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An analytical (exact) solution of two-dimensional problems of elasticity in the domain
bounded by hyperbolas is constructed in the elliptic coordinates. A special kind of internal
boundary value problem is set and solved in the area bounded by hyperbolas when both parts
of one hyperbola (border) are lines and non-homogeneous symmetry or antisymmetry condi-
tions are given on it, while non-homogeneous conditions, such as stresses or displacements,
are given on another hyperbola. Exact solution is obtained using the method of separation of
variables. The graphs for the numerical results of some test problems are presented.
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1. Introduction

The solution of boundary value and boundary-contact problems in the areas with
curvilinear border, is simplified if examining such problems in the appropriate
curvilinear coordinate system. For instance, the problems for the areas bounded
by a circle or its parts are studied in the polar coordinates [1-3], while the problems
for the areas bounded by the circles with different centers and radii are studied
in the bipolar coordinates [4-6]. The problems for the areas bounded by an ellipse
or its parts are studied in the elliptic coordinates [7-14], and the problems for the
areas with parabolic boundaries are considered in the parabolic coordinates [15-17].
The problems I consider do not coincide with the above-mentioned ones. This

work deals with mathematical modeling of the stress-strain state of a homogeneous
isotropic body with a hyperbolic crack and the corresponding boundary value prob-
lems are solved analytically.
The current paper examines the internal boundary value problems (BVP) for the

area introduced in Fig. 1 in elliptic coordinates ξ, η ( −∞ < ξ < ∞, 0 ≤ η ≤ π,
x = c cosh ξ cos η, y = c sinh ξ sin η, where x, y (−∞ < x <∞, −∞ < y <∞)
are Cartesian coordinates, c is a scale factor. In the present article, we take c = 1)
[18,19]. In particular, a special kind of internal BVP is set and solved in the
area Ω =

{
−ξ1 < ξ < ξ1, 0 < η < η1 =

π
2

}
(see Fig. 1), when both parts of the
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Figure 1. The area Ω1 = {−∞ < ξ < ∞, 0 < η < η1} (and Ω = {−ξ1 < ξ < ξ1, 0 < η < η1} ) bounded
by hyperbolas when both parts of the hyperbola η = 0 are lines.

hyperbola η = 0 are lines and non-homogeneous symmetry or antisymmetry con-
ditions are given on it, while such non-homogeneous conditions, as stresses or dis-
placements, are given on η = π

2 . The analytical (exact) solution of two-dimensional
problems of elasticity is constructed in the area bounded by the coordinate lines
of the elliptic coordinate system [11, 13]. The analytical solution is obtained with
the method of separation of variables.
Using the MATLAB software, the numerical results are obtained of some test

problems and relevant graphs are presented.

2. Principal equalities in elliptic coordinate system

The paper deals with the homogeneous isotropic elastic body free of volume forces,
to which the following area (see Fig. 1) corresponds:

Ω =
{
−ξ1 < ξ < ξ1, 0 < η <

π

2

}
(1)

(Selection of ξ1 := ξ1k see Appendix B).

2.1. Equilibrium equations and Hooke’s law

In the elliptic coordinates the equilibrium equations with respect to the function
D, K, u, v can be writen as [10,20]:

a) D,ξ −K,η = 0, c) ū,ξ + v̄,η = h20B

b) D,η +K,ξ = 0, d) v̄,ξ − ū,η = h20R,
(2)

and Hooke’s law as follows:
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h20
2µ
σξξ =

h20
2µ
D − v̄,η −

L1

h20
,

h20
2µ
σηη =

h20
2µ
D − ū,ξ +

L1

h20
,

h20
2µ
τξη =

h20
2µ
K − ū,η −

L2

h20
,

(3)

where L1 = sinh (2ξ) ū− sin (2η) v̄, L2 = sin (2η) ū+ sinh (2ξ) v̄, ū = 2hu
c2 , v̄ = 2hv

c2 ,

h0 =
√

cosh (2ξ)− cos (2η); h := hξ = hη = c√
2
h0 are Lammé coefficients [19];

u, v are the components of the displacement vector along the tangents of η, ξ
lines; B = κ−2

κµ D is the divergence of the displacement vector; R = 1
µK is the rotor

component of the displacement vector; µ = E
2(1−ν) , κ = 4 (1− ν); ν is Poisson’s

ratio and E is the modulus of elasticity; σξξ, σηη and τξη = τηξ are normal and
tangential stresses.

2.2. Analytical solution of BVP

Let us find the solution of system (2) in class C2 (Ω) (Ω area see Fig. 1). The
solution is presented by two harmonic φ1 and φ2 functions (see Appendix A). From
formulas (A.11)-(A.13), after inserting α = η1 and making simple transformations,
we will obtain:

ū =
[
F1 sin

2 η1 · cot η + (κ− 1)φ2

]
sin η · cosh ξ

−
[
F2 cos

2 η1 · tan η + (κ− 1)φ1

]
cos η · sinh ξ,

v̄ =
[
F1 cos

2 η1 · tan η + (κ− 1)φ2

]
cos η · sinh ξ

+
[
F2 sin

2 η1 · cot η + (κ− 1)φ1

]
sin η · cosh ξ.

