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An analytical (exact) solution of two-dimensional problems of elasticity in the domain
bounded by hyperbolas is constructed in the elliptic coordinates. A special kind of internal
boundary value problem is set and solved in the area bounded by hyperbolas when both parts
of one hyperbola (border) are lines and non-homogeneous symmetry or antisymmetry condi-
tions are given on it, while non-homogeneous conditions, such as stresses or displacements,
are given on another hyperbola. Exact solution is obtained using the method of separation of
variables. The graphs for the numerical results of some test problems are presented.

Keywords: Internal boundary value problem, Hyperbolic boundary, Method of separation
of variables, Homogeneous isotropic body

AMS Subject Classification: 74B05.

1. Introduction

The solution of boundary value and boundary-contact problems in the areas with
curvilinear border, is simplified if examining such problems in the appropriate
curvilinear coordinate system. For instance, the problems for the areas bounded
by a circle or its parts are studied in the polar coordinates [1-3], while the problems
for the areas bounded by the circles with different centers and radii are studied
in the bipolar coordinates [4-6]. The problems for the areas bounded by an ellipse
or its parts are studied in the elliptic coordinates [7-14], and the problems for the
areas with parabolic boundaries are considered in the parabolic coordinates [15-17].

The problems I consider do not coincide with the above-mentioned ones. This
work deals with mathematical modeling of the stress-strain state of a homogeneous
isotropic body with a hyperbolic crack and the corresponding boundary value prob-
lems are solved analytically.

The current paper examines the internal boundary value problems (BVP) for the
area introduced in Fig. 1 in elliptic coordinates &, n ( —oco < £ < 00, 0 < n < T,
x = ccoshfcosn, y = csinhsinn, where z,y (—o00 < x < 00, —o0 <y < 0)
are Cartesian coordinates, c is a scale factor. In the present article, we take ¢ = 1)
[18,19]. In particular, a special kind of internal BVP is set and solved in the
area () = {—51 <E<E, O<n<m = %} (see Fig. 1), when both parts of the
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Figure 1. The area Q1 ={—co<&<o0, 0<n<m} (and Q={-& <&< &, 0<n<m} ) bounded
by hyperbolas when both parts of the hyperbola n = 0 are lines.

hyperbola 1 = 0 are lines and non-homogeneous symmetry or antisymmetry con-
ditions are given on it, while such non-homogeneous conditions, as stresses or dis-
placements, are given on 7 = 5. The analytical (exact) solution of two-dimensional
problems of elasticity is constructed in the area bounded by the coordinate lines
of the elliptic coordinate system [11, 13]. The analytical solution is obtained with
the method of separation of variables.

Using the MATLAB software, the numerical results are obtained of some test
problems and relevant graphs are presented.

2. Principal equalities in elliptic coordinate system

The paper deals with the homogeneous isotropic elastic body free of volume forces,
to which the following area (see Fig. 1) corresponds:

Q:{—§1<§<£1,0<17<g} (1)

(Selection of & := &1 see Appendix B).

2.1. Equilibrium equations and Hooke’s law

In the elliptic coordinates the equilibrium equations with respect to the function
D, K, u, v can be writen as [10,20]:

a) Dyg — Kﬂ? =0, C) Ug+Vy= h(Q)B

o ) (2)
b) D,+ K¢=0, d) v¢ —u, = hgR,

and Hooke’s law as follows:
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hi h2 L

506 =5 D= Uy =

21 20 hg

h? h? I

ZUW} = ﬂD — U’g + h7(2)7 (3)
hi h? L

oty = 2K — iy — T,

2u 2u ’ hg

where L; = sinh (2€) @ — sin (21)) 0, Ly = sin (2) @ + sinh (2) 9, u = 24, 5 = 2hv,

c2

ho = \/cosh (26) — cos (2n); h == hg = h, = %ho are Lammé coefficients [19];

u, v are the components of the displacement vector along the tangents of n, ¢
lines; B = %D is the divergence of the displacement vector; R = %K is the rotor

component of the displacement vector; u = %,
ratio and E is the modulus of elasticity; o¢e, oy, and 7¢, = 7,¢ are normal and

tangential stresses.

k = 4(1—v); v is Poisson’s

2.2. Analytical solution of BVP

Let us find the solution of system (2) in class C? (Q) (Q area see Fig. 1). The
solution is presented by two harmonic ¢; and ¢y functions (see Appendix A). From
formulas (A.11)-(A.13), after inserting v = m; and making simple transformations,
we will obtain:

i = [Fysin?n - cotn + (k — 1) o] sinn - cosh &
— [Fhcos?my - tann + (k — 1) 1] cosn - sinh &,
v = [Ficos? i - tann + (k — 1) 3] cosn - sinh &

+ [Fasin®ny - cotn + (k — 1) ¢1] sinn - cosh €.

