

(n + 1)
√

2n + 1
4.3

≤

≤ 2n/2 +
(n + 1)

√
2n + 1− n

√
2n− 1

4.3
− 2.15

[
1√

(2n + 1)3
− 1√

(2n + 3)3

]
. (11)

Our goal is to show that for every n ≥ 2 the expression (11) is less than 2
n+1

2 ,
that is:

(n + 1)
√

2n + 1− n
√

2n− 1
4.3

− 2.15

[
1√

(2n + 1)3
− 1√

(2n + 3)3

]
≤ (

√
2− 1)2n/2. (12)

Obviously, (12) will be proved if we prove

(n + 1)
√

2n + 1− n
√

2n− 1
4.3

≤ (
√

2− 1)2n/2. (13)

It is not difficult to verify validity of the following inequality

(n + 1)
√

2n + 1− n
√

2n− 1
4.3

≤ 6n + 1
8.6 4
√

4n2 − 1
.

Therefore, (13) is proved if we show that

6n + 1
4
√

4n2 − 1
≤ 8.6(

√
2− 1)2n/2, n = 2, 3, . . . . (14)

Let’s prove this inequality by induction. It is elementary to verify the validity of
the inequality

13
4
√

15
< 17.2(

√
2− 1),
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which shows the validity of (14) for n = 2
Now suppose that (14) is valid for a fixed n (n ≥ 2), and show its validity for

(n + 1), i.e. let’s prove that

6n + 7
4
√

4n2 + 8n + 3
≤ 8.6(

√
2− 1)2

n+1
2 , n = 2, 3, . . . .

Indeed, we have

6n + 7
4
√

4n2 + 8n + 3
≤ 8.6(

√
2− 1)2n/2 · 6n + 7

6n + 1
· 4

√
2n + 1
2n + 3

.

Based on the last expression, we conclude that the proof ends if for every n ≥ 2
we show that

6n + 7
6n + 1

· 4

√
2n + 1
2n + 3

≤
√

2. (15)

Indeed, consider the following function f of x:

f(x) =
(6x + 7)4 · (2x + 1)
(6x + 1)4 · (2x + 3)

, x ≥ 2,

and let’s investigate its behavior in the interval x ≥ 2. To do this, we find the
derivative:

f ′(x) = −8(6x + 7)3 · (36x2 + 24x− 61)
(6x + 1)5 · (2x + 3)2

.

It is easy to see that f ′(x) < 0 for every x ≥ 2, which means that f is a decreasing
function on the interval x ≥ 2 and therefore, in this interval, its maximum is
attained at the point x = 2.

Therefore, if we return to (15) we get

6n + 7
6n + 1

4

√
2n + 1
2n + 3

≤ 6 · 2 + 7
6 · 2 + 1

4

√
2 · 2 + 1
2 · 2 + 3

< 1.36 <
√

2

for any n, which proves (15) and, therefore, completes the proof of Theorem 2.1. �

Remark 1 : Inequality (1) can be obviously rewritten in terms of a hyperbolic
cosine as follows

cosh
(

4
√

2 t
)

+ t ≥ et.

Remark 2 : Let us formulate the proved theorem as follows: for a = 4
√

2 and
every number t ∈ R1 the following inequality is valid

eat + e−at

2
+ t ≥ et. (16)
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A natural question arises: for which other values of the parameter a the given
inequality is valid? Applying various computer programs to check the validity of
(16) we see that it seems to be true for all real numbers t as a ≥ 4

√
2, but we do not

know yet the analytical proof of this fact. Moreover, elementary calculations show
that (16) is false when a < 4

√
2. In particular, this can be seen from the graph of

the function ϕa(t) = eat+e−at

2 + t− et as a = 1.185 < 4
√

2 (see Fig. 2).

eat+e−at

2
+ t− et at a = 1.185

The same mathematical programs show that (16) seems to be true for a =
1.189 < 4

√
2. In this regard, we can pose the following problem: find the minimum

positive value of the parameter a, for which (16) is valid.
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