(4)

∆φi =
1
h2 (φi,ξξ + φi,ηη) = 0, i = 1, 2. (5)

D = − κµ

cosh (2ξ)− cos (2η)
[F1 cos η · sinh ξ − F2 sin η · cosh ξ] ,

K =
κµ

cosh (2ξ)− cos (2η)
[F1 sin η · cosh ξ − F2 cos η · sinh ξ] ,

where F1 = (φ1,ξ − φ2,η), F2 = (φ1,η + φ2,ξ) .
The stress tensor components will be written as follows:
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h20
µ
σηη = −

[
F3 sin

2 η1 · cot η − κφ1,η + (κ− 2)φ2,ξ

]
sin η cosh ξ

+
[
F4 cos

2 η1 · tan η + (κ− 2)φ1,ξ + κφ2,η

]
cos η · sinh ξ + F5,

h20
µ
τξη =

[
F3 cos

2 η1 · tan η − κφ1,η + (κ− 2)φ2,ξ

]
cos η sinh ξ

+
[
F4 sin

2 η1 · cot η + (κ− 2)φ1,ξ + κφ2,η

]
sin η · cosh ξ + F6,

h20
µ
σξξ =

[
F3 sin

2 η1 · cot η − (κ− 2)φ1,η + κφ2,ξ

]
sin η cosh ξ

−
[
F4 cos

2 η1 · tan η + κφ1,ξ + (κ− 2)φ2,η

]
cos η · sinh ξ − F5,

(6)

where

F3 = 2 (φ1,ξξ − φ2,ξη) , F4 = 2 (φ1,ξη + φ2,ξξ) ,

F5 =
4 sin (η1 + η) · sin (η1 − η)

cosh (2ξ)− cos (2η)
[F1 sinh ξ · cos η − F2 cosh ξ · sin η] ,

F6 =
4 sin (η1 + η) · sin (η1 − η)

cosh (2ξ)− cos (2η)
[F1 cosh ξ · sin η − F2 sinh ξ · cos η] .

From (5), by using the method of separation of variables, we will obtain

φi =

∞∑
n=1

φin, i = 1, 2, (7)

where

φ1n = A1n cosh (nη) · sin (nξ) , φ2n = A2n sinh (nη) · cos (nξ)

or

φ1n = A1n sinh (nη) · cos (nξ) , φ2n = A2n cosh (nη) · sin (nξ) .

We are introducing the following assumptions: (a) ξ1 is a sufficiently great pos-
itive number (see Appendix B); (b) the boundary conditions given on η = η1, i.e.
stresses or displacements equal zero at ξ̃1 < ξ < ξ1 interval; (c) when stresses are
given on η = η1, the main vector and main moment equal zero.
If ū and v̄ are given on η = η1, it is purposeful to take the following equivalent

expressions instead of them [13]:

2

h20
(cosh ξ · sin η1ū+ sinh ξ · cos η1v̄)

=
1

2
sin (2η1) (φ1,ξ − φ2,η) + (κ− 1)φ2,

2

h20
(sinh ξ · cos η1ū− cosh ξ · sin η1v̄)

= −1

2
sin (2η1) (φ1,η + φ2,ξ)− (κ− 1)φ1.

(8)
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And when h2
0

2µσηη and h2
0

2µσξη are given on η = η1, it is purposeful to take the

following equivalent expressions instead of them [13]:

2

µ
(cosh ξ · sin η1σηη − sinh ξ · cos η1τξη) = − sin (2η1) (φ1,ξξ − φ2,ξη)

+κφ1,η − (κ− 2)φ2,ξ,

2

µ
(sinh ξ · cos η1σηη − cosh ξ · sin η1τξη) = sin (2η1) (φ1,ξη + φ2,ξξ)

+ (κ− 2)φ1,ξ + κφ2,η.

(9)

Using the homogeneous boundary conditions of the posed specific problem, we
will paste functions φ1 and φ2 selected from (7) in the right parts of equations (8)
or (9) and will decompose the left parts of the equations into Fourier trigonometric
series. We will equate the expressions in both parts at the trigonometric functions of
the same name and will receive an infinite system of linear algebraic equations with
rspect to unknown coefficients A1n and A2n. The major matrix of this system is of
a block-diagonal kind. The dimensions of each block are 2×2 and the determinant
does not equal zero, while the determinant in the infinity tends to a finite number
different from zero.
Convergence of functional series corresponding to expressions (4) and (6) in the

area Ω̄ = {−ξ1 ≤ ξ ≤ ξ1, 0 ≤ η ≤ η1} are easily proved by constructing the rele-
vant majorizing uniformly convergent numerical series.

3. Special case of internal BVP

3.1. Setting and solving problems

Let us set and solve a special kind of internal problems in the area Ω ={
−ξ1 < ξ < ξ1, 0 < η < π

2

}
, when both parts of the contour η = 0 are lines (see

Fig. 1). So, let us find the solution of the system of equilibrium equations (2)
of a homogeneous isotropic elastic body in the area Ω, which meets the follow-
ing boundary conditions: it meets non-homogeneous conditions of antisymmetry
or symmetry on η = 0, which are common boundary conditions and not their
combination and stresses or displacements given on η = η1 =

π
2 .