Api = gz (Pige + Qiny) =0, i=1.2. 5)
D i [F inh& — Fysi h¢]
- _ cosn -sinh & — Fysinm - cos
cosh (2&) — cos (2n) LeosT 2SI ’
Kl

K= Fisinn - cosh& — F .sinh
COSh(Qf)—Cos(Qn)[ 1sin7) - cosh§ ycosn -sinh ],

where I = (16 — p2,), F2 = (91 + p2¢) -
The stress tensor components will be written as follows:
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h2
;Oann =— [Fg sin?n; - cotn — Kp1y + (K —2) @2’5] sinn cosh &

+ [Ficos?ny - tann + (k — 2) 16 + Kipay| cosn - sinh & + F5,

h?
;0757; = [F; cos® 1 - tann — K1y + (K — 2) ©2,¢] cosnsinh

+ [F4 sin?np - cotn + (k—=2)p1e+ mpgm] sinn - cosh & + Fg,
h2 . ‘
*0055 = [Fs sin® 7y - cot ) — (k—=2)p1y+ /igom] sinn cosh &

1
— [Fycos®n1 - tann + kp1¢ + (k — 2) o] cosn - sinh & — F5,

where

Fy =2(p1ee — p2.en) > Fia=2(p1en + P26¢)

[ 4sin (ny +n) - sin (n —n)
> cosh (2€) — cos (27)

_ 4sin(m +n) - sin (m — )
cosh (2£) — cos (27)

[F1sinh§ - cosn — Fycosh¢ - sinn),

Fg [F1 cosh& - sinn — Fysinh§ - cosn) .

From (5), by using the method of separation of variables, we will obtain

o)
0i=Y pim, i=12,
n=1

where
©1n = A1y cosh (nn) - sin (nf) Yan = Aoy sinh (nn) - cos (nf)
or

©1n = A1y sinh (nn) - cos (n), pan, = Aoy cosh (nn) - sin (nf) .

We are introducing the following assumptions: (a) &; is a sufficiently great pos-
itive number (see Appendix B); (b) the boundary conditions given on 7 = 71, i.e.
stresses or displacements equal zero at § < § < &; interval; (c) when stresses are

given on 7 = 7, the main vector and main moment equal zero.

If w and v are given on 1 = 7y, it is purposeful to take the following equivalent

expressions instead of them [13]:
2 L _
7 (cosh & - sinmyu + sinh € - cos M1 0)
0
1.
= 5 8in (2m) (16 — p2,) + (k= 1) g2,

2
w2 (sinh & - cos nyu — cosh ¢ - sinn0)
0

1 .
= ysm (2m) (p1n + @2,) — (£ = 1) @1
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And when %Unn and %Uén are given on 7 = 1, it is purposeful to take the
following equivalent expressions instead of them [13]:

2 ) . .
; (cosh§ - sinmnoy, —sinh & - cosni7e,) = —sin (2n1) (Y166 — P2,en)
+rp1y — (K —2) 2,

2 . . .
; (sinh & - cos oy, — cosh & - sinni7e,) = sin (2n1) (1,60 + ©2.¢¢)
+ (k= 2)p1e + kP2,

Using the homogeneous boundary conditions of the posed specific problem, we
will paste functions ¢; and 2 selected from (7) in the right parts of equations (8)
or (9) and will decompose the left parts of the equations into Fourier trigonometric
series. We will equate the expressions in both parts at the trigonometric functions of
the same name and will receive an infinite system of linear algebraic equations with
rspect to unknown coefficients A, and As,. The major matrix of this system is of
a block-diagonal kind. The dimensions of each block are 2 x 2 and the determinant
does not equal zero, while the determinant in the infinity tends to a finite number
different from zero.

Convergence of functional series corresponding to expressions (4) and (6) in the
area )= {—¢ << &, 0<n<n} are easily proved by constructing the rele-
vant majorizing uniformly convergent numerical series.

