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1. Introduction

Quiver representations are fundamental objects of algebra [10]. Some of the basic
results have even inspired progress in the realm of persistence modules and the
analysis of big data [9]. Other applications include moduli spaces of dynamical
systems ([6], [4]). Quiver representations have been generalized to quiver bundles
[1]. Prominent examples are holomorphic triples or, more generally, holomorphic
chains over connected smooth projective curves. One of the main motivations to
study them is their role in understanding the geometry and topology of the moduli
space of Higgs bundles. A special feature of these objects is that their notion
of semistability depends on several parameters, and this makes it a fundamental
task to look at the variation of their moduli spaces with the stability parameter.
Examples for this may be found in [5], [2], and [7]. However, in these papers, only
some of the stability parameters were moved whereas half of them were simply set
to be one. The author has made major progress in understanding the nature of
the “neglected” stability parameters in [3] and [13]. In this note, we will illustrate
the main result of [13] for holomorphic triples. More precisely, we will give a self-
contained proof in the special case at hand and determine the chamber structure
of the space of stability parameters. To my knowledge, such chamber structures
for all stability parameters occuring haven’t appeared in the literature, so far.

Notation and conventions

We will work over the field C of complex numbers and fix a connected smooth
projective curve X over C. For notation and basic facts concerning vector bundles
and sheaves on algebraic curves, we refer to the first part of [8].
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2. Boundedness

2.1. Background

A holomorphic triple on X is a datum (E1, E2, φ) in which E1 and E2 are alge-
braic vector bundles over X and φ : E1 −→ E2 is a homomorphism.1 The type
of (E1, E2, φ) is t(E1, E2, φ) := (rk(E1), rk(E2), deg(E1), deg(E2)). A subtriple is a
pair (F1, F2) in which Fi is a subbundle of Ei, i = 1, 2, and φ(F1) ⊂ F2.

2

For an element π = (κ1, κ2, χ1, χ2) ∈ R>0 × R>0 × R × R and a pair of (F1,F2)
of coherent OX -modules, we define the π-rank,

rkπ(F1,F2) := κ1 · rk(F1) + κ2 · rk(F2),

and the π-degree,

degπ(F1,F2) := κ1 · deg(F1) + κ2 · deg(F2) + χ1 · rk(F1) + χ2 · rk(F2).

If rkκ(F1,F2) > 0, we also define the π-slope

µπ(F1,F2) :=
degπ(F1,F2)

rkπ(F1,F2)
.

A holomorphic triple is π-(semi)stable, if the inequality

µπ(F1, F2)(≤)µπ(E1, E2)

holds for every subtriple (0, 0) ̸= (F1, F2) ̸= (E1, E2).

Remark 1 : We may view E1 and E2 as locally free OX -modules ([8], Proposition
1.8.1). The above condition is equivalent to the seemingly more restrictive condition
that µπ(F1,F2)(≤)µπ(E1, E2) holds for all pairs (0, 0) ̸= (F1,F2) ̸= (E1, E2) with
Fi a coherent submodule of Ei, i = 1, 2, and φ(F1) ⊂ F2.

Remark 2 : Fix a type t = (r1, r2, d1, d2) ∈ Z>0 × Z>0 × Z × Z and a stability
parameter π. Then, according to [11] and [12], there exists a moduli space M(t, π)
for π-semistable holomorphic triples (E1, E2, φ), satisfying t(E1, E2, φ) = t. The
closed points of M(t, π) correspond to S-equivalence classes of π-semistable holo-
morphic triples of type t, and there is an open subset Ms(t, π) ⊂ M(t, π) which
parameterizes isomorphy classes of π-stable holomorphic triples of type t.

