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Certain properties of almost invariant subsets of uncountable groups are considered and sev-
eral applications of those subsets are given in measure theory and general topology.
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In this paper we will be concerned with so-called almost invariant sets in infinite
(mostly, in uncountable) groups.
Recall that the concept of these sets was first introduced by von Neumann and

Halmos. There are various possibilities to define such sets. We will consider below
only three variants of their definitions.
Let E be an infinite ground set, let G be a group of transformations of E, and

let X be a subset of E.
We shall say that X is almost G-invariant (in the set-theoretical sense) if, for

each transformation g ∈ G, one has

card(g(X)△X) < card(E),

where the symbol △ denotes the operation of symmetric difference of two sets.
Supposing that E is additionally endowed with some topology, we shall say that

a set Y ⊂ E is almost G-invariant (in the topological sense) if, for each transfor-
mation g ∈ G, the set g(Y )△Y is of first category in E.
Analogously, supposing that E is endowed with some measure µ, we shall say

that a set Z ⊂ E is almost G-invariant (in the measure-theoretical sense or, more
precisely, with respect to µ) if, for each transformation g ∈ G, the set g(Z)△Z is
of µ-measure zero in E.
If E itself is a group, then we may take as G the group of all left translations of E

and, in this way, we get the notions of almost E-invariant subsets of E (respectively,
in the set-theoretical, topological, and measure-theoretical sense).
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(a) Take any bounded λ-measurable set X ⊂ R of first category in R with
λ(X) > 0 (there are many such sets in R). Clearly, X is almost R-invariant in the
topological sense, but is not almost R-invariant with respect to λ.
(b) Take any bounded set Y ⊂ R of second category and with λ(Y ) = 0 (again,

there are many such sets in R). Obviously, Y is almost R-invariant with respect
to λ, but is not almost R-invariant in the topological sense.
(c) Take any λ-nonmeasurable set Z ⊂ R with card(Z) < c (there are models of

set theory in which such a set Z does exist). Clearly, Z is almost R-invariant in
the set-theoretical sense, but is not almost R-invariant with respect to λ.
(d) Take any second category set T ⊂ R with card(T ) < c (again, there are

models of set theory in which a set T does exist). Obviously, T is almostR-invariant
in the set-theoretical sense, but is not almost R-invariant in the topological sense.
(e) Assuming that Martin’s Axiom holds true, it can easily be seen that every

almost R-invariant subset of R in the set-theoretical sense is simultaneously almost
R-invariant with respect to λ and almost R-invariant in the topological sense.

The above example shows, in particular, that the three introduced concepts of
almost invariance of subsets of a ground set E (equipped with a group G of its
transformations) are mutually independent.
Suppose now that (G, ·) is a topological group. The following three basic and

well-known facts will be used below.
(i) If A is a second category subset of G having the Baire property, then the set

A ·A−1 is a neighborhood of the neutral element of G.
(ii) If both A and B are second category subsets of G having the Baire property,

then there exists an element g ∈ G such that gA∩B is also a set of second category
in G.
(iii) If G is a σ-compact locally compact group and µ denotes the left Haar

measure on G, then for any µ-measurable set X ⊂ G the relation

limg→eµ(X△gX) = 0

holds true, where e denotes the neutral element of G.
Assertion (i) is known as the Banach–Kuratowski–Pettis theorem (cf. [9], [15]).
Assertion (ii) may be considered as the topological transitivity with respect to

the family of all second category subsets of G possessing the Baire property.
Assertion (iii) is a standard fact of the theory of Haar measure (see, e.g., [5]).
Notice that (iii) trivially implies the so-called Steinhaus property of µ-measurable

sets in G, where µ is again the left Haar measure on G. Namely, if X ⊂ G is a
µ-measurable set with µ(X) > 0, then the set X · X−1 is a neighborhood of e.
The latter fact may be treated as a measure-theoretical analogue of (i). Various
statements closely connected with (iii) are discussed in [1], [2], [10], [11], [16].