So, we have the following conditions:

for ξ = 0 : a) v̄ = 0, ū,ξ = 0 or b) ū = 0, v̄,ξ = 0,

for η = 0+, ξ > 0 : a) ū = f1 (ξ) , v̄,η = f2 (ξ) or

b) − v̄ = f3 (ξ) or ū,η = f4 (ξ) ,

for η = 0−, ξ < 0 : a) ū = −f1 (ξ) , v̄,η = f2 (ξ) or

b) v̄ = −f3 (ξ) or ū,η = f4 (ξ) ,

(10)

for η = η1 =
π
2 : a) h2

0

µ σηη = Q1 (ξ) ,
h2
0

µ τξη = Q2 (ξ) or

b) ū = H1 (ξ) , v̄ = H2 (ξ) ,
(11)
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where Qi (i = 1, 2), together with its first order derivatives, and Hi together with
its first and second order derivatives are decomposed into absolutely and uniformly
convergent trigonometric Fourier series [21].
When ū and v̄ are given on η = η1, it is purposeful to take their equivalent

expressions (8) instead of them, and if h2
0

2µσηη and h2
0

2µσξη are given on η = η1, then

it is purposeful to take their equivalent expressions (9) instead of them.
From formula (7), functions φ1 and φ2 will be selected with boundary conditions

(10).
1) Taking into account (10a), φ1n and φ2n we will have:

φ1n = A1n cosh (nη) · sin (nξ) , φ2n = A2n sinh (nη) · cos (nξ) . (12)

System (8) will be as follows:

2

h20
(cosh ξ · sin η1ū+ sinh ξ · cos η1v̄) =

∞∑
n=1

(κ− 1)A2n sinh (nη) cos (nξ) ,

2

h20
(sinh ξ · cos η1ū− cosh ξ · sin η1v̄) = −

∞∑
n=1

(κ− 1)A1n cosh (nη) sin (nξ) .

System (9) will be as follows:

2

µ
(cosh ξ · sin η1σηη − sinh ξ · cos η1τξη)

=

∞∑
n=1

n [κA1n + (κ− 2)A2n] sinh (nη) sin (nξ) ,

2

µ
(sinh ξ · cos η1σηη − cosh ξ · sin η1τξη)

=

∞∑
n=1

n [(κ− 2)A1n + κA2n] cosh (nη) cos (nξ) .

(13)

As a result of inserting expressions (7), (12) in (4), the following formulas for
displacements are obtained:

ū =

∞∑
n=1

{[(A1n −A2n)n · cos η cosh (nη) + (κ− 1)A2n sin η sinh (nη)]

· cosh ξ cos (nξ)− (κ− 1)A1n cos η cosh (nη) sinh ξ sin (nξ)} ,

v̄ =

∞∑
n=1

{[(A1n −A2n)n · cos η sinh (nη) + (κ− 1)A1n sin η cosh (nη)]

· cosh ξ sin (nξ) + (κ− 1)A2n cos η sinh (nη) sinh ξ cos (nξ)} .

(14)

After inserting (7), (12) in formulas (6), the following expressions are obtained for
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stresses:

h20
2µ
σηη

=

∞∑
n=1

{[
2n2 (A1n −A2n) cos η cosh (nη) + κnA1n sin η sinh (nη)

+ (κ− 2)nA2n sin η sinh (nη)] cosh ξ sin (nξ)

+ [(κ− 2)A1n + κA2n]n cos η cosh (nη) sin ξ cos (nξ)

+
4 cos2 η

cosh (2ξ)− cos (2η)
n (A1n −A2n) [cos η cosh (nη) sinh ξ cos (nξ)

− sin η sinh (nη) cosh ξ sin (nξ)]} ,

h20
2µ
τξη

=

∞∑
n=1

{[
2n2 (A1n −A2n) cos η sinh (nη) + (κ− 2)nA1n sin η cosh (nη)

+κnA2n sin η cosh (nη)] cosh ξ cos (nξ)

− [κA1n + (κ− 2)A2n]n cos η sinh (nη) sinh ξ sin (nξ)

+
4 cos2 η

cosh (2ξ)− cos (2η)
n (A1n −A2n) [sin η cosh (nη) cosh ξ cos (nξ)

− cos η sinh (nη) sinh ξ sin (nξ)]} ,

h20
2µ
σξξ

=

∞∑
n=1

{[
−2n2 (A1n −A2n) cos η cosh (nη)− (κ− 2)nA1n sin η sinh (nη)

−κnA2n sin η sinh (nη)] cosh ξ sin (nξ)

− [κA1n + (κ− 2)A2n]n cos η cosh (nη) sinh ξ cos (nξ)

− 4 cos2 η

cosh (2ξ)− cos (2η)
n (A1n −A2n) [cos η cosh (nη) sinh ξ cos (nξ)

− sin η sinh (nη) cosh ξ sin (nξ)]} .

(15)

2) By considering (10b), we will obtain:

φ1n = A1n sinh (nη) · cos (nξ) , φ2n = A2n cosh (nη) · sin (nξ) . (16)
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System (8) will be as follows:

2

h20
(cosh ξ · sin η1ū+ sinh ξ · cos η1v̄) =

∞∑
n=1

(κ− 1)A2n cosh (nη) sin (nξ) ,

2
h2
0
(sinh ξ · cos η1ū− cosh ξ · sin η1v̄) = −

∞∑
n=1

(κ− 1)A1n sinh (nη) cos (nξ) .

