
Bulletin of TICMI
Vol. 24, No. 2, 2020, 75–83

Functionally Graded Couette Flow in a Duct
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Functionally Graded Couette flow when viscous coefficients vary from zero µ(x2) ∈ C1, µ(0) =
0, µ(x2) > 0 for x2 > 0, in particular, as a power function of a width of a duct, where the
fluid is contained at rest at the initial moment, is considered the peculiarities of non-classical
setting BCs at the wall of the duct, where viscosity coefficients vanish, is investigated.
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1. Introduction

To study of Couette flow [1] several works are devoted (see, e.g., [1]-[5] and the
references given there). As far as we know, for the time being functionally graded
Couette flows when viscosity coefficients vary from zero have not been studied.
The aim of the present short paper is to investigate functionally Graded Couette
flow when viscous coefficients vary from zero µ(x2) ∈ C1, µ(0) = 0, µ(x2) > 0 for
x2 > 0, in particular, as a power function

µ = µ0x
κ
2 , constants µ0 > 0, κ ≥ 0,

where the flow is contained at rest at the initial moment within the two planes.
Namely, the setting BCs depends on convergence-divergence of a certain improper
integral, in particular, on values of the exponent of the power function. The corre-
sponding criteria are established.
The paper is organized as follows. Section 1 is intended to motivate our investiga-

tion and to this end some references are given. In Section 2 for readers convenience
we review some of the standard facts on viscosity and the Newtonian viscous stress
tensor. In Section 3 we proceed with the study of the title problem and our main
results are stated and proved. Section 4 contains a brief summary of the obtained
mathematical results and their physical (mechanical) interpretations.
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2. Some Auxiliary Materials

Here we follow [1] (see pp. 97-101): Modifications of Euler’s equations needed to ac-
count real fluid at continuum level, introduce additional forces into the momentum
balance equations. ... Because of the molecular structure of various Fluid materi-
als, the nature of these forces can vary considerably, and there are many models
that attempt to capture the observed properties of fluids under deformation. These
models differ in what we shall call their rheology.
The simplest of these rheologies and one applicable to common fluids such as

air or water, is the Newtonian viscous fluid. To understand the assumptions let
us restrict attention to the determination of a viscous stress tensor at (x, t), x :=
(x1, x2, x3), which depends only upon the fluid properties within a fluid parcel at
that point and time.
It is reasonable to assume that the forces associated with the rheology of the

fluid are developed by the deformation of fluid parcels, and could be determined
by the velocity field. If we allow only point properties, deformation of parcels must
involve more than just the velocity itself; first and higher-order partial derivatives
with respect to the spatial coordinates could be important. A moment’s thought
shows that viscous forces cannot depend on the velocity. The bulk translation of
the fluid with constant velocity produces no force. Thus it is the deformation of a
small fluid parcel that must be responsible for the viscous force, and the dominant
measure of this deformation should come from first derivatives of the velocity field,
i.e., from the components of the velocity derivative matrix

∂ui
∂xj

:= ui,j .

Below, besides the above simplified notation for the partial derivatives, we use the
Einstein summation convention on repeated indices.
The Newtonian viscous fluid is one where the stress tensor is linear in the compo-

nents of the velocity derivative matrix. The specific form of this tensor will depend
on other physical conditions.

Figure 1. Momentum exchange by molecules between lamina in a shear flow.
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To see why a linear relation of this kind might capture the dominant rheology of
many fluids, consider a flow (v1, v2) = (v1(x2), 0). Each different plane x2 = const
or lamina of the fluid moves with a particular velocity. Now, we consider two lamina
x2 = xA2 and x2 = xB2 as shown in Figure 1 moving with velocities vB1 < vA1 .
If a molecule moves from B to A, then it is moving from an environment with
velocity vB1 to an environment with a larger velocity vA1 . Consequently, it must
accelerated to match the new velocity. According to Newton a force is therefore
applied to the lamina x2 = xA2 in the direction of negative x1. Similarly, a molecule
moving from xA2 to xB2 must slow down, exerting a force on lamina x2 = xB2 in the
direction of positive x1. Thus these exchanges of molecules would tend to reduce the
velocity difference between the two lamina. This tendency to reduce the difference
in velocities can be thought of as a force applied to each lamina. Thus if we inset
a virtual surface at some position x2, a force should be exerted on the surface in
the positive x1-direction if

dv1(x2)

dx2
> 0.

Generally we expect the gradients of the velocity components to vary on a length
scale L comparable to some macroscopic scale – the size of the container or the
size of a body around which the fluid flows, for example. On the other hand,
the scale of the molecular events envisaged above is very small compared to the
macroscopic scale. Thus it is reasonable to assume that the force F⃗ (x2) on the
lamina is dominated by the first derivative

F⃗ (x2) := σ21e⃗1 = µ
dv1(x2)

dx2
e⃗1, σ21 = σ12.