In this article we would like to present several applications of almost invariant
sets to certain questions which naturally arise in measure theory and general topol-
ogy. As mentioned in the beginning, the notion of an almost invariant set was first
considered by von Neumann and Halmos. Later on, Kakutani and Oxtoby used
those sets for constructing non-separable translation invariant extensions of the

Example 1 Let R be the real line endowed with the usual Euclidean topology,
let c denote the cardinality of the continuum, and let λ stand for the standard
Lebesgue measure on R. We put E = R and G = R.
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Lebesgue measure λ (see their work [8]; cf. [4], and also [5] where some gener-
alization was given to a class of locally compact groups equipped with the Haar
measure).
A radically different method for obtaining nonseparableR-invariant extensions of

λ was suggested by Kodaira and Kakutani [14] and is based on certain properties
of group homomorphisms having thick (massive) graphs. In this connection, see
also [11] and [13].
In the fundamental work by Pkhakadze [19] almost invariant sets were applied for

giving a relative solution of the general measure extension problem restricted to the
class of all nonzero σ-finite R-invariant measures on R. In order to formulate the
main results of Pkhakadze, we need two widely known concepts of large cardinal
numbers.
A cardinal a is called measurable in the Ulam sense if there is a probability

diffused measure defined on the family of all subsets of a.
A cardinal b is called two-valued measurable if there is a two-valued probability

diffused measure defined on the family of all subsets of b.
It is well known that the existence of cardinals measurable in the Ulam sense

(as well as the existence of two-valued measurable cardinals) cannot be established
within ZFC set theory (see, for instance, [7]).
We also need the concept of ergodicity (metrical transitivity) for invariant mea-

sures (see, e.g., [11]).
Let E be a ground set, let G be a group of transformations of E, and let µ be

a G-invariant or, more generally, G-quasi-invariant measure on E. This µ is called
G-ergodic (or metrically transitive with respect to G) if, for any set X ∈ dom(µ),
the relation

(∀g ∈ G)(µ(X△g(X)) = 0)

implies the relation µ(X) = 0∨µ(E \X) = 0 (cf. (ii) which is a topological version
of ergodicity).
Actually, Pkhakadze proved in his extensive work [19] that the following two

assertions are valid.

′ on R which properly extends µ.

′ on R
which properly extends µ.

Remarkably, the method of Pkhakadze is applicable to a much more general
situation, where an uncountable group G equipped with a nonzero σ-finite G-
invariant measure µ is taken instead of the pair (R, λ) (cf. [6]). So, the above
results of Pkhakadze can be reformulated as follows.
1. Let G be an uncountable group endowed with a nonzero σ-finite G-invariant

measure µ and let card(G) be strictly less than the smallest cardinal measurable in
the Ulam sense. Then there exists a G-invariant measure µ′ on G which properly
extends µ.
2. Let G be an uncountable group endowed with a nonzero σ-finite G-invariant

G-ergodic measure µ and let card(G) be strictly less than the smallest two-valued

Theorem 1 : Let µ be an arbitrary nonzero σ-finite R-invariant measure on R.
If c is not measurable in the Ulam sense, then there exists an R-invariant measure
µ

Theorem 2 : Let µ be an arbitrary nonzero σ-finite R-invariant and R-ergodic
measure on R. Then there exists an R-invariant and R-ergodic measure µ
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measurable cardinal. Then there exists a G-invariant G-ergodic measure µ′ on G
which properly extends µ.
The key role in the process of obtaining these results is played by a certain

partition of any uncountable group G.
Let us denote by α the least ordinal number with card(α) = card(G). It is not

hard to see that there exists a family {Gξ : ξ < α} of subgroups of G such that:
(1) for every ξ < α, the group Gξ properly contains the set ∪{Gζ : ζ < ξ};
(2) if ξ < α, then card(Gξ) ≤ card(ξ) + ω, where ω denotes, as usual, the least

infinite cardinal number;
(3) ∪{Gξ : ξ < α} = G.
Now, putting Xξ = Gξ \∪{Gζ : ζ < ξ} for each ξ < α, we come to the decompo-

sition {Xξ : ξ < α} of G which satisfies the relations:
(4) card(Xξ) < card(G) for all ξ < α;
(5) for any set Ξ ⊂ α and for any element g ∈ G, the symmetric difference

