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This study develops a decision support methodology for facility location selection problem.
The methodology is based on the TOPSIS (Technique for Order Performance by Similarity to
Ideal Solution) approach in hesitant fuzzy environment. We are focusing on a special case of
facility location problem, namely location planning for service centers. Such problem usually
involves a set of candidate centers locations (alternatives), which are evaluated considering a
set of weighted criteria.

To evaluate criteria our approach implies using of experts’ assessments. In the proposed
methodology the values of the criteria are expressed in linguistic terms, given by all experts.
Then, these linguistic terms are described by trapezoidal fuzzy numbers. Consequently, pro-
posed approach is based on trapezoidal hesitant fuzzy TOPSIS decision-making model.

The case when the information on the criteria weights is completely unknown is considered.
The criteria weights identification based on De Luca-Termini information entropy is offered
in context of hesitant fuzzy sets.

Following the TOPSIS algorithm, first the fuzzy positive-ideal solution (FPIS) and the fuzzy
negative-ideal solution (FNIS) are defined. Then the ranking of alternatives is performed in
accordance with the proximity of their distances to the both FPIS and FNIS.

Keywords: Facility location selection problem; Multiple criteria group decision making;
Hesitant trapezoidal fuzzy set; Information entropy; Fuzzy TOPSIS method.
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1. Introduction

Models of FLP have to support the generation of optimal locations of service
centers in complex and uncertain situations. The facility location problem usually
involves a set of candidate centers locations (alternatives), which are evaluated
considering a set of weighted criteria. The alternative that is identified as the best
with respect to all criteria, will be chosen for implementation.
Several approaches have been proposed in the literature for solving the facility

location problems (see [2] and others). In [1], a hybrid Taguchi-immune approach
was presented to optimize an integrated supply chain design problem with mul-
tiple shipping. A belief programming model for the location of logistics service

∗Corresponding author. Email: irina.khutsishvili@tsu.ge

ISSN: 1512-0082 print
c⃝ 2019 Tbilisi University Press

A Multiple Criteria Group Decision Making problem (MCGDM) deals with a se-
lection of one best of the feasible alternatives or several ranked alternatives that
are evaluated by a group of experts based on multiple, often conflicting criteria.
From this perspective, the Facility Location Problem (FLP) represents a MCGDM
problem [6, 11, 12, 16, 17].
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centers have been proposed in [18]. Multi-attribute facility location models have
been investigated in [15]. It should be noted that in most of the above works, the
problem of determining the location in a certain environment is studied, that is,
the decision-making parameters (criteria, attributes, weights) in the problem are
fixed numbers and are known in advance. In reality, often the parameters cannot
be obtained with certainty.
There are some publications proposing application of fuzzy methods in the FLP.

Because of the inherent uncertainty of expert preferences, as well as due to the fact
that decision-making parameters can be fuzzy and uncertain, evaluations of them
most often are represent as fuzzy values (fuzzy numbers, triangular fuzzy numbers
and so on). Then the methods for facility location problems are developed called in
this case Fuzzy Facility Location Problem (FFLP) [4, 9]. In this work we consider
a new model of FFLP based on the fuzzy TOPSIS approach [5, 25] for the optimal
selection of facility location centers.
Application of fuzzy theory for location planning of facilities has been presented

in various studies. In [10], four fuzzy multi-criteria group decision making ap-
proaches in evaluating facility locations have been used. An algorithm for facil-
ity site selection based on fuzzy theory and hierarchical structure analysis have
been developed in [14]. A fuzzy multi-attribute decision making approach for
the service centers location selection problem have been developed in [4]. Fuzzy
TOPSIS approaches for facility location selection problem have been developed in
[5, 13, 21, 25].
Different from other studies, in this paper the novel approach based on hesitant

fuzzy TOPSIS decision making model with entropy weights is developed. The case
when the information on the criteria weights is completely unknown is considered.
The criteria weights are obtained by applying De Luca-Termini non-probabilistic
entropy concept [7], which is offered in context of hesitant fuzzy sets. A fuzzy
hesitant trapezoidal TOPSIS method is employed to ranking the alternatives. The
method is described in Section 2 (Subsection 2.3). The developed method is applied
to service centers location selection problem.