3. Special case of internal BVP

3.1. Setting and solving problems

Let us set and solve a special kind of internal problems in the area ) =
{—51 <E<E, 0<n< g}, when both parts of the contour n = 0 are lines (see
Fig. 1). So, let us find the solution of the system of equilibrium equations (2)
of a homogeneous isotropic elastic body in the area €2, which meets the follow-
ing boundary conditions: it meets non-homogeneous conditions of antisymmetry
or symmetry on n = 0, which are common boundary conditions and not their
combination and stresses or displacements given on n = = 3.
So, we have the following conditions:

foré =0: a) V=0, ug=0 or byu=0, v¢=0,
forn=0",6>0: a)u=f1(§), v, = f2(§) or
b) =v=f3(§) oruy=fi(§), (10)

forn=0",£6<0: a)u=—f1(§), v, = f2(§) or
b) v=—f3(§) oruy, = fi(§),

forn=m=5: a) Yo, =01, Lr,=Qa() or
b) u=H(§), v=Hy(f)),

(11)
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where Q; (i = 1,2), together with its first order derivatives, and H; together with
its first and second order derivatives are decomposed into absolutely and uniformly
convergent trigonometric Fourier series [21].

When % and v are given on n = 7, it is purposeful to take their equivalent
expressions (8) instead of them, and if 22 T and 1 3,0¢n are given on 1) = 1, then
it is purposeful to take their equivalent expressions (9) instead of them.

From formula (7), functions ¢ and y2 will be selected with boundary conditions
(10).

1) Taking into account (10a), @1, and @9, we will have:

©1n = Aipcosh (nn) -sin (n),  @an = Agyp sinh (nn) - cos (nf) . (12)

System (8) will be as follows:

[e.o]

2
h2 (cosh & - sinma + sinh & - cos ) = Z (k — 1) Agy, sinh (nn) cos (nf) ,
=1

3

2 (o9}
h2 (sinh ¢ - cosmu — cosh & - sinn v) Z (k — 1) Ay, cosh (nn) sin (nf) .
n=1

System (9) will be as follows:

— (cosh§ - sinnyoy,; —sinh & - cosn7ey)

o

n kA1, + (K — 2) Agy] sinh (nn) sin (nf) ,

1 (13)
— (sinh & - cos oy, — cosh & - sinn 7¢,)

3
I

Z n[(k —2) Ain + KAagy,] cosh (nn) cos (nf) .
n=1

As a result of inserting expressions (7), (12) in (4), the following formulas for
displacements are obtained:

u = Z {[(A1n, — A2n) n - cosncosh (nn) + (k — 1) Agy, sinnsinh (nn)]
7-Tz(l)sh ¢cos (n&) — (k — 1) Ay cosncosh (nn) sinh € sin (ng) }, 14
14

U= Z {[(A1n, — A2n) n - cosysinh (nn) + (k — 1) A1y, sinn cosh (nn)]

n=1

-cosh & sin (n€) + (k — 1) Agy, cos nysinh (nn) sinh € cos (n)} .

After inserting (7), (12) in formulas (6), the following expressions are obtained for
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stresses:

hg

20

= Z {[2n® (A1, — Aon) cosncosh (nn) + knAy, sinnsinh (nn)
n=1

Onn

+ (k — 2) nAgy, sinn sinh (nn)] cosh € sin (nf)

+[(k —2) A1p + KAz, ncosn cosh (nn) sin € cos (nf)

2
+ cosh (;g(;oi cnos 2n) n (A1, — Agp) [cosn cosh (nn) sinh € cos (ng)

— sinn sinh (nn) cosh € sin ()]},

= Z { [2112 (A1n, — Agy) cosnsinh (nn) + (k — 2) nAyy, sinn cosh (nn)
n=1

+knAg, sinn cosh (nn)] cosh £ cos (né) (15)
— [KA1, + (k — 2) Agp] ncosnsinh (nn) sinh € sin (nf)
+ dcos’n n( — Agy) [sinn cosh (nn) cosh € cos (ng)
cosh (2¢) — cos (2n) tn n K g
— cosn sinh (nn) sinh € sin (n&)]},
hg
50&
o
= Z { [—2n2 (A1, — Asy) cosncosh (nn) — (k — 2) nAy, sinnsinh (nn)
n=1
—knAgy, sinnsinh (nn)] cosh € sin (nf)
— [kA1n + (k — 2) Agp] ncosn cosh (nn) sinh € cos (nf)
— dcos®n n (A1p, — Agp) [cosn cosh (nn) sinh € cos (né)
cosh (2€) — cos (27) tn n K g
—sinnsinh (nn) cosh & sin (n)]} .
2) By considering (10b), we will obtain:
pan, = Aoy, cosh (nn) - sin (né) . (16)

