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In [1] transversely isotropic elastic piezoelectric nonhomogeneous bodies in the case when
the poling axis coincides with one of the material symmetry axises is considered. The present
paper is devoted to the dynamical problem of such materials when the constitutive coefficients
depending on the body projection (i.e., on a domain lying in the plane of interest) variables
may vanish either on a part or on the entire boundary of the projection

Keywords: Hierarchical models, Piezoelectrics, Partial differential equations and Systems
with order degeneracy.

AMS Subject Classification: 74K20, 74K25, 74F15, 74D05, 35J70, 35J75, 35L80, 35L81,
74K10.

1. Introduction

[1] is devoted to construction of hierarchical models for piezoelectric nonhomoge-
neous porous elastic and viscoelastic Kelvin-Voigt prismatic shells on the basis of
linear theories [2]-[7], transversely isotropic elastic piezoelectric nonhomogeneous
bodies in the case when the poling axis coincides with one of the material symmetry
axes is considered. Namely, time-harmonic motion under conditions of anti-plane
piezoelectric state is discussed. In [8] hierarchical models of piezoelectric trans-
versely isotropic cusped bars are considered for static and oscillation problems in
(0; 0) approximation. Peculiarities of nonclassical setting boundary conditions are
analyzed.
Let a piezoelectric solid occupy a reference configuration Ω ∈ R3. Under the

quasi-static conditions, when the rate of change of the magnetic field is small and
there is no electric current, i.e., the electric field E and magnetic field M are curl
free, the governing equations have the following form
Motion Equations

Xji,j +Φi = ρ
..
ui(x1, x2, x3, t), (x1, x2, x3) ∈ Ω ⊂ R3, (1.1)

t > t0, i = 1, 3;
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Hj,j +H0 = ρ0φ̈−F , (1.2)

Dj,j = fe, Bj,j = 0, Ω×]0, T [, (1.3)

where Xij ∈ C1(Ω) is the stress tensor; Φi are the volume force components; ρ0 :=
ρk′ (k′ is equilibrated inertia), ρ is the reference mass density; φ := ν0−ν ∈ C2(Ω)
is the change of the volume fraction from the matrix reference volume fraction ν
(clearly, the bulk reference density ρ = νγ, 0 < ν ≤ 1, here γ is the matrix ref-
erence density); ui ∈ C2(Ω) are the displacements; Hj ∈ C1(Ω) is the component
of the equilibrated stress vector, H0 and F are the intrinsic and extrinsic equili-
brated volume forces; Einstein’s summation convention is used; indices after comma
mean differentiation with respect to the corresponding variables of the Cartesian
frame Ox1x2x3 (throughout the work we assume existence of the indicated (con-
tinuous) derivatives unless otherwise stated); dots as superscripts of the symbols
mean derivatives with respect to time t; χ : Ω×]0, T [→ R1 and η : Ω×]0, T [→ R1

are electric and magnetic potentials, respectively, i.e., E = gradχ, M = gradη,
fe : Ω×]0, T [→ R1 is electric charge density, pkij are the piezoelectric coefficients,
qkij are the piezomagnetic coefficients,
ςjl and ξjl are the dielectric (permittivity) and magnetic permeability coefficients,

respectively, ãjl are the coupling coefficients connecting electric and magnetic fields.
D := (D1, D2, D3) : Ω×]0, T [→ R3 is the electrical displacement vector, B :=
(B1, B2, B3) : Ω×]0, T [→ R3 is the magnetic induction vector.
Constitutive Equations

Xij = Eijklekl + E∗
ijklėkl + b̃φδij + b∗φ̇δij + pkijχ,k + qkijη,k, (1.4)

i, j = 1, 3,

Hj = α̃φ,j + α∗φ̇,j , j = 1, 3, (1.5)

H0 = −b̃ekk − ξ̃φ− ν∗ėkk − ξ∗φ̇, (1.6)

Dj = pjklekl − ςjlχ,l − ãjlη,l, j = 1, 3, (1.7)