The constant of proportionality µ is called the viscosity, and a fluid obeying this
law is our Newtonian viscous fluid.
In general, all of the components of the velocity derivative matrix need to be

brought into the construction of the viscous stress tensor.
Let

σij = −δijp+ dij , (1)

i.e., we have simply split off the pressure contribution and exhibited the deviadic
stress tensor dij , which defines the viscous stress and determines the fluid rheology.
For an isotropic fluid the linearity implies that the most general allowable deviatoric
stress has the form

dij = µ
(
vi,j + vj,i −

2

3
uk,kδij

)
+ µ′vk,kδij , (2)

for certain scalars µ and µ′ which are usually called the viscosity and the second
visccosity, correspondingly. Often the last is taken as 0 for an approximation that is
generally valid for liquids. The condition µ′ = 0 is equivalent to what is sometimes
called the Stokes relation. In gases, in particular, µ′ may be positive, in which case
the thermodynamic pressure and the normal stresses are distinct.
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3. The title Problem

No-slip condition. At rigid boundary the relative motion of fluid and boundary
wall vanish. Thus at a nonmoving rigid wall the velocity of the fluid will be 0, while
at any point on a moving boundary the fluid velocity must equal to the velocity of
that point of the boundary. This condition is valid for gases and fluids in situations
where the stress tensor is well approximated by (2). It can fall in small domains
and in rarefied gases, where some slip may occur like the ideal fluid.

Figure 2.

Couette Flow. Let two rigid planes be x2 = 0, l, where no-slip condition, in gen-
eral, will be applied. The plane x2 = l moves in the x1-direction with constant
velocity V , while the plane x2 = 0 is either stationary or moving in the same di-
rection. An incompressible Newtonian viscous fluid with µ(x2) ∈ C1]0, l[∩C0[0, l]1,
µ(0) = 0, µ(x2) > 0 for x2 ∈]0, l], in particular,

µ = µ0x
κ
2 , constants µ0 > 0, κ ≥ 0, (3)

is contained at rest at the initial moment within the two planes. The flow is steady,
so the velocity field must be a function of x2 alone.
Assuming constant density, v = (v1(y), 0, 0), ∇p = 0 from (1), (2) we have

σ21 = d21 = µv1,2. (4)

Neglecting body forces, on substituting (4) into the balance equation

σ21,2 = 0 (5)

we obtain a momentum balance if

(µ(x2)v1,2),2= 0, (6)

1C0 and C1 denote the sets of continuous and continuously differentiable functions, respectively.
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in particular,

(xκ2v1,2),2= 0, (7)

because of (3). Such a type and more general degenerate equations are analysed in
[6]-[9] (see also references there).
The general solutions of (6) and (7) have the following forms

v1(x2) = c1

x2∫
l

dx2
µ(x2)

+ c2 (8)

and

v1(x2) =


c1

µ0(1− κ)
(x1−κ

2 − l1−κ) + c2, κ ̸= 1;

c1
µ0

(lnx2 − ln l) + c2, κ = 1,

(9)

respectively.
From (8) and (9) it is easily seen that we arrive at the following mathematical

conclusions:

1. If
l∫
0

dx2

µ(x2)
< +∞ (0 ≤ κ < 1), the BVPs (Diriclet type) with BCs

(i) v1(0) = 0, v1(l) = Vl,

(ii) v1(0) = V0, v1(l) = 0

are well-posed and the unique solutions have the forms

(i) v1(x2) = Vlx
1−κ
2 lκ−1,

(ii) v1(x2) = −V0l
κ−1(x1−κ

2 − l1−κ),

respectively.

2. If
l∫
0

dx2

µ(x2)
= +∞ (κ ≥ 1) the BVP (Keldysh type) has a unique bounded solution

v1(x2) = Vl

under BC

v1(l) = Vl

and the condition

v1(x2) = O(1) as x2 → 0 + .

Moreover,
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1) If
l∫
0

dx2

µ(x2)
< +∞ (0 ≤ κ < 1), the BVP (Dirichlet type) with BCs

v1(0) = V0, v1(l) = Vl, V0 ̸= Vl (10)

has a unique solution of the form

v1(x2) = (V0 − Vl)
[ 0∫

l

dx2
µ(x2)

]−1[ x2∫
l

dx2
µ(x2)

]
+ Vl, (11)

the constant viscous stress

σ21 = µ(x2)
dv1(x2)

dx2
= (V0 − Vl)

[ 0∫
l

dx2
µ(x2)

]−1

(
v1(x2) = (Vl − V0)l

κ−1(x1−κ
2 − l1−κ) + Vl, (12)

σ21 = µ(x2)
dv1(x2)

dx2
= (Vl − V0)µ0(1− κ)lκ−1

)
.

2) If
l∫
0

dx2

µ(x2)
= +∞ (κ ≥ 1) the BVP (Keldysh type) with BC

v1(l) = Vl

and the condition

v1(x2) = O(1) as x2 → 0+

is well-posed and has a unique bounded solution

v1(x2) = Vl, σ21 = 0.