©1n, = A1y sinh (nn) - cos (nf),
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System (8) will be as follows:

2 o0
o (cosh & - sinma + sinh € - cosnv) = Z (k — 1) Agy, cosh (nn) sin (nf) ,
0

n

Nt

h%z) (sinh ¢ - cosmu — cosh§ -sinmv) = — > (k — 1) Ay, sinh (nn) cos (n€) .

n=1

System (9) will be as follows:

— (cosh§ - sinnioy, —sinh & - cosn7¢y)
Z [kA1n, — (k — 2) Agy] cosh (nn) cos (n€) ,
(17)
— (sinh & - cos oy — cosh§ -sinm 7ep)

= — Z n[(k —2) A1, — KAgy,] sinh (nn) sin (nf) .

As a result of inserting expressions (7), (16) in formulas (4), the following ex-
pressions for displacements are obtained:

U= Z {[— (A1n + Agp) n - cospsinh (nn) + (k — 1) Ay, sinn cosh (nn)]
n;(l)shg sin (n€) — (k — 1) A1y, cosnsinh (nn) sinh € cos (n€)},
(18)

{[(A1n, + A2n) n - cosncosh (nn) + (k — 1) Ay, sinn sinh (nn)]

4
I
JANE

cosh & cos (n) + (k — 1) Agy, cosncosh (nn) sinh  sin (n)} .

After inserting expressions (7), (16) in (6), the following formulas are obtained
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for stresses:

hg
20
= Z {[2n® (A1n + A2n) cospsinh (nn) + knAy, sinn cosh (nn)

Onn
n=1

— (k — 2) nAgy, sinn cosh (nn)] cosh € cos (nf)

—[(k — 2) A1y, — KAgy| ncosnsinh (nn) sin € sin (né)

- 4cos?n n (An + Agp) [cos psinh (nn) sinh € sin (n€)
COSh (25) — COS (277) 1In 2n n n

+ sin 7 cosh (nn) cosh € cos (né)]},

h2
ﬁTEU
= Z {[-2n* (A1, + Asy) cosn cosh (nn) — (k — 2) nAy, sinnsinh (nn)
n=1
+knAg, sinnsinh (nn)] cosh € sin (ng) (19)
19

— [kA1n + (k — 2) Agy] nsinn cosh (nn) cosh € cos (nf)

+ 4cos?n (A1 + Asgy) [sing sinh (nn) cosh € sin (né)
cosh(2§)—cos(217)n In 2n) |SINT]S nn) cosh € sin (n.

— cos 1 cosh (nn) sinh € cos (né)]},

= Z { [—2n2 (Ayp, + Agy) cosnsinh (nn) — (k — 2) nAy, sinn cosh (nn)

n=1
+knAsap sinn cosh (nn)] cosh € cos (nf)
+ [kA1n — (k — 2) Agp] n cosnsinh (nn) sinh € sin (nf)

N 4 cos? n n (A1p + Agp) [cos nsinh (nn) sin & sin (ng)
p— (2§) " cos (27]) in 2n n n

+ sinn cosh (nn) cosh € cos (n)]} .



102 Bulletin of TICMI

3.2. Test problems

1) Let us find numerical solutions of problem (2), (10a) (11a) when a) Q1 (§) = P
and Q2 (§) = 0, i.e. normal load %Unn = % is given on the boundary n = = 7,
and tangential stress equals zero, and b) Q1 (§) = 0 and Q2 () = P, i.e. tangential
stress %Tgn = % is given on the boundary n = 1 = 7, and normal stress equals
Zero.

a) System (13) will be as follows:

2P
cosh (2&) — cos (2m1)

Z n kA1, + (K — 2) Aoy sinh (nn;) sin (n) = cosh &,
n=1

Z n[(k —2) A1, + £Agp] cosh (nn) cos (n€) = 0.
n=1

Following the expansion of the right side of the equations into Fourier series, an
infinite system of linear algebraic equations is obtained in relation to unknown Aj,
and As, coefficients

n kA1, + (k — 2) Agy]sinh (ny) = Fip, (k — 2) A1, + kAg, = 0

(20)
n=12...

