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In this paper we continue our investigation of vortex equation and related topics in framework
of generalized analytic functions. We show that solution space of systems of vortex equations
does not depend on location of zeros of Higgs field and in this way we obtain another proof of
the well known Taubes’ theorem on description of solution space of vortex equation modulo
gauge equivalence. It turns out that the first equation of this system is a particular case of
Carleman-Bers-Vekua equation, and the second equation is a property of non dependence of
the solution space of the first equation on complex structure of the noncompact Riemann
surface, which is a Riemann sphere without zeros of the Higgs field.
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The main object of analysis will be

S[ψ] =
1

4π

∫
M

(
∂zψ∂z̄ψ + 4πµeψ

)
d2z

type functional, related to uniformization of Riemann surfaces and the following
statements
ds2 = eψdzdz̄ have constant negative curvature and S[ψ] is minimized iff ψ

satisfies the Liouville equation of motion

∂zψ∂z̄ψ = µeψ. (1)

The general solution of (1) can be written as

ψ(z, z̄) = log

(√
2πµ

|∂za(z)|2

(1 + |a(z)|2)2

)
.
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It is parameterized by a holomorphic function a(z), which describes the uniformiz-
ing mapping.
By definition a conformal structure on a Riemann surface Σ is an equivalence

class of metrics

[g] = {e2ug : u ∈ C∞(Σ)}.

Besides a complex structure on a Riemann surface Σ is an equivalence class of
complex atlases, where two atlases are considered equivalent iff their union forms
a new complex atlas.
From Riemann’s uniformization Theorem follows, that for any given conformal

structure there exists a unique metric with constant curvature of either 1,0 or -
1. This gives a means of choosing a canonical representative for each conformal
structure.
Specifying a complex structure completely specifies the conformal structure, and

vice-versa. One might see this from the following Theorem:

2) and (N, ds21) respectively. Then the
map f : (M,ds2) → (N, ds21) is conformal if and only if f : R → S is biholomor-
phic.

Consequence of this theorem is equivalence of conformal and complex structures.
Let K(x) be a function defined on a sphere S2. K(x) is Gauss curvature of a

metric g on S2 conformally equivalent to g0, if an only if there exists the function
v on S2, which satisfies the following equation

−∆g0v + 1 = K(x)e2v, (2)

where ∆g0 denotes the Laplace-Beltrami operator associated with the metric g0.
A necessary condition for solving equation (2) is that K has to be positive some-

where and, in general, statement is a corollary of the Gauss-Bonnet theorem.
The charged planar matter interacting with ”photons” whose dynamics is gov-

erned not only by the Maxwell Lagrange density −1
4F

ijFij , but also by the Chern-

Simons term κ
4 ϵ
ijlFijAl gives rise to topologically massive (2+ 1)-dimensional ”elec-

trodynamics.” Such model called Abelian Chern-Simons theory with spontaneous
symmetry breaking [1]. Hence, the static Abelian Chern-Simons-Higgs energy func-
tional has the form [3]:

CSH(A,ϕ) =

∫
R2

|DAϕ|2 +
κ2

4

|FA|2

|ϕ|2
+

λ

κ2
|ϕ|2(1− |ϕ|2)2d2z, (3)

where z = (x, y) are coordinates on R2, ϕ : R2 → C is a complex valued function
and called Higgs field, A : R2 → R2 is 1-form on R2 (mathematically connection
form) called a gauge potential or gauge field, DA = d− iA is a covariant derivative,
FA = dA + A ∧ A is the magnetic field (mathematically curvature) and in our
consideration is equal to ∂A2

∂x − ∂A1

∂y , κ and λ are constants.
This model describes vortices which are charged both electrically and magnet-

ically. Such vortices are important in several areas of theoretical physics such as
anyonic superconductivity and fractional quantum Hall effect (see [2], [1],[3]).