2. Preliminaries

2.1. On the trapezoidal fuzzy numbers

A trapezoidal fuzzy number Ã can be determined by a quadruple Ã = (a, b, c, d).
Its membership function is defined as

µÃ(x) =



0 if x < a,
x−a
b−a if a ≤ x ≤ b,

1 if b ≤ x ≤ c,
d−x
d−c if c ≤ x ≤ d,

0 if x > d.

where a ≤ b ≤ c ≤ d [3].

Let Ã = (a, b, c, d) be a trapezoidal fuzzy number. Using Graded Mean Inte-

gration Representation Method we can get following representation of Ã by the
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equation

p(Ã) = (a+ 2b+ 2c+ d)/6 . (2.1)

Graded Mean Integration Representation is the defuzzification method that con-
verts a trapezoidal fuzzy number in to a corresponding crisp number.

2.2. On the hesitant fuzzy sets

Hesitant fuzzy set (HFS) was introduced by Torra and Narukawa in [20] and Torra
in [19] as a generalization of a fuzzy set. In HFS the degree of membership of an
element to a reference set is presented by several possible fuzzy values. This allows
describing situations when decision makers (DMs) have hesitancy in providing their
preferences over alternatives. The HFS is defined as follows:

Definition 2.1 [19, 20]: Let X = {x1, x2, . . . , xn} be a reference set, a hesitant
fuzzy set E on X is defined in terms of a function hE(x), which when applied to
X returns a subset of [0, 1]:

E = {⟨x, hE(x)⟩ | x ∈ X},

where hE(x) is a set of some different values in [0, 1], representing the possible
membership degrees of the element x ∈ X to E; hE(x) is called a hesitant fuzzy
element (HFE).

Definition 2.2 [24]: Let M and N be two HFSs on X = {x1, x2, . . . , xn}, then
the distance measure between M and N is defined as d(M,N), which satisfies the
following properties:

1) 0 ≤ d(M,N) ≤ 1;
2) d(M,N) = 0 iff M = N ;
3) d(M,N) = d(N,M).

It is clear that the number of values (length) for different HFEs may be different.
Let ℓ(hE(x)) be the length of hE(x). After arranging the elements of hE(x) in a

decreasing order, let h
σ(j)
E (x) be the jth largest value in hE(x). To calculate the

distance between M and N when ℓ(hM (xi)) ̸= ℓ(hN (xi)), it is necessary extend the
shorter one by adding any value in it, until both will have the same length. The
choice of this value depends on the expert’s risk preferences. An optimist expert
may add the maximum value from HFE, while a pessimist expert may add the
minimal value.
In the present paper the hesitant weighted Hamming distance is used that is

defined by the following equation

dhwh(M,N) =

n∑
i=1

wi

[
1

ℓxi

ℓxi∑
j=1

∣∣hσ(j)M (xi)− h
σ(j)
N (xi)

∣∣], (2.2)

where h
σ(j)
M (xi) and h

σ(j)
N (xi) are the jth largest values in hM (xi) and hN (xi),

respectively; ℓxi
= max{ℓ(hM (xi)), ℓ(hN (xi))} for each xi ∈ X; wi (i = 1, 2, . . . , n)

is the weight of the element xi ∈ X such that wi ∈ [0, 1] and
∑n

i=1wi = 1.
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Definition 2.3 [23]: For a HFE hE(x), the score function s(hE(x)) is defined as
follows:

s(hE(x)) =

ℓ(hE(x))∑
j=1

h
σ(j)
E (x)

ℓ(hE(x))
, (2.3)

where s(hE(x)) ∈ [0, 1].