where Fi,, = % foﬂ f1 (&) sin (n&) d¢ is the coefficient of expansion of the function

2P
= h
f©) cosh (2¢) — cos (2m1) coshg
into the Fourier series F} (€) = 3. F, sin (nf).
n=1
From (20):
F —-2)F
Aln - i A2n - - (H ) Ln

4n (k — 1) sinh (nmy)’ 4n (k — 1) sinh (nmy)

Then, by putting A, and Ag, in formulas (14) and (15), we will obtain the
values of displacements and stresses at any point of the considered area.
b) System (13) will be as follows:

(18

n kA1, + (k — 2) Agy] sinh (nn ) sin (n) = 0,
1

3
Il

S n[(k — 2) Ay, + KAgy] cosh (nay) cos (n€) = 3. Fiy, cos (né),
n=1 n=1
where F 1n 18 the coefficient of expansion of function
2P
fi(¢) =- cosh &

cosh (2€) — cos (211)

into Fourier series.
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kA1, + (FL — 2) Ay, =0, ~
n[(k —2) A1 + KA2y] cosh (nm) = Fip, n=12...

HFln (FJ— 2) Fln

Ayp = , Agp = — .
! 4n (k — 1) cosh (nn1) 2 4n (k — 1) cosh (nny)

Further, by putting A, and Asg, in formulas (14) and (15), we will obtain the
values of displacements and stresses at any point of the considered domain.
2) Let us find numerical solutions of problems (2), (10b),(11a) when a) Q1 (§) = P
and Q2 (§) = 0, i.e. normal load %‘77777 = % is given on the boundary n = n; =

and the tangential stress equals zero, and b) Q; (§) = 0 and Q2 (§) = P, i.e. the

tangential stress %Tgn = Qh—f is given on the boundary n = n = and normal
0

s
2>
stress equals zero.

a) System (17) will be as follows:

o [oe)
Z n kA, — (k — 2) Agy] cosh (nn) cos (n§) = Z In cos (ng),
n=1 n=1

Z —n[(k —2) A1, — KAgy]sinh (nn) sin (n€) = 0,
n=1

where Fy, is the coefficient of expansion of the function

2P
cosh (2€) — cos (211)

fi(§) = cosh &

into the Fourier series.

n kA1, — (k — 2) Agp) cosh (nm1) = Fin, (k — 2) A1y, — KAgy, = 0,

n=12...,

KFln A _ (K, — 2) Fln
4n (k — 1) cosh (nny)’ "~ 4n (s — 1) cosh (nmy)”

Aln =

By putting Aj, and Aj, in formulas (18) and (19), we will obtain the values of
displacements and stresses at any point of the considered area.
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b) System (17) will be as follows:

Z n (kA1 — (kK — 2) Agy] cosh (nn) cos (n§) = 0,

o0
Z —n[(k —2) A1, — KAgy,] sinh (nn) sin (né) = ZFM sin (ng) ,
n=1

where Fln is the coefficient of expansion of the function

2P
= — h
fi©) cosh (2€) — cos (2m1) coshe
into the Fourier series.
ﬁA1n - (FL - 2) Azn = O, B
n[(k —2) A1, — KAgy] sinh (nn) = Fip, n=12....
(k —2) Fin, K1

Aln:_ A2n:_

4n (k — 1) sinh (nny)’ 4n (k — 1) sinh (nny)”
Next, by putting Ay,, and Asg, in formulas (18) and (19), we will obtain the values
of displacements and stresses at any point of the considered domain.

3.3. Results and discussion

Numerical values of stresses and displacements are obtained for all four instances
mentioned above at the points of the area bounded by lines n =0, n =n; and & =
+£; (see Fig. 1), and appropriate 3D graphs are constructed. The numerical values
are obtained for the following data: v =0.3, £ =2- 106kg/cm2, P = —1Ok:g/cm2,
& =35,m=m/2.