System (9) will be as follows:

2

µ
(cosh ξ · sin η1σηη − sinh ξ · cos η1τξη)

=

∞∑
n=1

n [κA1n − (κ− 2)A2n] cosh (nη) cos (nξ) ,

2

µ
(sinh ξ · cos η1σηη − cosh ξ · sin η1τξη)

= −
∞∑
n=1

n [(κ− 2)A1n − κA2n] sinh (nη) sin (nξ) .

(17)

As a result of inserting expressions (7), (16) in formulas (4), the following ex-
pressions for displacements are obtained:

ū =

∞∑
n=1

{[− (A1n +A2n)n · cos η sinh (nη) + (κ− 1)A2n sin η cosh (nη)]

· cosh ξ sin (nξ)− (κ− 1)A1n cos η sinh (nη) sinh ξ cos (nξ)} ,

v̄ =

∞∑
n=1

{[(A1n +A2n)n · cos η cosh (nη) + (κ− 1)A1n sin η sinh (nη)]

· cosh ξ cos (nξ) + (κ− 1)A2n cos η cosh (nη) sinh ξ sin (nξ)} .

(18)

After inserting expressions (7), (16) in (6), the following formulas are obtained



Vol. 25, No. 2, 2021 101

for stresses:

h20
2µ
σηη

=

∞∑
n=1

{[
2n2 (A1n +A2n) cos η sinh (nη) + κnA1n sin η cosh (nη)

− (κ− 2)nA2n sin η cosh (nη)] cosh ξ cos (nξ)

− [(κ− 2)A1n − κA2n]n cos η sinh (nη) sin ξ sin (nξ)

− 4 cos2 η

cosh (2ξ)− cos (2η)
n (A1n +A2n) [cos η sinh (nη) sinh ξ sin (nξ)

+ sin η cosh (nη) cosh ξ cos (nξ)]} ,

h20
2µ
τξη

=

∞∑
n=1

{[
−2n2 (A1n +A2n) cos η cosh (nη)− (κ− 2)nA1n sin η sinh (nη)

+κnA2n sin η sinh (nη)] cosh ξ sin (nξ)

− [κA1n + (κ− 2)A2n]n sin η cosh (nη) cosh ξ cos (nξ)

+
4 cos2 η

cosh (2ξ)− cos (2η)
n (A1n +A2n) [sin η sinh (nη) cosh ξ sin (nξ)

− cos η cosh (nη) sinh ξ cos (nξ)]} ,

h20
2µ
σξξ

=

∞∑
n=1

{[
−2n2 (A1n +A2n) cos η sinh (nη)− (κ− 2)nA1n sin η cosh (nη)

+κnA2n sin η cosh (nη)] cosh ξ cos (nξ)

+ [κA1n − (κ− 2)A2n]n cos η sinh (nη) sinh ξ sin (nξ)

+
4 cos2 η

cosh (2ξ)− cos (2η)
n (A1n +A2n) [cos η sinh (nη) sin ξ sin (nξ)

+ sin η cosh (nη) cosh ξ cos (nξ)]} .

(19)
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3.2. Test problems

1) Let us find numerical solutions of problem (2), (10a) (11a) when a) Q1 (ξ) = P
and Q2 (ξ) = 0, i.e. normal load 2

µσηη = 2P
h2
0
is given on the boundary η = η1 = π

2 ,

and tangential stress equals zero, and b) Q1 (ξ) = 0 and Q2 (ξ) = P , i.e. tangential
stress 2

µτξη = 2P
h2
0
is given on the boundary η = η1 = π

2 , and normal stress equals
zero.
a) System (13) will be as follows:

∞∑
n=1

n [κA1n + (κ− 2)A2n] sinh (nη1) sin (nξ) =
2P

cosh (2ξ)− cos (2η1)
cosh ξ,

∞∑
n=1

n [(κ− 2)A1n + κA2n] cosh (nη1) cos (nξ) = 0.

Following the expansion of the right side of the equations into Fourier series, an
infinite system of linear algebraic equations is obtained in relation to unknown A1n

and A2n coefficients

n [κA1n + (κ− 2)A2n] sinh (nη1) = F̃1n, (κ− 2)A1n + κA2n = 0

n = 1, 2, . . .
(20)

where F̃1n = 2
π

∫ π
0 f1 (ξ) sin (nξ) dξ is the coefficient of expansion of the function

f1 (ξ) =
2P

cosh (2ξ)− cos (2η1)
cosh ξ

into the Fourier series F1 (ξ) =
∞∑
n=1

F̃1n sin (nξ).

From (20):

A1n =
κF̃1n

4n (κ− 1) sinh (nη1)
, A2n = − (κ− 2) F̃1n

4n (κ− 1) sinh (nη1)
.