Let h1 and h2 be two HFEs. Based on score function it is possible to make
ranking of HFEs according to the following rules: h1 > h2 if s(h1) > s(h2); h1 < h2
if s(h1) < s(h2) and h1 = h2 if s(h1) = s(h2).

2.3. Determination of the criteria weights using De Luca-Termini entropy

The complexity and uncertainty of the problems of service centers location planning
leads to the information on criteria weights usually being incomplete or completely
unknown. Here we consider a case when the criteria weights are unknown.
Assume that, we have the hesitant decision matrix H = (hij)m×n, each element

of which represents a HFE.
De Luca and Termini [7] defined a non-probabilistic entropy formula of a fuzzy

set based on Shannon’s function on a finite universal set X as:

ELT = −k

n∑
i=1

[
µA(xi) lnµA(xi) + (1− µA(xi)) ln(1− µA(xi))

]
, k > 0,

where µA : X → [0, 1]; k is a positive constant.
The criteria weights definition method based on the De Luca-Termini entropy

can be described as follows:
Step 1 : Calculate the score matrix S = (sij)m×n of the hesitant decision matrix

H, where sij = s(hij) is the score value of hij (see equation (2.3)).
Step 2 : Calculate the normalized score matrix S′ = (s′ij)m×n, where

s′ij = sij

/ m∑
i=1

sij . (2.4)

Step 3 : Determine the criteria weights.
By using De Luca-Termini normalized entropy in context of hesitant fuzzy sets

Ej = − 1

m ln 2

m∑
i=1

(
s′ij ln s

′
ij + (1− s′ij) ln(1− s′ij)

)
, j = 1, 2, . . . , n, (2.5)

the definition of the criteria weights is expressed by the formula

wj = (1− Ej)
/ n∑

j=1

(1− Ej) , j = 1, 2, . . . , n, (2.6)
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where the value of wj represents the relative intensity of xj criterion importance
[12].

2.4. On the hesitant trapezoidal fuzzy sets

Definition 2.4 [23]: Let Xbe a reference set, a hesitant trapezoidal valued fuzzy
set T on X is defined in terms of a function fT (x) as follows:

T = {⟨x, fT (x)⟩ | x ∈ X},

where fT (x) is a set of several trapezoidal fuzzy numbers, representing the possible
membership degrees of the x ∈ X element to the HTFS T ; fT (x) is called a hesitant
trapezoidal fuzzy element (HTFE).

3. Formulation of Facility Location Selection MCGDM Problem in Hesitant
Fuzzy Environment

Consider MCGDM problem for location planning of service centers. The proposed
framework for location planning of candidate centers comprises following steps
presented in detail.

3.1. Selection of location criteria

Involves the selection of location criteria to assess potential locations for candidate
centers. These criteria are obtained from a literature review and discussion with
other experts and members of the city transportation group. For example, the
set of criteria may be presented (see Table 1) to determine the best location for
implementing service centers.
As can be seen from Table 1, criteria of two types are considered:

a) the benefit type criteria - this means that the higher the criterion’s value,
the more preferable is the alternative for the best location;

b) the cost type criteria - that is, the lower the criterion’s value, the better
the alternative for the best location.

3.2. Selection of potential locations for service centers

Involves selection of potential locations for implementing service centers. The ex-
perts use their knowledge, prior experience with the transportation or other con-
ditions of the geographical area and the presence of freight regulations to identify
candidate locations for implementing service centers. For example, if certain areas
are restricted for delivery by municipal administration, these areas are barred from
being considered as potential locations for implementing urban service centers. Ide-
ally, potential locations are those that satisfy the interests of all stakeholders in
the city, such as city residents, logistics operators, municipal administrations, etc.
Assume that there are m locations of candidate centers – decision making al-

ternatives A = {A1, A2, . . . , Am}, and the group of k experts E = {e1, e2, . . . , ek}
evaluates them with respect to an n criteria X = {x1, x2, . . . , xn}. Experts give the
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Table 1. The Criteria for Location Centers Selection

Criteria Definition Criteria type

Accessibility Access by public and private transport
modes to the location

Benefit
(the more the better)

Security Security of the location from accidents,
theft and vandalism

Benefit
(the more the better)

Connectivity to
multimodal transport

Connectivity of the location with other
modes of transport, e.g. highways,
railways, seaport, airport etc.

