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The nonlinear controlled integral equation corresponding to the quasi-linear controlled neutral
differential equation is constructed. The structure and properties of kernel of the integral
equation are established. For the neutral and integral equations theorems on the existence
and uniqueness of solution are provided. The equivalence of the integral and neutral differential
equations is established.
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1. Introduction

In the present paper for the controlled quasi-linear neutral differential equation

ẋ(t) = A(t, x(t), x(t− τ), u(t))ẋ(t− τ) + f(t, x(t), x(t− τ), u(t)), t ∈ [t0, t1] (1.1)

with the initial condition

x(t) = ϕ(t), t < t0, x(t0) = x0 (1.2)

the corresponding nonlinear controlled integral equation is constructed

y(t) = x0 +
∫ t0+τ

t0

Y (ξ; t, y(·), u(·))A(ξ, y(ξ), y(ξ − τ), u(ξ))ϕ̇(ξ − τ)dξ

+
∫ t

t0

Y (ξ; t, y(·), u(·))f(ξ, y(ξ), y(ξ − τ), u(ξ))dξ, y(ξ) = ϕ(ξ), ξ < t0. (1.3)
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The matrix-function Y (ξ; t, y(·), u(·)) is called the integral kernel. The essential
novelty here is that equations (1.1) and (1.3) contain a control function u(t) and for
this case structure and properties of the kernel are established. Besides, theorems on
the existence and uniqueness of solution are provided and equivalence of equations
(1.1) and (1.3) is proved. We note that the above mentioned questions play the
principal role in the study of well-posedness of Cauchy’s problem. The details,
about this investigations are given in [1-3] for the quasi-linear neutral differential
equations without control. The results obtained in the paper are generalization of
the assertions given in [1-3].

2. The controlled integral equation

Let Rn
x be the n-dimensional vector space of points x = (x1, . . . , xn)T , where T is

the sign of transposition; let I = [t0, t1] be a fixed interval and let τ > 0 be a given
number, with t0 + τ < t1; the n × n-dimensional matrix-function A(t, x, y, u) and
the n-dimensional vector-function f(t, x, y, u) are continuous and bounded on the
set I ×Rn

x ×Rn
x ×Rr

u and satisfy the Lipschptz condition with respect to (x, y, u),
i. e. there exist LA > 0 and Lf > 0 such that we have

|A(t, x1, y1, u1)−A(t, x2, y2, u2)| ≤ LA

(
|x1 − x2|+ |y1 − y2|+ |u1 − u2|

)

∀t ∈ I, (xi, yi, ui) ∈ Rn
x ×Rn

x ×Rr
u, i = 1, 2,

and

|f(t, x1, y1, u1)− f(t, x2, y2, u2)| ≤ Lf

(
|x1 − x2|+ |y1 − y2|+ |u1 − u2|

)

∀t ∈ I, (xi, yi, ui) ∈ Rn
x ×Rn

x ×Rr
u, i = 1, 2.

Further, denote by Ω the set of piecewise-continuous control functions u(t) ∈ Rr
u

with finitely many discontinuous of the first kind equipped with the norm ‖u‖ =
sup{|u(t)| : t ∈ I};ϕ(t) ∈ Rn

x , t ∈ [t0 − τ, t0] is a given continuously differentiable
initial function; x0 ∈ Rn

x is a given initial vector.
Let us consider the quasi-linear controlled neutral differential equation

ẋ(t) = A(t, x(t), x(t− τ), u(t))ẋ(t− τ) + f(t, x(t), x(t− τ), u(t)), t ∈ I (2.1)

with the initial condition

x(t) = ϕ(t), t ∈ [τ̂ , t0), x(t0) = x0, (2.2)
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where τ̂ = t0 − τ.

Definition 2.1: Let u(t) ∈ Ω. A function x(t) = x(t;u), t ∈ I1 = [τ̂ , t1], is called
a solution of equation (2.1) with the initial condition (2.2), if it satisfies condition
(2.2) and is absolutely continuous on the interval I and satisfies equation (2.1)
almost everywhere on I.

Theorem 2.2 : For any u(t) ∈ Ω there exists the unique solution x(t) =
x(t;u), t ∈ I1.

Proof : The existence of the global solution will be proved by the step method
from left to right.
Step 1. Let t ∈ [t0, t0 + τ ] then we have the ordinary differential equation

ẋ(t) = A(t, x(t), ϕ(t− τ), u(t))ϕ̇(t− τ) + f(t, x(t), ϕ(t− τ), u(t)) (2.3)

with the initial condition

x(t0) = x0. (2.4)

It is clear that the function

A(t, x, ϕ(t− τ), u(t))ϕ̇(t− τ) + f(t, x, ϕ(t− τ), u(t))

satisfies the Lipschptz condition with resect to x on the set Rn
x . Therefore, there

exists the global unique solution x1(t), t ∈ [t0, t0 + τ ] for the problem (2.3)-(2.4).
Step 2. Let [t0 + τ, t0 + 2τ ] ⊂ I and t ∈ [t0 + τ, t0 + 2τ ] then we consider the
problem


ẋ(t) = A(t, x(t), x1(t− τ), u(t))ẋ1(t− τ)
+f(t, x(t), x1(t− τ), u(t)), t ∈ [t0 + τ, t0 + 2τ ],
x(t0 + τ) = x1(t0 + τ).