Bj = qjklekl − ãjlχ,l − ξjlη,l, j = 1, 3, (1.8)

where eij ∈ C1(Ω) is the strain tensor; Eijkl, E∗
ijkl, b̃, b∗, α̃, α∗, ν∗, ξ̃, ξ∗, pkij ,

qkij , ςjl, ãjl, ξjl are the constitutive coefficients, depending on x1 and x2;
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Kinematic Relations

eij =
1

2
(ui,j + uj,i), i, j = 1, 3. (1.9)

Let us consider the transversely isotropic elastic piezoelectric material in the
case when the poling axis coincides with one of the material symmetry axes [9]. A
material behavior is said to be transversely isotropic if it is invariant with respect
to an arbitrary rotation about a given axis. This material behavior is of special
importance in the modelling of fibre-reinforced composite materials with a coordi-
nate axis in the fibre direction and assumed isotropic in cross-sections orthogonal
to fibre direction [10] (in our case to poling axis as well, since in the case un-
der consideration they coincide). The transverse isotropic model is also suitable
for biological applications because it adequately describes the elastic properties of
bundled fibers aligned in one direction [11] (see also [12]).
Conditions of the antiplane state look like

(1) u1 ≡ 0, u2 ≡ 0, u3 ̸≡ 0;
(2) X13 ̸≡ 0, X23 ̸≡ 0, Xαβ ≡ 0, α, β = 1, 2; X33 ≡ 0;
(3) e13 ̸≡ 0, e23 ̸≡ 0, eαβ ≡ 0, α, β = 1, 2; e33 ≡ 0;
(4) E1 ̸≡ 0, E2 ̸≡ 0, E3 ≡ 0;
(5) D1 ̸≡ 0, D2 ̸≡ 0, D3 ≡ 0.

If we consider transversely isotropic piezoelectric materials, then (see [1])

E2323 = E1313 ̸≡ 0;

E2222 = E1111 ̸≡ 0, E1122 ̸≡ 0, E2233 = E1133 ̸≡ 0, E3333 ̸≡ 0; (1.10)

p223 = p113 ̸≡ 0;

ς22 = ς11 ̸≡ 0, ς33 ̸≡ 0.

Other elastic, piezoelectric, and dielectric permittivity constants are identically
zero with regard to reciprocal symmetries.

2. Title problem

Let the closure of a domain of R3, occupied by a piezoelectric elastic bar V with
rectangular cross-sections (see [13], [14]) be:

V :=
{
(x1, x2, x3) ∈ R3 : 0 ≤ x3 ≤ L;

(−)

hα(x3) ≤ xα ≤
(+)

hα(x3),

α = 1, 2; L = const
}
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with

2hα(x3) :=
(+)

hα(x3)−
(−)

hα(x3) > 0,
(+)

hα(x3),
(−)

hα(x3) ∈ C([0, L]), 0 ≤ x3 ≤ L, α = 1, 2.

Therefore, we have (see [1], [8])

(E3333u3,α),α + (p333χ,α),α − Φ3 = ρü30.

and

(p333u3,α),α − (ς33χ,α),α = fe,

respectively.
Let

E3333 = E0x
κ
3 , p333 = p0x

κ
3 , ς33 = ς0x

κ
3 , E0, p0, ς0, κ = const > 0.

The last system can be rewritten as follows

(E0x
κ
3u3,3),3 + (p0x

κ
3
χ,3),3 − ρü3 = −Φ3, (2.1)

(p0x
κ
3u3,3),3 − (ς0x

κ
3
χ,3),3− = fe. (2.2)

After multiplication (2.1) by ς0 and (2.2) by p0 and summation we get

((
E0 +

p20
ς0

)
xκ3u3,3

)
,3−ρü3 = F, (2.3)

where F := −Φ3 + fe
p0

ς0
.

Let κ < 1. We solve (2.3) under the following boundary and initial conditions

u3(0, t) = u3(L, t) = 0, u3(x3, 0) = φ1(x3), u3,t(x3, 0) = φ2(x3), (2.4)

where φi(x3) ∈ C2(]0, L[), i = 1, 3, are given functions such that

φi(0) = φi(L) = 0, i = 1, 2.

Using the Fourier method, we will look for u3(x3, t) in the following form

u3(x3, t) = X(x3)T (t).