Fig. 2 and Fig. 3 show the distribution of stresses and displacements in the
area bounded by lines n = 0, n = n; and £ = +£;, when conditions (10a) are
fulfilled and normal stress is applied to n = 71, and tangential stress equals zero
(See Fig. 1). Following conditions (10a), o¢¢, 0y stresses and v displacement are
antisymmetric to axis ox, and 7¢, and u are symmetric, what is seen from Fig.
2 and Fig. 3, too. When (&,7) tends to points (0,0) or (0, 2) then stresses and
normal displacement tend to a sufficiently large number with an absolute value and
tangential displacement tends to sufficiently large number with an absolute value,
when (£,7) tends to a point (O, %)

Fig. 4 and Fig. 5 show the distribution of stresses and displacements in the area
bounded by lines n = 0, n = n; and £ = +&; when conditions (10a) are satisfied and
tangential stress is applied to n = 7, and normal stress equals zero (see Fig. 1).
Following conditions (10a), og¢, oy stresses and v displacement are antisymmetric
to axis ox, and 7¢, and u are symmetric, what is seen in Fig. 4 and Fig. 5, too.
When (&, 1) tends to point (0, 0), then, the stresses tend to sufficiently large numbers
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Figure 2. Distribution of stresses in the area bounded by lines n = 0, n = 7; and £ = £&; when conditions
(10a) are valid (normal stress is applied to n = n1. See Fig. 1).

with an absolute values (for example, o,(0.2333,0) = —3.196 - 107), when (&, 7)
tends to points (0,0) or (0, g), then normal displacement tends to sufficiently large
number with an absolute value, and tangential displacement tends to sufficiently
large number with an absolute value when (&, 7) tends to point (0, 2)

The results presented on Figures 2,3 and 4,5, except for 7¢,, differ from each
other by the number signs, for example, at Fig.2 0¢¢(0.2333,0) = 3.476 - 107, and
at Fig.4 0¢¢(0.2333,0) = —3.3636 - 107.

Fig. 6 and Fig. 7 show the distribution of stresses and displacements in the
area bounded by lines n = 0, n = 7 and & = +&;, when conditions (10b) are
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Figure 3. Distribution of displacements in the area bounded by lines n = 0, n = m1 and £ = +£; when
conditions (10a) are valid (normal stress is applied to n = n;. See Fig. 1).

satisfied and normal stress is applied to n = 11, and tangential stress equals zero
(see Fig. 1). Following conditions (10b), o¢¢, oy stresses and v displacement are
symmetric to axis oxr, and 7¢, and u are antisymmetric, what is seen in Fig. 6
and Fig. 7, too. When (£, 7) tends to points (0,0) or (O, 2) then normal stresses
and tangential displacement tend to a sufficiently large number with an absolute
value), and tangential stress and normal displacement tend to a sufficiently large
number with an absolute value when (£, 7) tends to point (0, 7).

Fig. 8 and Fig. 9 show the distribution of stresses and displacements in the area
bounded by lines n = 0, n = n; and & = ££;, when conditions (10b) are fulfilled
and tangential stress is applied to n = 11, and normal stress equals zero (see Fig. 1).
Following conditions (10b), o¢¢, oy, stresses and v displacement are symmetric to
axis ox, and 7¢, and u are symmetric, what is seen in Fig. 8 and Fig. 9, too. When
(&,m) tends to points (0,0) or (0, %), then stresses and tangential displacement tend
to a sufficiently large number with an absolute value, and normal displacement
tends to a sufficiently large number with an absolute value, when (£,7) tends to

point (0 2)

4. Conclusion

The paper deals the internal BVP for the domain introduced in Fig.1 in elliptic
coordinates. In particular, the special kind of internal BVP is set and solved in
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Figure 4. Distribution of stresses in the area bounded by lines n = 0, n = n1 and £ = ££1, when conditions
(10a) are valid (tangential stress is applied to nn = ;. See Fig. 1).

the area Q ={-§ <£<&,0<n< g}, when both parts of the hyperbola n =0
(border) are lines and non-homogeneous symmetry or antisymmetry conditions are

are given on another hyperbola n =

given on it, while non-homogeneous conditions, such as stresses or displacements,
5. This problem is a mathematical model of
the stress strain state of a homogeneous isotropic body with a hyperbolic crack.

The analytical solution of 2D problems of elasticity in the area bounded by
hyperbolas is written in the elliptic coordinates. The analytical solutions are derived
by the method of separation of variables, which is represented by means of two
harmonic functions. Numerical values of stresses and displacements are obtained
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condition (10a) is valid (tangential stress is applied to n = 71. See Fig. 1).

for four test problems at the points of the area bounded by lines n = 0, n = 7y
and & = +£; (see Fig. 1), and appropriate graphs are presented and discussed. The
computation and graphs were made by using MATLAB software.