Then, by putting A1n and A2n in formulas (14) and (15), we will obtain the
values of displacements and stresses at any point of the considered area.
b) System (13) will be as follows:

∞∑
n=1

n [κA1n + (κ− 2)A2n] sinh (nη1) sin (nξ) = 0,

∞∑
n=1

n [(κ− 2)A1n + κA2n] cosh (nη1) cos (nξ) =
∞∑
n=1

F̃1n cos (nξ) ,

where F̃1n is the coefficient of expansion of function

f1 (ξ) = − 2P

cosh (2ξ)− cos (2η1)
cosh ξ

into Fourier series.
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κA1n + (κ− 2)A2n = 0,

n [(κ− 2)A1n + κA2n] cosh (nη1) = F̃1n, n = 1, 2, . . .

A1n =
κF̃1n

4n (κ− 1) cosh (nη1)
, A2n = − (κ− 2) F̃1n

4n (κ− 1) cosh (nη1)
.

Further, by putting A1n and A2n in formulas (14) and (15), we will obtain the
values of displacements and stresses at any point of the considered domain.
2) Let us find numerical solutions of problems (2), (10b),(11a) when a) Q1 (ξ) = P
and Q2 (ξ) = 0, i.e. normal load 2

µσηη = 2P
h2
0
is given on the boundary η = η1 = π

2 ,

and the tangential stress equals zero, and b) Q1 (ξ) = 0 and Q2 (ξ) = P , i.e. the
tangential stress 2

µτξη = 2P
h2
0
is given on the boundary η = η1 = π

2 , and normal

stress equals zero.
a) System (17) will be as follows:

∞∑
n=1

n [κA1n − (κ− 2)A2n] cosh (nη) cos (nξ) =

∞∑
n=1

F̃1n cos (nξ) ,

∞∑
n=1

−n [(κ− 2)A1n − κA2n] sinh (nη) sin (nξ) = 0,

where F̃1n is the coefficient of expansion of the function

f1 (ξ) =
2P

cosh (2ξ)− cos (2η1)
cosh ξ

into the Fourier series.

n [κA1n − (κ− 2)A2n] cosh (nη1) = F̃1n, (κ− 2)A1n − κA2n = 0,

n = 1, 2, . . . ,

A1n =
κF̃1n

4n (κ− 1) cosh (nη1)
, A2n =

(κ− 2) F̃1n

4n (κ− 1) cosh (nη1)
.

By putting A1n and A2n in formulas (18) and (19), we will obtain the values of
displacements and stresses at any point of the considered area.
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b) System (17) will be as follows:

∞∑
n=1

n [κA1n − (κ− 2)A2n] cosh (nη) cos (nξ) = 0,

∞∑
n=1

−n [(κ− 2)A1n − κA2n] sinh (nη) sin (nξ) =

∞∑
n=1

F̃1n sin (nξ) ,

where F̃1n is the coefficient of expansion of the function

f1 (ξ) = − 2P

cosh (2ξ)− cos (2η1)
cosh ξ

into the Fourier series.

κA1n − (κ− 2)A2n = 0,

n [(κ− 2)A1n − κA2n] sinh (nη) = F̃1n, n = 1, 2, . . . .

A1n = − (κ− 2) F̃1n

4n (κ− 1) sinh (nη1)
, A2n = − κF̃1n

4n (κ− 1) sinh (nη1)
.

Next, by putting A1n and A2n in formulas (18) and (19), we will obtain the values
of displacements and stresses at any point of the considered domain.

3.3. Results and discussion

Numerical values of stresses and displacements are obtained for all four instances
mentioned above at the points of the area bounded by lines η = 0, η = η1 and ξ =
±ξ1 (see Fig. 1), and appropriate 3D graphs are constructed. The numerical values
are obtained for the following data: ν = 0.3, E = 2 · 106kg

/
cm2, P = −10kg

/
cm2,

ξ1 = 3.5, η1 = π/2.
Fig. 2 and Fig. 3 show the distribution of stresses and displacements in the

area bounded by lines η = 0, η = η1 and ξ = ±ξ1, when conditions (10a) are
fulfilled and normal stress is applied to η = η1, and tangential stress equals zero
(See Fig. 1). Following conditions (10a), σξξ, σηη stresses and v displacement are
antisymmetric to axis ox, and τξη and u are symmetric, what is seen from Fig.
2 and Fig. 3, too. When (ξ, η) tends to points (0, 0) or

(
0, π2

)
, then stresses and

normal displacement tend to a sufficiently large number with an absolute value and
tangential displacement tends to sufficiently large number with an absolute value,
when (ξ, η) tends to a point

(
0, π2

)
.

Fig. 4 and Fig. 5 show the distribution of stresses and displacements in the area
bounded by lines η = 0, η = η1 and ξ = ±ξ1 when conditions (10a) are satisfied and
tangential stress is applied to η = η1, and normal stress equals zero (see Fig. 1).
Following conditions (10a), σξξ, σηη stresses and v displacement are antisymmetric
to axis ox, and τξη and u are symmetric, what is seen in Fig. 4 and Fig. 5, too.
When (ξ, η) tends to point(0, 0), then, the stresses tend to sufficiently large numbers
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Figure 2. Distribution of stresses in the area bounded by lines η = 0, η = η1 and ξ = ±ξ1 when conditions
(10a) are valid (normal stress is applied to η = η1. See Fig. 1).

with an absolute values (for example, σηη(0.2333, 0) = −3.196 · 107), when (ξ, η)
tends to points (0, 0) or

(
0, π2

)
, then normal displacement tends to sufficiently large

number with an absolute value, and tangential displacement tends to sufficiently
large number with an absolute value when (ξ, η) tends to point

(
0, π2

)
.