(g · (∪{Xξ : ξ ∈ Ξ}))△(∪{Xξ : ξ ∈ Ξ})

has cardinality strictly less than card(G), so the set ∪{Xξ : ξ ∈ Ξ} is almost
G-invariant in the set-theoretical sense.
Let us indicate some works in which the above-mentioned partition ofG is applied

in constructions of proper G-invariant extensions of nonzero σ-finite G-invariant
measures: [4], [6], [8], [10], [11], [18], [19], [20]. We would like to especially notice
that [20] is an extensive survey of this topic and some related ones.
To continue, let us recall a few definitions concerning density points (in the

measure-theoretical sense) and their natural generalizations.
Let µ be a measure on R extending the standard Lebesgue measure λ, let X ∈

dom(µ), and let d ∈ [0, 1].
It is natural to say that X has upper µ-density d at a point x ∈ R if

limsupδ→0µ(X ∩ Iδ(x))/µ(Iδ(x)) = d,

where Iδ(x) stands for the interval in R with center x and diameter δ.
If the stronger condition

limδ→0µ(X ∩ Iδ(x))/µ(Iδ(x)) = d

holds true, then we say that X has µ-density d at x.
In the latter case, for d = 1, we get the ordinary µ-density point x of X.
The classical Lebesgue theorem states that if Y is an arbitrary λ-measurable set

in R, then λ-almost all points of Y are its λ-density points (see, for instance, [12],
[17]).
According to the classical Steinhaus theorem, if Z is a λ-measurable set in R of

strictly positive measure, then the difference set

Z − Z = {x− y : x ∈ Z, y ∈ Z}

is a neighborhood of zero in R, so Z − Z has a nonempty interior (cf. (i), (iii)).
Various aspects of the Steinhaus theorem and its generalizations are considered

in many works (see, e.g., [1], [2], [11], [16] and references therein). As a matter
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of fact, this theorem can easily be deduced from the above-mentioned Lebesgue
theorem. The following statement illustrates a slightly more general fact.

Then there exists a real δ > 0 such that

(∀h ∈ R)(|h| < δ ⇒ µ(X ∩ (h+X)) > 0).

Consequently, the difference set X −X is a neighborhood of zero of R.

Proof : Since d > 1/2, there is a real ε > 0 such that d > 1/2 + ε/2. Since X
has upper µ-density d at x, we may choose an interval I(x) with center x which
satisfies the inequality

µ(X ∩ I(x)) ≥ (1/2 + ε/2)µ(I(x)).

Further, let δ > 0 be so small that

µ(I(x) ∪ (I(x) + h)) < (1 + ε)µ(I(x))

whenever h ∈ R and |h| ≤ δ. Clearly, for all these h we may write

(X ∩ I(x)) ∩ ((X + h) ∩ (I(x) + h)) ⊂ (X ∩ (X + h)).

Assuming for a moment that

µ((X ∩ I(x)) ∩ ((X + h) ∩ (I(x) + h))) = 0

and keeping in mind the R-invariance of µ, we get

µ(I(x) ∪ (I(x) + h)) ≥ µ(X ∩ I(x)) + µ((X + h) ∩ (I(x) + h)) ≥

2(1/2 + ε/2)µ(I(x)) = (1 + ε)µ(I(x)),

which is impossible. Therefore, µ(X ∩ (X + h)) > 0, and we conclude that X −X
contains the δ-neighborhood of zero of R. This completes the proof. �

Actually, the assertion of Theorem 3 remains valid if there exist a point x ∈ R
and an interval I(x) such that µ(X ∩I(x)) > (1/2)µ(I(x)). The proof is essentially
the same.

(a) ν is an extension of the Lebesgue measure λ;
(b) there exists a ν-measurable set Y with ν(Y ) > 0 such that Y − Y is not a

neighborhood of zero of R and at ν-almost all points y ∈ Y the ν-density of Y at
y is greater than or equal to 1/2.
The construction of the measure ν is highly nontrivial and needs a certain mod-

ification of the method of Kodaira and Kakutani [14].

Theorem 3 : Let µ be an R-invariant measure on R extending λ and let X be
a µ-measurable set having upper µ-density d > 1/2 at some point x ∈ R.

Example 2 It can be demonstrated that there is an R-invariant measure ν on
R satisfying the following conditions:
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Let G be a topological group, let µ be a σ-finite G-invariant measure on G, and
let X be a µ-measurable subset of G with µ(X) > 0.
We shall say that thisX has the Steinhaus property if there exists a neighborhood

UX of the neutral element of G such that

(∀g ∈ UX)(µ(gX ∩X) > 0).

Accordingly, we shall say that a measure µ possesses the Steinhaus property if
all µ-measurable sets X with µ(X) > 0 have the Steinhaus property.
In view of Theorem 3 and the remark after it, if µ is an R-invariant measure on

R extending λ and such that, for any µ-measurable set X with µ(X) > 0 there
exist a point x ∈ R (depending on X) and an interval I(x) satisfying

µ(X ∩ I(x)) > (1/2)µ(I(x)),

then µ possesses the Steinhaus property.
Using almost invariant subsets of uncountable groups (in the set-theoretical

sense), the following statement can be formulated and proved.