Theorem 1 : Let R and S be Riemann surfaces induced by oriented 2-
dimensional Riemannian manifolds (M,ds
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The Euler-Lagrange equations for Lagrangian (3) is the system of equations for
ϕ and A:

−D2
Aϕ− κ2

4

|FA|2

|ϕ|4
ϕ+

λ

κ2
ϕ(|ϕ|2 − 1)(3|ϕ|2 − 1) = 0, (4)

−κ2∇
(
|FA|2

|ϕ|2

)
+ 2i(ϕDAϕ− ϕDAϕ) = 0, (5)

where ∇ in (5) is an operator acting on scalar functions by rule ( ∂∂y ,−
∂
∂x) and ϕ

denotes the complex conjugate of ϕ.
The finite energy condition for functional (3) is given by boundary condition for

ϕ :

|ϕ| → 1 as |z| → ∞ (6)

and called topological condition. The corresponding solutions called topological
(vortex).

Remark 1 : The boundary condition (6) also gives finiteness condition for en-
ergy functional and is this case the solutions of (4),(5) are called non-topological
(vortex).

The gauge field dynamics of Cern-Simons-Higgs model is governed by the Chern-
Simons term. If this term is absent and the dynamics is given by the Maxwell term
we obtain the Ginzburg-Landau energy functional for the superconductivity:

GL(A,ϕ) =
∫
R2

|DAϕ|2 + |FA|2 +
λ

4
(1− |ϕ|2)2d2z, (7)

The Euler-Lagrange equation for GL is the following couple of Ginzburg-Landau
equations:

−D2
Aϕ+

λ

2
ϕ(|ϕ|2 − 1) = 0, (8)

∇2A+
i

2
(ϕDAϕ− ϕDAϕ) = 0, (9)

with the topological boundary condition (6).
Let E denote the vector bundle p : R2 × C → R2. Denote by C(E) the space

of smooth U(1) - connections on E and let C∞(E) be the space of smooth cross
sections of E. Then the Ginzburg-Landau action GL is a functional on the space
C(E)×C∞(E). Because E is trivial, the space of connections, C(E), can be identi-
fied with the space of C∞ sections of the cotangent bundle which is 1-forms on R2,
denoted by Λ1(R2) and the same reason, C∞(E) can be identified with the space
of C∞ complex valued functions on R2. Let A(x, y) = A1dx+A2dy ∈ Λ1(R2), then
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a connection in C(E) is given by −ip∗A. The curvature form of the connection will
be denoted −ip∗FA, where FA = dA ∈ Λ2(R2) :

FA = dA =

2∑
k,l=1

Fkldxk ∧ dxl.

It is clear that

1

2
FA = F12.

Indeed, nontrivial members in the above sum are F12 and F21, with F12 = −F21.

F12 =
∂A2

∂x
dx ∧ dy − ∂A1

∂y
dx ∧ dy =

(
∂A2

∂x
− ∂A1

∂y

)
dx ∧ dy.

In a similar way we obtain

F21 =
∂A1

∂y
dx ∧ dy − ∂A2

∂x
dx ∧ de =

(
∂A1

∂y
− ∂A2

∂x

)
dx ∧ dy.

If ϕ = ϕ1+ iϕ2 ∈ C∞(E) is any section of E, then ϕ∗(p∗FA) = FA. The connection
defines a map from C∞(E) to C(E)× C∞(E) via the covariant derivative, i.e. for
ϕ ∈ C∞(E) the operator DA acts on ϕ in the following way

DAϕ = dϕ− iAϕ. (10)

Let ∗ : Λk(R2) → Λ2−k(R2) be a Hodge operator (duality isomorphism), then in
this notation the Ginzburg-Landau action (7) may be considered as a functional
on C(E)× C∞(E) by

GL =
1

2

∫
R2

[FA ∧ ∗FA +DAϕ ∧ ∗DAϕ+
λ

4
∗ (ϕϕ− 1)2]d2z (11)

and if λ = 1, the variational equations (4), (5) get

d ∗ FA − i

2
∗ (ϕ ∗DAϕ− ϕDAϕ) = 0, (12)

−D ∗DAϕ+ ∗ i
2
(ϕ ∗ ϕ− 1)ϕ = 0. (13)

The boundary condition follows from the inequality |GL| <∞ and is expressed by
the Chern number N of vector bundles E as∫

R2

FA = 2πN (14)

and is called the vortex number.
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After the integration by parts of (11) we obtain [4]:

GL =
1

2

∫
R2

[
1

2
(DAϕ± i ∗DAϕ) ∧ ∗(DAϕ∓ i ∗DAϕ)

+(∗F ∓ 1

2
(ϕϕ− 1)) ∧ ∗(∗F ∓ 1

2
(ϕϕ− 1))]∓

∫
R2

F.