(2.5)

The problem (2.5) on the interval t ∈ [t0 +τ, t0 +2τ ] has the global unique solution
x2(t). Thus, the function

x(t) =


ϕ(t), t ∈ [τ̂ , t0),
x1(t), t ∈ [t0, t0 + τ ],
x2(t), t ∈ (t0 + τ, t0 + 2τ ]

is the solution of problem (2.1)-(2.2) on the interval [τ̂ , t0 + 2τ ]. Continuing this
process we establish existence of the unique solution x(t) on the interval I1. �

Theorem 2.3 : The solution x(t), t ∈ I1 of problem (2.1)-(2.2) can be represented
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on the interval I in the following form:

x(t) = x0 +
∫ t0

t0−τ
Y (ξ + τ ; t, x(·), u(·))A(ξ + τ, x(ξ + τ), x(ξ), u(ξ + τ))ϕ̇(ξ)dξ

+
∫ t

t0

Y (ξ; t, x(·), u(·))f(ξ, x(ξ), x(ξ − τ), u(ξ))dξ, (2.6)

where

x(ξ) = ϕ(ξ), ξ ∈ [τ̂ , t0) (2.7)

and Y (ξ, t, x(·), u(·)) is the matrix-function satisfying the difference equation

Y (ξ; t, x(·), u(·)) = E + Y (ξ + τ ; t, x(·), u(·))

×A(ξ + τ, x(ξ + τ), x(ξ), u(ξ + τ)) (2.8)

on (t0, t) for any fixed t ∈ (t0, t1] and the condition

Y (ξ; t, x(·), u(·)) =

{
E, ξ = t,

Θ, ξ > t.
(2.9)

Here, E is the identity matrix and Θ is the zero matrix.

Proof : On the interval (t0, t), where t ∈ (t0, t1], consider the equation

ẋ(ξ) = A(ξ, x(ξ), x(ξ − τ), u(ξ))ẋ(ξ − τ)

+f(ξ, x(ξ), x(ξ − τ), u(ξ)), ξ ∈ (t0, t) (2.10)

with the initial condition

x(ξ) = ϕ(ξ), ξ ∈ [τ̂ , t0), x(t0) = x0.

Multiplying equation (2.10) on the matrix-function Y (ξ; t, x(·), u(·)) and integrat-
ing in ξ ∈ [t0, t], we obtain

∫ t

t0

Y (ξ; t, x(·), u(·))ẋ(ξ)dξ =
∫ t

t0

Y (ξ; t, x(·), u(·))A(ξ, x(ξ), x(ξ−τ), u(ξ))ẋ(ξ−τ)dξ
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+
∫ t

t0

Y (ξ; t, x(·), u(·))f(ξ, x(ξ), x(ξ − τ), u(ξ))dξ. (2.11)

Further,

∫ t

t0

Y (ξ; t, x(·), u(·))A(ξ, x(ξ), x(ξ − τ), u(ξ))ẋ(ξ − τ)dξ

=
∫ t−τ

t0−τ
Y (ξ + τ ; t, x(·), u(·))A(ξ + τ, x(ξ + τ), x(ξ), u(ξ + τ))ẋ(ξ)dξ

=
∫ t0

t0−τ
Y (ξ + τ ; t, x(·), u(·))A(ξ + τ, x(ξ + τ), x(ξ), u(ξ + τ))ϕ̇(ξ)dξ

+
∫ t

t0

Y (ξ + τ ; t, x(·), u(·))A(ξ + τ, x(ξ + τ), x(ξ), u(ξ + τ))ẋ(ξ)dξ (2.12)

(see (2.9)). Taking into account (2.12), from (2.11) we obtain

∫ t

t0

[
Y (ξ; t, x(·), u(·))−Y (ξ + τ ; t, x(·), u(·))A(ξ + τ, x(ξ + τ), x(ξ), u(ξ + τ))

]
ẋ(ξ)dξ

=
∫ t0

t0−τ
Y [ξ + τ ; t, x(·), u(·))A(ξ + τ, x(ξ + τ), x(ξ), u(ξ + τ))ϕ̇(ξ)dξ

+
∫ t

t0

Y (ξ, x(·), u(·))f(ξ, x(ξ), x(ξ − τ), u(ξ))dξ.

Y (ξ; t, x(·), u(·)) satisfies equation (2.8) and, therefore, the latter relation implies
formula (2.6). �

The expression

y(t) = x0 +
∫ t0+τ

t0

Y (ξ; t, y(·), u(·))A(ξ, y(ξ), y(ξ − τ), u(ξ))ϕ̇(ξ − τ)dξ

+
∫ t

t0

Y (ξ; t, y(·), u(·))f(ξ, y(ξ), y(ξ − τ), u(ξ))dξ (2.13)
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with the condition

y(ξ) = ϕ(ξ), ξ ∈ [τ̂ , t0) (2.14)

is called the integral equation corresponding to problem (2.1)-(2.2).