Benefit
(the more the better)

Costs
Costs in acquiring land, vehicle resources,
drivers and etc. for the location

Cost
(the less the better)

Environmental impact
Impact of location on the environment,
for example, air pollution, noise

Cost
(the less the better)

Proximity to customers Distance proximity of location to
customer locations

Benefit
(the more the better)

Proximity to suppliers Distance proximity of location to supplier
locations

Benefit
(the more the better)

Conformance to
sustainable freight
regulations

Ability to conform to sustainable freight
regulations imposed by municipal
administrations for e.g. restricted delivery
hours, special delivery zones

Benefit
(the more the better)

Possibility of expan-
sion

Ability to increase size to accommodate
growing demands

Benefit
(the more the better)

evaluations over criteria in form of lingual assessments – linguistic terms. Then,
these assessments are expressed in trapezoidal fuzzy numbers (TrFNs) using 5-point
linguistic scale [22] (see Table 2).

Table 2. Linguistic terms for criteria ratings

Linguistic term Corresponding TrFNs

Very low (VL) (0, 0.1, 0.2, 0.3)

Low (L) (0.1, 0.2, 0.3, 0.4)

Medium (M) (0.3, 0.4, 0.5, 0.6)

High (H) (0.5, 0.6, 0.7, 0.8)

Very high (VH) (0.7, 0.8, 0.9, 1.0)

After those transformations of lingual expressions, experts’ joint assessments
concerning each alternative represent HTFS:
A HTFS Ai of the ith alternative - location of candidate centers - on X is given

by

Ai = {⟨xj , fAi
(xj)⟩ | xj ∈ X},

where fAi
(xj), i = 1, 2, . . . ,m; j = 1, 2, . . . , n, indicates the possible membership

degrees of the ith alternative Ai under the jth criterion xj , and it can be expressed

as a HTFE t̃ij . All HTFEs create the aggregate fuzzy hesitant trapezoidal decision

matrix T̃ = (t̃ij)m×n.
Considering that the criteria have different importance degrees, the weight vector
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of all criteria, given by the experts, is defined by w = (w1, w2, . . . , wn), where
0 ≤ wj ≤ 1,

∑n
j=1wj = 1 and wj is the importance degree of jth criterion.

3.3. Locations evaluation using fuzzy TOPSIS

This Subsection presents a MCGDM approach for location planning of service
centers based on the hesitant fuzzy TOPSIS model with entropy weights. The
idea of TOPSIS method as applied to the problem of MCGDM is to choose an
alternative with the nearest distance from the so-called fuzzy positive ideal solution
(FPIS) and the farthest distance from the fuzzy negative ideal solution (FNIS). A
positive ideal solution is composed of the best performance values for each criterion
whereas the negative ideal solution consists of the worst performance values. Fuzzy
TOPSIS has been applied to facility location problems by researchers in [5, 21, 25].
An algorithm for the practical solution of the location planning problem for

service centers using fuzzy TOPSIS can be formulated as follows:
Step 1 : Experts lingual assessments convert into the assessments in a form of

trapezoidal fuzzy numbers.
Step 2 : Based on the experts’ hesitant trapezoidal evaluations construct the

aggregate hesitant trapezoidal decision matrix T̃ = (t̃ij)m×n.