When V0 = Vl we have bulk translation of the fluid together with both the walls
x2 = 0 and x2 = l.
Indeed, after integrating twice (6) and (7) we get

v1(x2) = c1

x2∫
l

dx2
µ(x2)

+ c2, x2 ∈]0, l] (13)

and

v1(x2) =
c1

µ0(1− κ)
(x1−κ

2 − l1−κ) + c2, κ < 1 (14)
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respectively.
Now satisfying BCs (10) we obtain

c2 = Vl,

c1 = (V0 − Vl)
[ 0∫

l

dx2
µ(x2)

]−1
if

l∫
0

dx2
µ(x2)

< +∞;

c1 = (Vl − V0)µ0(1− κ)lκ−1 if κ < 1.

If

l∫
0

dx2
µ(x2)

= +∞ (κ ≥ 1),

we must take

c1 = 0

otherwise (13) will be unbounded as x2 → 0+.
3) If the wall x2 = l moves with constant velocity Vl ≥ 0 and at the wall x2 = 0

we apply the constant tangent force

F0 = σ21(0) (15)

then taking into account (8), at the wall x2 = 0 we arrive at the weighted Nuemann
BC

F0 = σ21(0) = lim
x2→0+

µ(x2)
dv1(x2)

dx2
, (16)

i.e.,

F0 = lim
x2→0+

µ(x2)
dv1(x2)

dx2
= lim

x2→0+
µ(x2)c1

1

µ(x2)
= c1.

Satisfying BC

v(l) = Vl (17)

we obtain

c2 = Vl.
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Thus the mixed BVP (6), (16), (17) is always (in particular, independent on values
of κ) well-posed and the unique explicit solution has the following form

v1(x2) = F0

x2∫
l

dx2
µ(x2)

+ Vl. (18)

Note that in this case velocity according to expectations is unbounded, in general,
for x2 → 0+.
On the other hand we have arrived at the following physical (mechanical) con-

clusions:

If
l∫
0

dx2

µ(x2)
< +∞ (0 ≤ κ < 1) the plane x2 = 0 may be stationary or moving;

while for
l∫
0

dx2

µ(x2)
= +∞ (κ ≥ 1) it should be always stationary and therefore, will

be slippery;
If 0 ≤ κ < 1 the plane x2 = 0 may move with the velocity V0 provided plane

x2 = l is either stationary or moving with the velocity Vl ̸= V0.
If the wall x2 = l is either moving with the constant velocity or motionless and

at the wall x2 = 0 the constant tangent force is applied, the BVP for the Cuette
flow is always uniquely solvable in the explicit form (see (18)).

4. Conclusions

A Functionally graded Couette flow between two rigid planes when at least one
of them is moving with a constant velocity is investigated. Analysing the general
solution of the governing equation we have obtained the following 1. mathematical
and 2. Mechanical results:

1.1. If
l∫
0

dx2

µ(x2)
< +∞ (κ ∈ [0, 1[), the following BVP with Bcs (Dirichlet type)

v1(0) = V0, v1(l) = Vl, V0 ̸= Vl

is well-posed and the unique explicit solution has been constructed (see (11) and
(12). The constant viscous stress

σ21 = µ(x2)
dv1(x2)

dx2
= (V0 − Vl)

[ 0∫
l

dx2
µ(x2)

]−1
;

1.2. If
l∫
0

dx2

µ(x2)
= +∞ (κ ≥ 1) the BVP (Keldysh type) with BC

v1(l) = Vl

and the condition

v1(x2) = O(1), as x2 → 0+
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is well-posed and has a unique solution

v1(x2) = Vl, σ21 = 0;

1.3. If the wall x2 = l moves with the constant velocity Vl ≥ 0 and at the wall
x2 = 0 we apply the tangent force F0, then at the wall x2 = 0 we have the weighted
Neumann BC

lim
x2→0+

µ(x2)
v1(x2)

dx2
= F0.

The mixed BVP is well-posed and we have constructed the unique explicit solution
(see (18)).

2.1. If
l∫
0

dx2

µ(x2)
= +∞ (κ ∈ [1,+∞[) the wall x2 = 0 is slippery as it was expected

since a boundary layer adjacent to well x2 = 0 is actually ideal lamina for µ(0) = 0
and we have the bulk translation of the fluid together with the moving wall x2 = l

which produces no force, while if
l∫
0

dx2

µ(x2)
< +∞ (κ ∈ [0, 1[) it is not the case since

the adjacent boundary layer is practically viscous in spite of the fact that µ(0) = 0;
2.2. When V0 = Vl we have bulk translation of the fluid together with both the

walls x2 = 0 and x2 = l which produces no force;
2.3. If the wall x2 = l is either moving with the constant velocity or motionless

and at the wall x2 = 0 the constant tangent force is applied, the BVP for the
Cuette flow is always uniquely solvable in the explicit form (see (18)).
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