Let first F ≡ 0. Then from (2.3) we get((
E0 +

p2
0

ς0

)
xκ3X

′(x3)
)′

ρX(x3)
=

T ′′(t)

T (t)
= −λ = const.
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Hence,

T ′′(t) + λT (t) = 0, (2.5)(
E(x3)X

′(x3)
)′

= −λρX(x3). (2.6)

From boundary conditions (2.4) we get

X(0) = X(L) = 0. (2.7)

Now, we have to solve the following boundary value problem:

Problem 1. Find

X(x3) ∈ C2(]0, L[) ∩ C([0, L])

which satisfies equation (2.6) and BCs (2.7).

After two times integration of (2.6) and using boundary conditions (2.7) we get

X(x3) = −λρ

L∫
x3

K(x3, ξ)X(ξ)dξ, (2.8)

where

K(x3, ξ) :=

{
K1(x3, ξ), x3 ≤ ξ ≤ L,
K1(ξ, x3), 0 ≤ ξ ≤ x3,

:=



−

x3∫
0

dη
E(η)

L∫
ξ

dη
E(η)

L∫
0

dη
E(η)

, x3 ≤ ξ ≤ L,

−

ξ∫
0

dη
E(η)

L∫
x3

dη
E(η)

L∫
0

dη
E(η)

, 0 ≤ ξ ≤ x3,

(2.9)

Proposition 2.1: K(x3, ξ) is symmetric with respect to x3 and ξ.

Proof : For z1 and z2, such that 0 < z1, z2 < L we get

K(z1, z2) =

{
K1(z1, z2), 0 ≤ z2 ≤ z1,
K1(z2, z1), z2 ≤ z1 ≤ L,

K(z2, z1) =

{
K1(z2, z1), z2 ≤ z1 ≤ L,
K1(z1, z2), 0 ≤ z2 ≤ z1,
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i.e., K(z1, z2) = K(z2, z1) for any z1, z2 ∈ [0, L]. �

Proposition 2.2: The number of eigenvalues λn of (2.9) is not finite.

Proof : Let it be finite and n = 1,m, then K(x3, ξ) can be expressed as follows
(see [15])

K(x3, ξ) =

m∑
n=1

Xn(x3)Xn(ξ)

λn
,

where

Xn(x3) ∈ C2(]0, l[) ⇒ K(x3, ξ) ∈ C1(]0;L]×]0, L[). (2.10)

On the other hand, in view of (2.9),

K ′
x3
(x3, ξ)|ξ→x3− −K ′

x3
(x3, ξ)|ξ→x3+ =

1

E(x3)
̸∈ C1(]0;L]×]0, L[), (2.11)

(2.10) and (2.11) contradict to each others, thus the number of λn is not finite. �

Proposition 2.3: All of λn are positive.

Proof : Let denote by Xn orthonormalized eigenfunctions of (2.9) (it can be as-
sumed without loss of generality), then from

(E(x3)X
′
n(x3))

′ = −λρXn(x3)

after multiplication by Xn(x3) and integration the obtained expression from 0 to
L we obtain

L∫
0

(E(x3)X
′
n(x3))

′Xn(x3)dx3 = −λnρ

L∫
0

Xn(x3)Xn(x3)dx3 = −λnρ.

Further, following integration by parts of the left side of the last expression and
taking into account of (2.7) we get

−λnρ = −
L∫

0

E(x3)X
′
n(x3)

′Xn(x3)dx3 ≤ 0

i.e., λn > 0 for any n, since in the non trivial case Xn ̸≡ 0. �

The solution of (2.5) has the form

Tn(t) = bn1 sin(
√

λn t) + bn2 cos(
√

λn t), bni = const, i = 1, 3.