Step 3 : Transform aggregate hesitant trapezoidal decision matrix T̃ = (t̃ij)m×n

into aggregate hesitant decision matrix H = (hij)m×n by using Graded Mean
Integration Representation Method.
Step 4 : Determine the criteria weights w = (w1, w2, . . . , wn) based on the method

given in Section 2 (Subsection 2.3).
Step 5 : Determine the corresponding hesitant FPIS A+ and the hesitant FNIS

A− by formulas:

A+ =
{〈

max
i=1,...,m

[h
σ(λ)
ij ], λ = 1, . . . , l

〉
| j ∈ J ′;〈

min
i=1,...,m

[h
σ(λ)
ij ], λ = 1, . . . , l

〉
| j ∈ J ′′

}
, (3.1)

A− =
{〈

min
i=1,...,m

[h
σ(λ)
ij ], λ = 1, . . . , l

〉
| j ∈ J ′;〈

max
i=1,...,m

[h
σ(λ)
ij ], λ = 1, . . . , l

〉
| j ∈ J ′′

}
, (3.2)

where l is a length of HFE hij (quantity of elements in hij), J
′ is associated with

a benefit criteria, and J ′′ is associated with a cost criteria.
Step 6 : Using (2.2) calculate the separation measures d+i and d−i of each alter-

native Ai from the hesitant FPIS A+ and the hesitant FNIS A−, respectively:

d+i =

n∑
j=1

d(hij , h
+
j )wj =

n∑
j=1

wj

[
1

l

l∑
j=1

∣∣hσ(j)ij − (h
σ(j)
ij )+

∣∣], i = 1, 2, . . . ,m, (3.3)

d−i =

n∑
j=1

d(hij , h
−
j )wj =

n∑
j=1

wj

[
1

l

l∑
j=1

∣∣hσ(j)ij − (h
σ(j)
ij )−

∣∣], i = 1, 2, . . . ,m. (3.4)
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Step 7 : Calculate the relative closeness coefficient δi of each alternative Ai to the
hesitant FPIS A+:

δi = d−i
/
(d+i + d−i ). (3.5)

Step 8 : Perform the ranking of the alternatives Ai, i = 1, 2, . . . ,m, according to
the relative closeness coefficients δi, i = 1, 2, . . . ,m, by the rule: for two alternatives
Aα and Aβ we say that Aα is more preferred than Aβ, i.e. Aα ≽ Aβ, if δα ≥ δβ,
where ≽ is a preference relation on A.

4. An example of the Application of Fuzzy Decision Making Approach

Suppose, in the MCGDM problem for location planning of service centers the
following five main criteria have been identified:

x1-Accessibility;
x2-Connectivity to multimodal transport;
x3-Costs;
x4-Proximity to customers;
x5-Proximity to suppliers.

From them only x3 criterion is of a cost type, the other criteria are of a benefit
type.
Assume that there are four decision making alternatives - potential locations for

candidate centers, and the group of the experts consists of four members. They
evaluate each possible location regarding all criteria and give assessments in lin-
guistic terms as follows (see Table 3).

Table 3. Experts initial assessments - ratings of alternatives

Criteria
x1 x2 x3 x4 x5

A1 {H,VH,VL,VH} {H,H,M,VH} {L,H,M,VL } {VH,VH,M,VM} {VL,L,VL,VL}

A2 {L,L,VL,VL} {L,M,VL,M} {L,M,VL,M} {VL,L,VL,VL} {L,VL,L,L}

A3 {M,VH,H,H} {L,H,M,H} {L,VL,M,H} {M,VH,VH,M} {M,H,M,M}

A4 {H,VL,M,M} {L,VL,H,L} {L,M,VL,L} {H,H,H,H} {VH,H,VH,M}

These initial assessments are transformed into HTF matrix by assigning for each
lingual assessment the appropriate TrFN as given in Table 2. Thus, we obtained
the following hesitant trapezoidal fuzzy decision matrix (see Table 4).
Then we transform the constructed matrix into the hesitant fuzzy decision matrix

(see equation (2.1)). If the evaluation values of any criterion given by experts are
coincident, then such values are included in HFE only once. We assume that the
experts are pessimistic, and the hesitant fuzzy data in HFEs are changed by adding
the minimal values. Hence, the hesitant fuzzy decision matrix H looks like Table 5.
According to the method of determining the criteria weights given in Subsection