The results presented on Figures 2,3 and 4,5, except for τξη, differ from each
other by the number signs, for example, at Fig.2 σξξ(0.2333, 0) = 3.476 · 107, and
at Fig.4 σξξ(0.2333, 0) = −3.3636 · 107.
Fig. 6 and Fig. 7 show the distribution of stresses and displacements in the

area bounded by lines η = 0, η = η1 and ξ = ±ξ1k, when conditions (10b) are
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Figure 3. Distribution of displacements in the area bounded by lines η = 0, η = η1 and ξ = ±ξ1 when
conditions (10a) are valid (normal stress is applied to η = η1. See Fig. 1).

satisfied and normal stress is applied to η = η1, and tangential stress equals zero
(see Fig. 1). Following conditions (10b), σξξ, σηη stresses and v displacement are
symmetric to axis ox, and τξη and u are antisymmetric, what is seen in Fig. 6
and Fig. 7, too. When (ξ, η) tends to points (0, 0) or

(
0, π2

)
, then normal stresses

and tangential displacement tend to a sufficiently large number with an absolute
value), and tangential stress and normal displacement tend to a sufficiently large
number with an absolute value when (ξ, η) tends to point

(
0, π2

)
.

Fig. 8 and Fig. 9 show the distribution of stresses and displacements in the area
bounded by lines η = 0, η = η1 and ξ = ±ξ1, when conditions (10b) are fulfilled
and tangential stress is applied to η = η1, and normal stress equals zero (see Fig. 1).
Following conditions (10b), σξξ, σηη stresses and v displacement are symmetric to
axis ox, and τξη and u are symmetric, what is seen in Fig. 8 and Fig. 9, too. When
(ξ, η) tends to points (0, 0) or

(
0, π2

)
, then stresses and tangential displacement tend

to a sufficiently large number with an absolute value, and normal displacement
tends to a sufficiently large number with an absolute value, when (ξ, η) tends to
point

(
0, π2

)
.

4. Conclusion

The paper deals the internal BVP for the domain introduced in Fig.1 in elliptic
coordinates. In particular, the special kind of internal BVP is set and solved in
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Figure 4. Distribution of stresses in the area bounded by lines η = 0, η = η1 and ξ = ±ξ1, when conditions
(10a) are valid (tangential stress is applied to η = η1. See Fig. 1).

the area Ω = {−ξ1 ≤ ξ ≤ ξ1 , 0 ≤ η ≤ π
2

}
, when both parts of the hyperbola η = 0

(border) are lines and non-homogeneous symmetry or antisymmetry conditions are
given on it, while non-homogeneous conditions, such as stresses or displacements,
are given on another hyperbola η = π

2 . This problem is a mathematical model of
the stress strain state of a homogeneous isotropic body with a hyperbolic crack.
The analytical solution of 2D problems of elasticity in the area bounded by

hyperbolas is written in the elliptic coordinates. The analytical solutions are derived
by the method of separation of variables, which is represented by means of two
harmonic functions. Numerical values of stresses and displacements are obtained
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Figure 5. Distribution of displacements in the area bounded by lines η = 0, η = η1 and ξ = ±ξ1, when
condition (10a) is valid (tangential stress is applied to η = η1. See Fig. 1).

for four test problems at the points of the area bounded by lines η = 0, η = η1
and ξ = ±ξ1 (see Fig. 1), and appropriate graphs are presented and discussed. The
computation and graphs were made by using MATLAB software.
Bodies with hyperbolic cracks are frequently applied in practice, for instance,

in building, mining mechanics, mechanical engineering, biology, medicine, etc. The
investigation of the stress-strain state of such bodies is relevant and thus, in my
point of view, setting the problems considered in the work and method to solve
them is interesting from the practical point of view.

Appendix A: Solution partial differential equations

Let us solve of partial differential equations(2).
Let us introduce the harmonic function φ1, and if we take

a) D = µ
h2
0

(
cosh ξ sin η ∂φ1

∂η − sinh ξ cos η ∂φ1

∂ξ

)
,

b) K = µ
h2
0

(
cosh ξ sin η ∂φ1

∂η + sinh ξ cos η ∂φ1

∂ξ

)
,

(A.1)

then equations (2a) and (2b) will be satisfied identically and equations (2c) and
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Figure 6. Distribution of stresses in the area bounded by lines η = 0, η = η1 and ξ = ±ξ1 when conditions
(10b) are valid (normal stress is applied to η = η1. See Fig. 1).

(2d) will be as follows

a) ∂ū
∂ξ + ∂v̄

∂η = (κ−2)
κ

(
cosh ξ sin η ∂φ1

∂η − sinh ξ cos η ∂φ1

∂ξ

)
,

b) ∂v̄
∂ξ − ∂ū

∂η = cosh ξ sin η ∂φ1

∂ξ + sinh ξ cos η ∂φ1

∂η .
(A.2)
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Figure 7. Distribution of displacements in the area bounded by lines η = 0, η = η1 and ξ = ±ξ1, when
conditions (10b) are valid (normal stress is applied to η = η1. See Fig. 1).