Then there exists a G-invariant measure µ′ on G which properly extends µ and
also possesses the Steinhaus property.

Proof : Since the argument is essentially the same as that of Pkhakadze [19], we
only sketch it. We may suppose, without loss of generality, that the measure µ is
complete and all sets in G whose cardinalities are strictly less than card(G) belong
to dom(µ). From the assumption of the theorem it follows that there is an almost
G-invariant (with respect to µ) set T such that

T ̸∈ dom(µ), µ∗(T ) = 0,

where the symbol µ∗ stands for the inner measure canonically associated with
µ. Denote by I the G-invariant σ-ideal of subsets of G generated by {T} and
consider the G-invariant σ-algebra A of subsets of G generated by dom(µ) ∪ {T}.
All elements A of this A are representable in the form

A = (X ∪ Z1) \ Z2,

where X ∈ dom(µ) and {Z1, Z2} ⊂ I. It can be checked that the functional

µ′ : A → R

defined by the formula

µ′(A) = µ′((X ∪ Z1) \ Z2) = µ(X)

gives us a G-invariant measure on G which properly extends µ and also possesses
the Steinhaus property. �

Theorem  4 : Let G be a topological group whose cardinality is strictly less than
the first cardinal measurable in the Ulam sense, and let µ be a nonzero σ-finite
G-invariant measure on G possessing the Steinhaus property.
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A concrete application of almost invariant sets to the Baire property in topo-
logical groups can also be given. In this connection, let us formulate the following
statement.

(not necessarily Hausdorff) and let card(G) be strictly less than the smallest two-
valued measurable cardinal.
Then there exists a subset of G which does not possess the Baire property.

Proof : Suppose to the contrary that all subsets of G possess the Baire property.
We may assume, without loss of generality, that card(G) takes the minimum value.
Taking into account fact (i) for topological groups, it is not difficult to verify the
validity of these two relations:
(a) card(G) > ω;
(b) if X ⊂ G and card(X) < card(G), then X is of the first category in G.
Denoting by α the least ordinal number with card(α) = card(G) and following

the method of Pkhakadze, we construct a partition {Xξ : ξ < α} of G such that:
(c) card(Xξ) < card(G) for all ξ < α;
(d) for any set Ξ ⊂ α and for any g ∈ G, the symmetric difference

(g · (∪{Xξ : ξ ∈ Ξ}))△(∪{Xξ : ξ ∈ Ξ})

has cardinality strictly less than card(G), so is of the first category in view of (b).
Now, for each subset A of α, we put µ(A) = 1 if ∪{Xξ : ξ ∈ A} is not a set of the

first category, and we put µ(A) = 0 if ∪{Xξ : ξ ∈ A} is a set of the first category.
Observe that, by virtue of (ii), we have

µ(A) = 1 ⇔ µ(α \A) = 0.

A straightforward verification shows that µ is a two-valued diffused probability
measure defined on the whole power set of α, which contradicts the assumption
that α is strictly less than the smallest two-valued measurable cardinal.
The obtained contradiction finishes the proof. �

Recall that a topological space E is resolvable (in the sense of Hewitt) if there
exists a partition of E into two everywhere dense subsets of E.
According to this definition, a topological space E is irresolvable if the above-

mentioned partition does not exist for E. Moreover, E is called totally irresolvable
if no nonempty open subset of E is resolvable.
It can easily be checked that any set in a totally irresolvable topological space E

has the Baire property in E.
If G is a topological group (not necessarily Hausdorff), then the following two

assertions are equivalent:
(*) G is an irresolvable topological space;
(**) G is a totally irresolvable topological space.
Using these facts and Theorem 5 proved above, the next statement can be readily

obtained.

Theorem 5 :   Let    (G, ·) be a nondiscrete topological group of second category

dorff) and let card(G) be strictly less than the smallest two-valued measurable car-
dinal.

Theorem 6 : Let (G, ·) be a nondiscrete topological group (not necessarily Haus-
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Then the disjunction of the following two assertions holds true:
(1) G is a resolvable topological space;
(2) G is a first category topological space.