From this it follows that

|GL| ≥ |N |π,

wherein the lower bound is realized if and only if (A, ϕ) satisfy the system of
equations

DAϕ− i ∗DAϕ = 0, (15)

∗F +
1

2
(ϕϕ− 1) = 0 (16)

when N ≥ 0 and

DAϕ− i ∗DAϕ = 0, (17)

∗F +
1

2
(ϕϕ− 1) = 0 (18)

when N ≤ 0.
From the equivalence theorem of Taubes [5] it follows, that any solution of system

of equations (12),(13) must by either the solutions of (15),(16) with boundary
condition (14) if N ≥ 0 or the solution (17),(18) if N ≤ 0.
Taubes [6] also proved that the solutions to the Ginzburg-Landau equations (with

coupling constant λ = 1) are uniquely determined by a set of N not necessarily
distinct points in the plane corresponding to the zeros of the Higgs field. Every set
of N points determines one such solution. The vortex number of this solution is N.
The solution manifold of the Ginzburg-Landau equations with a vortex number N
is isomorphic to C2N .

Remark 2 : The explicit solutions of equation (15), (16) do nor exist expect some
particular cases (see [9], [10]). Thus the problem is description of solutions space
of this equation modulo gauge equivalence. We say that (A1, ϕ1) and (A2, ϕ2) are
gauge equivalent, if A2 = A1 + dθ, ϕ2 = eiθϕ1, for some real function θ on C.

We prove

Theorem 2 :    The solutions of (15),(16) are first kind pseudo analytic functions
with zeros at given N points. The solutions do not depend on location of zeros of
solutions.
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Proof : The analysis of the first part of theorem is given in [8] using the following
notation and identifications. If A = αdz + αdz, then

DAϕ =

((
∂

∂z
− iα

)
ϕ

)
dz +

((
∂

∂z
− iα

)
ϕ

)
dz = 0

and

DAϕ− i ∗DAϕ = 2

((
∂

∂z
− iα

)
ϕ

)
dz = 0.

It is easy to show, that the real part of the last expression is equation (15). Therefore
we obtain the generalized Caushy-Riemann equation and using similarity principle
from the theory of generalized analytic functions we conclude that the analytic
multiplier of solution is a polynomial respect to z with zeros at given points (see
the details [8]). The second part of the theorem follows from the procedure of
reducing equation (16) to the Liuville equation of type (1). For this introduce the
complex valued function w = u+ iv and suppose ϕ = ew. Then

A1 =
∂u

∂y
+
∂v

∂x
, A2 = −∂u

∂x
+
∂v

∂y
, F12 = ∆f1.

|z|→∞ u(z) = 0. The equation (16) may be rewritten as

∆u− 1

2
(e2u − 1) = 0.

Let g be a metric onXN = S2−{z1, ..., zN} induced from his conformal structure.
If u is solution of the last equation, then as mentioned above, eug have the same
Gauss curvature as g. On the other hand, conformal structure on XN is defined
by Beltrami equation, corresponding to equation (15) (as equation which produce
second kind pseudo analytic functions, (see [8]). The Beltrami coefficient in this
case is equal to 0 and therefore turn out Cauchy-Riemann equation. It means,
that the solutions of (15) are such pseudo analytic functions of first kind with
polynomial multiplier which do not depend on the complex structure of XN . �

Remark 3 : The pseudo-analytic functions of the first and second kind are well
defined on Riemann surfaces [8], thus results above may be extended to Riemann
surfaces of genus g ≥ 0 [11], [12].
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