From here

a) ∂ū
∂ξ + ∂v̄

∂η = (κ−2)
κ

(
cosh ξ sin η ∂φ1

∂η − sinh ξ cos η ∂φ1

∂ξ

)
,

b) ∂
∂ξ

(
v̄ − sinh ξ sin η ∂φ1

∂ξ

)
= ∂

∂η

(
ū+ sinh ξ sinµ∂φ1

∂η

)
.

(A.3)

From (A.3b), it follows that there is a certain harmonic function ψ, for which
the following condition is met

ū =
∂ψ

∂ξ
− sinh ξ sin η

∂φ1

∂η
, v̄ =

∂ψ

∂η
+ sinh ξ sin η

∂φ1

∂ξ
, (A.4)

and using (A.4), it follows from that (A.3a)

h2∆ψ =
∂2ψ

∂ξ2
+
∂2ψ

∂η2
=

2 (κ− 1)

κ

(
cosh ξ sin η

∂φ1

∂η
− sinh ξ cos η

∂φ1

∂ξ

)
(A.5)

General solution of system (A.2) will be presented as

ū = χ1, v̄ = χ2,
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Figure 8. Distribution of stresses in the area bounded by lines η = 0, η = η1 and ξ = ±ξ1, when conditions
(10b) are valid (tangential stress is applied to η = η1. See Fig. 1).

where

∂χ1

∂ξ
+
∂χ2

∂η
= 0,

∂χ2

∂ξ
− ∂χ1

∂η
= 0.

The full solution of the equation system (A.2) will be written as follows:

ū =
∂ψ

∂ξ
− sinh ξ sin η

∂φ1

∂η
+ χ1, v̄ =

∂ψ

∂η
+ sinh ξ sin η

∂φ1

∂ξ
+ χ2 (A.6)
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Figure 9. Distribution of displacements in the area bounded by lines η = 0, η = η1 and ξ = ±ξ1, when
conditions (10b) are valid (tangential stress is applied to η = η1. See Fig. 1).

where ψ is the particular solution of (A.5).
Taking κ = const, we get

ψ = −κ− 1

κ
sinh ξ cos η · φ1

and formulas (A.6) will be as follows

ū = 1
κ cosh ξ cos η ∂φ1

∂ξ − κ−1
κ sinh ξ cos η · φ1

−
(
cosh ξ cos η ∂φ1

∂ξ + sinh ξ sin η ∂φ1

∂η

)
+ χ1,

v̄ = 1
κ cosh ξ cos η ∂φ1

∂η + κ−1
κ cosh ξ sin η · φ1

−
(
cosh ξ cos η ∂φ1

∂η − sinh ξ sin η ∂φ1

∂ξ

)
+ χ2.

Without loss of generality the expression in brackets can be taken to be zero,
because we already have in ū and v̄ of the solutions Laplacian (we mean χ1 and χ2).
Therefore, if in (A.1) and (A.7), instead of the function φ1, we insert the function
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κφ1, the solution of system (2) will be written as follows

a) h20D = κµ
(
cosh ξ sin η ∂φ1

∂η − sinh ξ cos η ∂φ1

∂ξ

)
,

b) h20K = κµ
(
sinh ξ cos η ∂φ1

∂ξ + sinh ξ cos η ∂φ1

∂η

)
,

c) ū = cosh ξ cos η ∂φ1

∂ξ − (κ− 1) sinh ξ cos η · φ1 + χ1,

d) v̄ = cosh ξ cos η ∂φ1

∂η + (κ− 1) cosh ξ sin η · φ1 + χ2.

(A.7)

Now, let us write out three variants to present functions χ1 and χ2. In the first
variant

χ1 =
∂φ̄1

∂η + ∂φ̃1

∂η + ∂φ2

∂η ,

χ2 =
∂φ̄1

∂ξ + ∂φ̃1

∂ξ + ∂φ2

∂ξ ,
(A.8)

φ̄1, φ̃1, φ2 are harmonic functions, herewith, φ̄1, φ̃1 are selected in the way ensuring
that the following equations are valid at η = α, when α = η1 or α = η2

cosh ξ cos η ∂φ1

∂ξ − (κ− 1) sinh ξ cos η · φ1 +
∂φ̄1

∂ξ + ∂φ̃1

∂ξ = 0,

cosh ξ cos η ∂φ1

∂η + (κ− 1) cosh ξ sin η · φ1 +
∂φ̄1

∂η + ∂φ̃1

∂η = 0

In variant two

χ1 = − cosα
(
cosh ξ cos (η − α) ∂φ1

∂ξ + sinh ξ sin (η − α) ∂φ1

∂η

)
+ sinh ξ cos η ∂φ2

∂ξ + cosh ξ sin η ∂φ2

∂η ,

χ2 = − cosα
(
cosh ξ cos (η − α) ∂φ1

∂η − sinh ξ sin (η − α) ∂φ1

∂ξ

)
+ sinh ξ cos η ∂φ2

∂η − cosh ξ sin η ∂φ2

∂ξ ,

(A.9)

where φ2 is a harmonic function.
In variant three

χ1 = − cos2 α
(
cosh ξ cos (η − α) ∂φ1

∂ξ + sinh ξ sin (η − α) ∂φ1

∂η

)
+ sinh ξ cos η ∂φ2

∂ξ + cosh ξ sinα∂φ2

∂η ,

χ2 = cos2 α
(
sinh ξ sin (η − α) ∂φ1

∂ξ − cosh ξ cos (η − α) ∂φ1

∂η

)
+ sinh ξ cos η ∂φ2

∂η − cosh ξ sinα∂φ2

∂ξ

(A.10)