Bodies with hyperbolic cracks are frequently applied in practice, for instance,
in building, mining mechanics, mechanical engineering, biology, medicine, etc. The
investigation of the stress-strain state of such bodies is relevant and thus, in my
point of view, setting the problems considered in the work and method to solve
them is interesting from the practical point of view.

Appendix A: Solution partial differential equations

Let us solve of partial differential equations(2).
Let us introduce the harmonic function ¢1, and if we take

a) D= -}% (coshfsinn%‘f?—1 — sinh £ cos n%‘%) , )
b) K = -/;—3 <cosh§sinn%“;—1 + sinh & cos n%‘%) ,

then equations (2a) and (2b) will be satisfied identically and equations (2c) and
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Figure 6. Distribution of stresses in the area bounded by lines n = 0, n = 71 and £ = £&; when conditions
(10b) are valid (normal stress is applied to 7 = 1. See Fig. 1).

(2d) will be as follows

— sinh & cosn

a) g—g + % = —(“;2) <cosh§ sinn%fll 88“21

> ’ (A.2)

b) g—g - g—g = coshfsin'naa(%1 + sinhgcosn%—fi.
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Figure 7. Distribution of displacements in the area bounded by lines n = 0, n = 11 and £ = +£;, when
conditions (10b) are valid (normal stress is applied to n = 71. See Fig. 1).

From here

. % _ (52 <cosh§Sin 7)%% — sinh £ cos n%‘%) ,

a)
b)

K

(A.3)

Rl R

(1‘1 — sinh € sin n%%) = 8% <’L_L + sinh € sin ,u%‘%).

From (A.3b), it follows that there is a certain harmonic function v, for which
the following condition is met

i— 2% _ b sing 291 5= 2 L e sinn 2P
u—a5 smh§sm778n, v 877—}—smh£sm778£, (A.4)

and using (A.4), it follows from that (A.3a)

%Y 0% 2(k—
2
h*Ay = ae2 + o

D) (cosh§ sin 77%—921 — sinh € cos 1788—?) (A.5)

General solution of system (A.2) will be presented as

uU=x1, U=X2,
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Figure 8. Distribution of stresses in the area bounded by lines n = 0, n = n1 and £ = ££1, when conditions
(10b) are valid (tangential stress is applied to n = n1. See Fig. 1).

where

o1 Oxa Ox2  Oxa _

o on oc  an

The full solution of the equation system (A.2) will be written as follows:

0 . .0 0 . .0
ﬂ:a—?—s1nh581nﬂai;7l+)(17 U:a—:l;‘FSlnhfsmﬁai;"‘)Q (A.6)
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Figure 9. Distribution of displacements in the area bounded by lines n = 0, n = 11 and £ = +£;, when
conditions (10b) are valid (tangential stress is applied to n = 71. See Fig. 1).

where 1) is the particular solution of (A.5).
Taking x = const, we get

K —

1
P =— sinh € cosn - @1

and formulas (A.6) will be as follows

U= %coshfcosn%‘% — =lginh & cosn - ¢y

_ (cosh&cos 77%%1 + sinh € sin 77%5‘7’7—1> + X1,

17:—(:osh§cosna‘01 + = 1cosh§smn V1

(cosh{ cos na‘pl — sinh £ sinn2 B¢ ) + X2

Without loss of generality the expression in brackets can be taken to be zero,
because we already have in @ and o of the solutions Laplacian (we mean x; and x2).
Therefore, if in (A.1) and (A.7), instead of the function ¢;, we insert the function
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k@1, the solution of system (2) will be written as follows

a) hiD = kp < 2L —sinh £ cos 7788“21> ,

b) WK = Kl <sinh§cosnag"1 + smhﬁCOS??&pl)a
) hg o (A.7)

c) u= coshﬁcosna"é1 — (k —1)sinh & cosn - 1 + X1,

d) v coshgcosna“"1 + (k — 1) coshsinng - p1 + xo.