2.3, we first calculate the score matrix S of hesitant decision matrix H based on
equation (2.3):
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Table 4. The Hesitant Trapezoidal Fuzzy Decision Matrix

Criteria
x1 x2 x3 x4 x5

A1

(0.5,0.6,0.7,0.8) (0.5,0.6,0.7,0.8) (0.1,0.2,0.3,0.4) (0.7,0.8,0.9,1.0) (0.0,0.1,0.2,0.3)

(0.7,0.8,0.9,1.0) (0.5,0.6,0.7,0.8) (0.5,0.6,0.7,0.8) (0.7,0.8,0.9,1.0) (0.1,0.2,0.3,0.4)

(0.0,0.1,0.2,0.3) (0.3,0.4,0.5,0.6) (0.3,0.4,0.5,0.6) (0.3,0.4,0.5,0.6) (0, 0.1, 0.2, 0.3)

(0.7,0.8,0.9,1.0) (0.7,0.8,0.9,1.0) (0,0.1,0.2,0.3) (0.7,0.8,0.9,1.0) (0,0.1,0.2,0.3)

A2

(0.1,0.2,0.3,0.4) (0.1,0.2,0.3,0.4) (0.1,0.2,0.3,0.4) (0, 0.1,0.2,0.3) (0.1,0.2,0.3,0.4)

(0.1,0.2,0.3,0.4) (0.3,0.4,0.5,0.6) (0.3,0.4,0.5,0.6) (0.1,0.2,0.3,0.4) (0, 0.1,0.2,0.3)

(0,0.1,0.2,0.3) (0,0.1,0.2,0.3) (0,0.1,0.2,0.3) (0,0.1,0.2,0.3) (0.1,0.2,0.3,0.4)

(0, 0.1, 0.2, 0.3) (0.3,0.4,0.5,0.6) (0.3,0.4,0.5,0.6) (0, 0.1, 0.2, 0.3) (0, 0.1, 0.2, 0.3)

A3

(0.3,0.4,0.5,0.6) (0.1,0.2,0.3,0.4) (0.1,0.2,0.3,0.4) (0.3,0.4,0.5,0.6) (0.3,0.4,0.5,0.6)

(0.7,0.8,0.9,1.0) (0.5,0.6,0.7,0.8) (0,0.1,0.2,0.3) (0.7,0.8,0.9,1.0) (0.5,0.6,0.7,0.8)

(0.5,0.6,0.7,0.8) (0.3,0.4,0.5,0.6) (0.3,0.4,0.5,0.6) (0.7,0.8,0.9,1.0) (0.3,0.4,0.5,0.6)

(0.5,0.6,0.7,0.8) (0.5,0.6,0.7,0.8) (0.5,0.6,0.7,0.8) (0.3,0.4,0.5,0.6) (0.3,0.4,0.5,0.6)

A4

(0.5,0.6,0.7,0.8) (0.1,0.2,0.3,0.4) (0.1,0.2,0.3,0.4) (0.5,0.6,0.7,0.8) (0.5,0.6,0.7,0.8)

(0, 0.1, 0.2, 0.3) (0, 0.1, 0.2, 0.3) (0.3,0.4,0.5,0.6) (0.5,0.6,0.7,0.8) (0.5,0.6,0.7,0.8)

(0.3,0.4,0.5,0.6) (0.5,0.6,0.7,0.8) (0,0.1,0.2,0.3) (0.5,0.6,0.7,0.8) (0.5,0.6,0.7,0.8)

(0.3,0.4,0.5,0.6) (0.1,0.2,0.3,0.4) (0.1,0.2,0.3,0.4) (0.5,0.6,0.7,0.8) (0.5,0.6,0.7,0.8)

Table 5. The Hesitant Fuzzy Decision Matrix H

Criteria
x1 x2 x3 x4 x5

A1
(0.65,0.85, (0.65,0.45, (0.25,0.65, (0.45,0.85, (0.15,0.25,

0.15,0.15) 0.85,0.45) 0.45,0.15) 0.45,0.45) 0.15,0.15)