114 Bulletin of TICMI

Let us insert (A.8) in (A.7c, d). We will obtain

a) ū = cosh ξ cosα∂φ1

∂ξ − (κ− 1) sinh ξ cos η · φ1

+∂φ̄1

∂ξ + ∂φ̃1

∂ξ + ∂φ2

∂ξ ,

b) v̄ = cosh ξ cosα∂φ1

∂η + (κ− 1) cosh ξ sin η · φ1

+∂φ̄1

∂η + ∂φ̃1

∂η + ∂φ2

∂η.

(A.11)

Inserting (A.9) in (A.7c, d), we will get

a) ū = (cos ξ − cos (ξ − α)) cosh η ∂φ1

∂ξ − cosα sin (ξ − α) sinh η ∂φ1

∂η

− (κ− 1) sinh ξ cos η · φ1 + sinh ξ cos η ∂φ2

∂ξ + cosh ξ sin η ∂φ2

∂η ,

b) v̄ = (cos ξ − cos (ξ − α)) cosh η ∂φ1

∂η + cosα sin (ξ − α) sinh η ∂φ1

∂ξ

+ (κ− 1) cosh ξ sin η · φ1 + sinh ξ cos η ∂φ2

∂η − cosh ξ sin η ∂φ2

∂ξ .

(A.12)

Inserting (A.10) in (A.7c, d), we will have

a) ū = sin2 α cosh ξ cos η ∂φ1

∂ξ − cos2 α sinh ξ sin η ∂φ1

∂η

− (κ− 1) sinh ξ cos ηφ1 + sinh ξ cos η ∂φ2

∂ξ + cosh ξ sin η ∂φ2

∂η ,

b) v̄ = cos2 α sinh ξ sin η ∂φ1

∂ξ − sin2 α cosh ξ cos η ∂φ1

∂η

+ (κ− 1) cosh ξ sin η · φ1 + sinh ξ cos η ∂φ2

∂η − cosh ξ sin η ∂φ2

∂ξ .

(A.13)

Appendix B: Finding of ξ1

After the BVP with relevant boundary conditions on ξ = ξ1 = ξ11 is solved, the
following condition is examined:

F11

F10
< ε.

ε is a sufficiently small positive number given in advance (ε = 0, 001− 0, 0001).

F11 =

[∫ η1

0
(|σξξ|+ |σηη|+ |τξη|)hdη

]
ξ=ξ1

,

F10 =

[∫ η1

0
(|σξξ|+ |σηη|+ |τξη|)hdη

]
ξ=gξ̃1

.

g number will be selected so that on the boundary η = η1, point M(gξ̃1, η1) should
correspond to the highest value of expression[σηη(gξ̃1, η1)t]

2 + [τξη(gξ̃1, η1)]
2 (when
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stresses are given) or to the highest value of expression [ū(gξ̃1, η1)t]
2 + [v̄(gξ̃1, η1)]

2

(when displacements are given).
If condition F11

F10
< ε is not valid for ξ1 = ξ11, the same problem will be solved at

the beginning, but ξ1 = ξ12 will be used instead of ξ1 = ξ11. In addition, ξ12 > ξ11.
Then, if condition F12

F10
< ε is not still valid, we will continue with the boundary

problem, where ξ1 = ξ13; besides, ξ13 > ξ12 > ξ11, and we will examine condition
F13

F10
< ε. The process will be over at the kth stage, if condition F1k

F10
< ε is valid.

Finding such ξ1 = ξ1k, for which F1k

F10
< ε.

Distance l between surfaces ξ = ξ1 and ξ = ξ̃1, which gives the guarantee for
condition F1k

F10
< ε to be valid in the elliptic coordinate system, will be taken along

a small or large axis of the ellipse. In the former case, the following expression will
be obtained:

cosh ξ1 =
l

c
+ cosh ξ̃1,

and the following expression will be obtained in the latter case:

sinh ξ1 =
l

c
+ sinh ξ̃1.

By relying on the known solutions of the relevant plain problems of elasticity, it
is purposeful to admit that:

l

c
= 4, 5, 6, . . . ,

what allows finding ξ1 from the relevant equation. Let us note that when l
c = 4,

we will denote value ξ1 by ξ11, when
l
c = 5, by ξ12, when

l
c = 6, byξ13, etc.

If after selecting ξ1 = ξ1k, inequality
F1k

F10
< ε is valid, in order to check the

righteousness of the selection, it is necessary to once again make sure that together
with condition F1k

F10
< ε, condition ε > F1k

F10
> F1k+1

F10
> F1k+2

F10
> . . . is valid, too.
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