Now, let us write out three variants to present functions x; and y2. In the first
variant

— 3901 0901
X1 = + + 8 )
" (A.8)

81 61 82
Xe = G2+ F2 + F2,

P1,P1, P2 are harmonic functions, herewith, @1, ¢ are selected in the way ensuring
that the following equations are valid at n = o, when oo = 11 or a = 19

cosh & cos 77685 (k —1)sinh&cosn -1 + 3 a"ol +2 ag =0,

6(,01 _|_ 8@1 _ 0

(k —1)cosh&sing - ¢y + 5

In variant two

X1 = —cos« <cosh§ cos (n — «) ‘95‘21 + smhfsm (n—a) %ﬁl)

+ sinh & cos na‘pz + cosh ¢ sinn2 877 ,

5 _ . 5 (A.9)
X2 = —cosa (Cosh{ cos (n — «) Of; — sinh ¢ sin (n — «) 8% )
+ sinh & cos na‘pz — cosh ¢ sinn2 85 ,
where @9 is a harmonic function.
In variant three
X1 = — cos? « (coshf cos (n — «) 6‘? + sinh €sin (n — ) %ﬁl)
+ sinh £ cos 7788“‘22 + cosh ¢ sin aaaiz ,

(A.10)

X2 = cos? o (sinh§ sin (n — @) 85? — cosh & cos (n — «) i )

+ sinh § cos %> 65‘72 — cosh € sin a 88“22
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Let us insert (A.8) in (A.7c, d). We will obtain

a) 1 = cosh&cosa8t — (k — 1)sinh&cosn - o1
DE n-e

+8(p1 + 8@1 _|_ 8302

6301

b) ¥ = cosh{cosa%t + (k — 1) cosh&sinn - o1

+8<P1 + 8(,01 + 8@2

Inserting (A.9) in (A.7c, d), we will get

a) o= (cos§ — cos (§ —a)) (€ —a)si
Op2 Opa

— (k—1)sinh & cosn - @1 + sinh & cosn Be + cosh&sinn B>

b) v = (cos& — cos (£ — ) coshna‘p1 + cos asin (£ — «) sinh na‘pl

0¢
+ (k — 1) cosh{sinn - 1 + sinh € cos 778“’2 - coshgsmn&p2
Inserting (A.10) in (A.7c, d), we will have
a) @ = sin® o cosh & cos 7]88‘2} 2
— (k — 1) sinh & cos 1 + sinh € cos 778“02 + cosh € sin n22 B
b) © = cos? asinh ¢ smn 5 2 8“"1
+ (k — 1) cosh&sinm - 1 + sinh € cos 778“’2 cosh{sinnaa“%2 .

Appendix B: Finding of &

(A.11)

(A.12)

(A.13)

After the BVP with relevant boundary conditions on £ = & = &1 is solved, the

following condition is examined:

F
1o
Fo

¢ is a sufficiently small positive number given in advance (¢ = 0,001

m
Fi = [/ <agg|+|ann\+rfgn|>hdn} |
=6

m
Fro=| [ ol + o + e han|
0 §=9&1

—0,0001).

g number will be selected so that on the boundary 1 = 7y, point M (gg}, 71) should
correspond to the highest value of expression|oy, (g1, m)t])? + [Te,(9€1,m)]?* (When
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stresses are given) or to the highest value of expression [@(gé1,n1)t)% + [0(g€1, 7))
(when displacements are given).
If condition £ 7L < e is not valid for £ = &11, the same problem will be solved at

the beginning, but &1 = &12 will be used instead of &1 = £11. In addition, &1 > £11.
Then, if condition %i < ¢ is not still valid, we will continue with the boundary
problem, where & = &13; besides, £13 > £12 > &1, and we will examine condition
%i < e. The process will be over at the k" stage, if condition %Z < ¢ is valid.
Finding such & = &, for which %’; <e.

Distance | between surfaces &€ = & and & = &, which gives the guarantee for

condition }1;”“ < € to be valid in the elliptic coordinate system, will be taken along

a small or large axis of the ellipse. In the former case, the following expression will
be obtained:

I .
cosh&; = - 4 cosh ¢y,
c

and the following expression will be obtained in the latter case:
: -
sinh & = - 4 sinh &;.
c

By relying on the known solutions of the relevant plain problems of elasticity, it
is purposeful to admit that:

l
Z=4,56,...,
C

what allows finding &; from the relevant equation. Let us note that when % =4,
we will denote value &; by &1, when L =5, by &12, when L =6, by&s, etc.

C
If after selecting & = &k, 1nequahty B < ¢ js valid, in order to check the

righteousness of the selection, it is necessary ’to once again make sure that together

F
with condition F“‘ < g, condition £ > F““ > }’;:1 1}’132 .. is valid, too.
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