Definition 2.4: Let u(t) ∈ Ω. A function y(t) = y(t;u), t ∈ I1, is called a solu-
tion of equation (2.13) with condition (2.14), if it satisfies condition (2.14) and is
continuous on the interval I and satisfies equation (2.13) everywhere on I.

3. Properties of the Integral Kernel. Existence and uniqueness. Equivalence

Theorem 3.1 : Let t ∈ (t0, t1] be a fixed point. The solution of the difference
equation (2.8) can be represented by the following formula:

Y (ξ; t, x(·), u(·)) = χ(ξ; t)E +
k∑

i=1

χ(ξ + iτ ; t)
1∏

q=i

A(ξ + qτ, x(ξ + qτ),

x(ξ + (q − 1)τ), u(ξ + qτ)),

where

χ(ξ; t) =

{
1, t0 ≤ ξ ≤ t,

0, ξ > t

and k is a minimal natural number satisfying the condition

t1 − kτ < t0.

Theorem 3.2 : Let s1, s2 ∈ (t0, t1] and 0 < s2 − s1 < τ. Let y(t), t ∈ I be a
continuous function. Then there exist subintervals I1(s1, s2) ⊂ I and I2(s1, s2) ⊂ I
such that {

Y (ξ; s1, y(·), u(·)) = Y (ξ; s2, y(·), u(·)), ξ ∈ I1(s1; s2),
Y (ξ; s1, y(·), u(·)) 6= Y (ξ; s2, y(·), u(·)), ξ ∈ I2(s1; s2),

with

lim
s2−s1→0

mesI2(s1, s2) → 0.

Theorem 3.3 : Let y(t) ∈ Rn, t ∈ I1 be a given piecewise-continuous function,



Vol. 26, No. 2, 2022 87

with y(ξ) = ϕ(ξ), ξ ∈ [τ̂ , t0) and u(t) ∈ Ω. Then the function

z(t) = x0 +
∫ t0

t0−τ
Y (ξ + τ ; t, y(·), u(·))A(ξ + τ, y(ξ + τ), y(ξ), u(ξ + τ))ϕ̇(ξ)dξ

+
∫ t

t0

Y (ξ; t, y(·), u(·))f(ξ, y(ξ), y(ξ − τ), u(ξ))dξ

is continuous on the interval I.

Theorem 3.4 : Let yi(t) ∈ Rn
x , t ∈ I, i = 1, 2 be continuous functions and ui(t) ∈

Ω, i = 1, 2. Then for ∀ (ξ, t) ∈ I2

|Y (ξ; t, y1(·), u1(·))− Y (ξ; t, y2(·), u2(·))|

≤ LA

k∑
i=1

χ(ξ + iτ ; t)‖A‖i−1
( 1∑

q=i

[
|y1(ξ + qτ)− y2(ξ + qτ)|

+|y1(ξ + (q − 1)τ)− y2(ξ + (q − 1)τ)|+ |u1(ξ + qτ)− u2(ξ + qτ)|
])

,

where

‖A‖ = sup{|A(t, x, y, u)| : (t, x, y, u) ∈ I ×Rn
x ×Rn

x ×Rr
u}.

Theorem 3.5 : Let ym(t) ∈ Rn
x , t ∈ I, m = 0, 1, ... be continuous functions and

um(t) ∈ Ω,m = 0, 1, ..., with

‖ym − y0‖ → 0, ‖um − u0‖ → 0,

where

‖y‖ = {|y(t)| : t ∈ I}.

Then ∫ t

t0

Y (ξ; t, ym(·), um(·))dξ →
∫ t

t0

Y (ξ; t, y0(·), u0(·))dξ

uniformly for t ∈ I.

Theorem 3.6 : The integral equation (2.13) with condition (2.14) has the unique
solution.

Theorem 3.7 : The quasi-linear neutral differential equation (2.1) and the inte-
gral equations (2.13) are equivalent.
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Proof : It is clear that if x(t), t ∈ I1 is a solution of equation (2.1) with the
initial condition (2.2), then it is a solution of the integral equation (2.13) with the
initial condition (2.14) also (see Theorem 1.2). Let y(t), t ∈ I1 be a solution of the
integral equation (2.13) with the initial condition (2.14) and it is not solution of
equation (2.1). By Theorem 2.1 equation (2.1) has the unique solution x̂(t), which
is a solution of the integral equation (2.13) also. But equation (2.13) has the unique
solution, i. e. x̂(t) = y(t). �

Remark 1 : The analogous theorems for the quasi-linear differential equations,
where A(t, x(t), x(t− τ), u(t)) ≡ A(t) are proved in [1-3].

4. Conclusion

On the basis of the given theorems continuous dependence of a solution of the
quasi-linear controlled neutral differential equation (2.1) can be investigated with
respect to perturbations of the initial data. In future work will consider the case
when a controlled integral equation contains several variable delays.
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