Proof : Suppose that both (1) and (2) are false. This means that G is a second
category topological group and, simultaneously, G is a totally irresolvable topolog-
ical space. Therefore, all subsets of G possess the Baire property. But, keeping in
mind the assumption on card(G) and Theorem 5, there must be sets in G which
do not have the Baire property. The obtained contradiction gives us the required
result. �

In connection with Theorem 5, the following question seems to be of some inter-
est.
Let G be again a nondiscrete topological group of the second category whose

cardinality is not a two-valued measurable cardinal and let {Xi : i ∈ I} be a
partition of G into sets of the first category in G. Does there exist a subset J of I
such that the set ∪{Xj : j ∈ J} lacks the Baire property?
This question remains open. It should be noticed that, without any assumption

on the cardinality of G, the answer can be negative. To show this circumstance,
we will use the construction of Frankiewicz and Kunen [3].

1

κ) a
discrete commutative group of cardinality 2κ and consider the topological product
group Γ = (D(2κ))ω which is complete and metrizable. Obviously, we can put

Φ = {Φα : α < 2κ},

where 2κ is identified with the least ordinal number of cardinality 2κ. Also, we
may identify the group D(2κ) with the same least ordinal number of cardinality
2κ. Now, for each ordinal α < κ, we introduce the set

Xα = {x ∈ Γ : α = min(∩{Φx(n) : n < ω})}.

It is not hard to verify that:
(a) the family {Xα : α < κ} is disjoint;
(b) all Xα are the first category subsets of Γ;
(c) ∪{Xα : α < κ} = Γ.
Moreover, as demonstrated in [3], if A ∈ Φ, then the set ∪{Xα : α ∈ A} is

co-meager in Γ and if A ̸∈ Φ, then the set ∪{Xα : α ∈ A} is of the first category in
Γ. Therefore, for any A ⊂ κ, the union ∪{Xα : α ∈ A} has the Baire property in
Γ.

Another open problem arising in connection with the preceding results may be
formulated as follows.
Let G be again a nondiscrete topological group of second category whose car-

dinality is not a two-valued measurable cardinal. What additional assumptions
should be made on G to guarantee the existence of a subgroup of G lacking the
Baire property?

-
complete ultrafilter Φ in the power set of κ (this assumption is logically equivalent
to the existence of a two-valued measurable cardinal number). Denote by D(2

Example 3     Let κ be an infinite cardinal such that there exists a nontrivial ω
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Note that it can be proved in ZFC set theory that if G is a commutative nondis-
crete locally compact group, then G contains a subgroup without the Baire prop-
erty.
Let E be a set and let I be an ideal of subsets of E. We recall that a family

B ⊂ I is a base of I if, for any set X ∈ I, there exists a set Y ∈ B such that
X ⊂ Y .
Let E be a topological space. We recall that a family V of nonempty open subsets

of E is a pseudo-base of E if, for any nonempty open set U in E, there exists a set
V ∈ V such that V ⊂ U .
The following statement is valid.

Then it is consistent with ZFC theory that there exists a subset of E which does
not possess the Baire property.

Proof : Assume the Generalized Continuum Hypothesis (GCH) and denote
card(E) = a. Without loss of generality, we may assume that a > ω. Let V be
a pseudo-base of E with minimal cardinality b. According to the condition of the
theorem, b < a, so by virtue of GCH we have 2b ≤ a. Observe also that E is a
Baire topological space (because the group G acts transitively in E).
Let the symbol K stand for the σ-ideal of all first category subsets of E. It is not

difficult to verify that there exists a base B of K for which the relation

card(B) ≤ 2b ≤ a

holds true. Denote by H the family of all those sets X ⊂ E which admit a repre-
sentation in the form X = V \ B, where V ∈ V and B ∈ B. Taking into account
the above relation, we may write

card(H) ≤ b · 2b ≤ a.

In addition, keeping in mind the condition of the theorem that G acts transitively
and freely in E, we deduce that

(∀X ∈ H)(card(X) = a).

Therefore, we can apply to the family H a Bernstein type transfinite construction
(cf. [12], [15], [17]). In this way we obtain a partition of E into two sets Z1 and Z2

such that

(∀X ∈ H)(Z1 ∩X ̸= ∅ & Z2 ∩X ̸= ∅).

Finally, it is not hard to see that neither Z1 nor Z2 possesses the Baire property
in E.
Moreover, slightly modifying the above argument, it can be demonstrated that

there are 2a many subsets of E, none of which has the Baire property. �

Theorem 7 :    Let E be an infinite topological space of second category and let
G be a group of homeomorphisms of E onto itself, acting transitively and freely in
E. Suppose also that there is a pseudo-base of E whose cardinality is strictly less
than card(E).
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