A2
(0.25,0.15, (0.25,0.15, (0.15,0.25, (0.15,0.25 (0.25,0.15,

0.15,0.15) 0.45,0.15) 0.45, 0.15) 0.15,0.15) 0.15,0.15)

A3
(0.45,0.85 (0.25,0.65 (0.25,0.15, (0.45,0.85, (0.45,0.65,

0.65,0.45) 0.45,0.25) 0.45,0.65) 0.45,0.45) 0.45,0.45)

A4
(0.65,0.15, (0.15,0.25, (0.25,0.45, (0.65,0.65, (0.85,0.65,

0.45,0.15) 0.65,0.15) 0.15,0.15) 0.65,0.65) 0.45,0.45)

S =


0.45 0.6 0.375 0.55 0.175

0.175 0.25 0.25 0.175 0.175

0.6 0.4 0.375 0.55 0.5

0.35 0.3 0.25 0.65 0.6


Secondly, we obtain the normalized score matrix S′ using equation (2.4):

S′ =


0.2857 0.3871 0.3 0.2857 0.1207

0.1111 0.1613 0.2 0.0909 0.1207

0.3809 0.2581 0.3 0.2857 0.3448

0.2222 0.1935 0.2 0.3376 0.4138
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Then the weighting vector of criteria is determined using equations (2.5) and (2.6):

w = (0.201817, 0.192146, 0.175857, 0.202036, 0.228144).

Following the hesitant fuzzy TOPSIS method, we determine the hesitant FPIS and
the hesitant FNIS by equations (3.1) and (3.2), respectively:

A+ = {(0.65, 0.85, 0.65, 0.45), (0.65, 0.65, 0.85, 0.45), (0.15, 0.15, 0.15, 0.15),

(0.65, 0.85, 0.65, 0.65), (0.85, 0.65, 0.45, 0.45)};

A− = {(0.25, 0.15, 0.15, 0.15), (0.15, 0.15, 0.45, 0.15), (0.25, 0.65, 0.45, 0.65),

(0.15, 0.25, 0.15, 0.15), (0.15, 0.15, 0.15, 0.15)}.

Then we calculate the distances and of each alternative from the hesitant FPIS
and the hesitant FNIS by equations (3.3) and (3.4), respectively:

d+1 = 0.216805, d+2 = 0.393337, d+3 = 0.150815, d+4 = 0.155484;

d−1 = 0.231004, d−2 = 0.0544715, d−3 = 0.297994, d−4 = 0.292325.

Using equation (3.5) to calculate the relative closeness coefficient δi of each al-
ternative Ai to the hesitant FPIS A+ we obtain:

δ1 = 0.515853, δ2 = 0.12164, δ3 = 0.663216, δ4 = 0.65279.

Finally, we perform the ranking of the alternatives Ai, i = 1, 2, . . . , 4, according
to the relative closeness coefficients δi and obtain:

A3 ≻ A4 ≻ A1 ≻ A2.

This means that in accordance with the common opinion of the experts TOPSIS
method prefers to the alternative A3 , i.e., A3 is the best location for service centers.

5. Conclusion

In this paper the novel approach for solving MCGDM problem based on hesitant
fuzzy TOPSIS method with entropy weights is developed. Our methodology pro-
vides experts with the opportunity to manifest intellectual activity of a high level.
Securing the freedom of experts’ subjective evaluations, the methodology, however,
allows for developing experts’ joint decision, for instance, on selection of the best
location for service centers among a set of possible alternatives.
The new aspects in the TOPSIS approach have been used. We proposed a new

criteria weighting method based on De Luca-Termini information entropy to ex-
press the relative intensities of criterion importance and determine the criteria
weights. The latter distinguishes our methodology from the others.
It should also be noted that in the real problem of location planning for service

centers, practically have been processed the criteria of both benefit and cost types.
Based on proposed methodology we have developed software package, the results
of which are illustrated in considered example.
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