Vol. 23, No. 2, 2019 93

Now, we can find a formal solution of the Problem 1 in the form as follows

u3(x3, t) =

∞∑
n=1

Xn(x3)(b
n
1 sin(

√
λn t) + bn2 cos(

√
λn t)). (2.12)

In view of initial condition (2.4), we formally have

∞∑
n=1

Xnb
n
2 = φ1(x3)

∞∑
n=1

√
λnXnb

n
1 = φ2(x3). (2.13)

If

Ψi(x3) := (E(x3)φ
′
i(x3))

′ ∈ C[0, L],

then

φi =

L∫
0

K(x3, ξ)Ψ1(ξ)dξ. (2.14)

Since Ψi(ξ) ∈ C([0, L]) and Propositions 2.1-2.3 we get absolutely and uniform
convergence of the series

φi(x3) =

∞∑
n=1

∫ L

0
φi(ξ)Xn(ξ)dξ ·Xn(x3),

i.e., of (2.13) on [0, L] and

bn1 =
1√
λn

∫ L

0
Xn(x3)φ2(x3)dx3,

bn2 =

∫ L

0
Xn(x3)φ1(x3)dx3.

Since there exists a positive minimum of eigenvalues, from the convergence of the
second series of (2.13) follows absolutely and uniformly convergence of the series
∞∑
n=1

Xn(x3)b
n
1on [0, L]. Therefore (2.12) is absolutely and uniformly convergent on

[0, L].
After formal differentiation of (2.12) we get

u3,t(x3, t) =

∞∑
n=1

Xn(x3)
√

λn(b
n
1 sin(

√
λn t)− bn2 cos(

√
λn t)), (2.15)
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u3,tt(x3, t) = −
∞∑
n=1

Xn(x3)λn(b
n
1 sin(

√
λn t) + bn2 cos(

√
λn t)), (2.16)

∂i

∂xi3
u3(x3, t) =

∞∑
n=1

di

dxi3
Xn(x3)(b

n
1 sin(

√
λn t) + bn2 cos(

√
λn t)), i = 1, 3, (2.17)

Analogously to prove the absolute and uniform convergence of (2.12) can be
shown that

Theorem 2.4 : If

χi(x3) := (EΨ′
i)
′, i = 1, 3 are integrable on ]0;L[

satisfying BCs

χi(0) = χi(L) = 0

(2.15), (2.16) and (2.17) convergent absolutely and uniformly on any [a, b] ∈]0, L[.

Thus, (2.12) is the solution of Problem 1 for F ≡ 0.
Now, let us consider Problem 1 when F (x3, t) ̸≡ 0, φi = 0, i = 1, 3, and let

F (·2, t) ∈ L2(0, l). Then F (x3, t) can be represented as a convergent series in
L2(0, l):

F (x3, t) =

∞∑
n=1

(F (x3, t), Xn)Xn,

hence,

F (x3, t) =

∞∑
n=1

Xn(x3)Fn(t), Fn(t) :=

∫ L

0
F (x3, t)Xn(x3)dx3.

Further, we look for the solution in the form

u3(x3, t) =

∞∑
n=1

u3n(x3, t),

where u3n(x3, t) is a solution of Problem 1 with F (x3, t) replaced by Xn(x3)Fn(t).
Using the method of separation of variables, we can write

u3n(x3, t) = Xn(x3)T1n(t),

here

T ′′
1n(t) + λnT1nt = Fn(t).
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Therefore, u3(x3, t) can be expressed as follows (see, e.g. [16])

u3(x3, t) =

∞∑
n=1

1√
λn

Xn

t∫
0

sin(
√

λn(t− τ))Fn(τ)dτ. (2.18)

Now, similarly to the above reasoning if the following conditions are fulfilled

(E(x3)F,x3
(x3, t)),x3

∈ C[0, L],

E(x3)F,x3
(x3, t)|x3=0 = E(x3)F,x3

(x3, t)|x3=l = 0,

we have the absolute and uniform convergence of series (2.21) on [0, L], and the
absolute and uniform convergence of the series

∂i

∂xi3
F (x3, t) =

∞∑
n=1

di

dxi3
Xn(x3)T1n, i = 1, 3,

∂i

∂ti
F (x3, t) =

∞∑
n=1

Xn(x3)
di

dti
T1n, i = 1, 3,

on any [a, b] ⊂]0, L[.

Remark 1 : Let F (x3, t), φi(x3) ̸≡ 0, then the solution of Problem 1 can be
expresses as follows

u3(x3, t) =

∞∑
n=1

u3n(x3, t),

where

u3n(x3, t) = Xn(x3)(T1n(t) + Tn(t)).
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