2.2. The main result of [13] for holomorphic triples

Theorem 2.1 : Fix a type t = (r1, r2, d1, d2). Then, there exists a constant C,
such that, for every stability parameter π ∈ R>0×R>0×R×R, for every π-semistable

1A curve X as fixed gives rise to a connected compact Riemann surface Xan. According to the GAGA
principles, the category of algebraic vector bundles on X with homomorphisms is equivalent to the category
of holomorphic vector bundles on Xan with homomorphisms. This explains why the word “holomorphic”
appears in the denomination of the objects that we are going to study.
2A subtriple induces the holomorphic triple (F1, F2, φ|F1

: F1 −→ F2).
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holomorphic triple (E1, E2, φ) with t(E1, E2, φ) = t, and every non-trivial vector
bundle F on X which is isomorphic to a subbundle of E1 or E2, the estimate

µ(F ) =
deg(F )

rk(F )
≤ C

holds true.

The first fundamental implication of this result is the existence of an algebraic
variety S, or, rather a scheme of finite type over C, algebraic vector bundles ES,1,
ES,2 on S × X, and a homomorphism φS : ES,1 −→ ES,2, such that, for every
stability parameter π ∈ R>0 × R>0 × R × R, for every π-semistable holomorphic
triple (E1, E2, φ) with t(E1, E2, φ) = t, there is a closed point s ∈ S, such that
the restriction of (ES,1, ES,2, φS) to {s} × X, which is identified with X via the
projection onto the second factor, is isomorphic to (E1, E2, φ).

Remark 3 : By [8], Proposition 5.1.1, the boundedness property we have just
described is not true for the family of all holomorphic triples of type t.

In the next section, we will see that there are only finitely many distinct notions
of semistability as π varies over R>0 × R>0 × R × R and, so, only finitely many
distinct moduli spaces. We can also say something about the way these moduli
spaces are related (see Proposition 3.1).

Proof : A holomorphic triple (E1, E2, φ) leads to the dual holomorphic triple
(E∨

2 , E
∨
1 , φ

∨). Here, (E1, E2, φ) is semistable with respect to (κ1, κ2, χ1, χ2) if and
only if (E∨

2 , E
∨
1 , φ

∨) is semistable with respect to (κ2, κ1,−χ2,−χ1) ([3], Remark
7 (iii)).1 So, we may assume without loss of generality that r1 ≤ r2. Define

N :=
{
(ν1, ν2, η1, η2) ∈ R>0×R>0×R×R

∣∣ ν1 ·d1+ν2 ·d2+η1 ·r1+η2 ·r2 = 0
}

(1)

and

P :=
{
(ν1, ν2, η1, η2) ∈ N

∣∣ max
{
|ν1|, |ν2|

}
= 1

}
. (2)

As explained in [3], Remark 7 (iv) and Page 174, we may assume that π ∈ P .
We will derive the bound for stability parameters of the form π = (κ, 1, χ1, χ2) ∈

P . The case of parameters of the form π = (1, κ, χ1, χ2) ∈ P is left as an exercise.
There is the commutative diagram

0 −−−−→ E2y ∥∥∥
E1

φ−−−−→ E2

.

By semistability,

d2 + χ2 · r2 ≤ 0, (3)

1Observe different labelings of the vertices.
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or, equivalently,2 κ · d1 + χ1 · r1 ≥ 0. This gives

χ1

κ
≥ −µ1

d1>0
≥ −d1, µ1 :=

d1
r1
. (4)

For K := ker(φ) and a subbundle F ⊂ K, there is the commutative diagram

F −−−−→ 0y y
E1

φ−−−−→ E2

.

Semistability implies κ · deg(F ) + χ1 · rk(F ) ≤ 0, i.e.,

µ(F ) ≤ −χ1

κ

(4)

≤ µ1 (5)

and

deg(F ) ≤ rk(F ) · µ1
µ1>0
≤ r1 · µ1 = d1. (6)

Now, let F ⊂ E2 be any subbundle. We first consider the case that φ is generically
surjective. By the assumption that r1 ≤ r2, this may occur if and only if r1 = r2
and φ is generically an isomorphism. So, there is a unique subbundle G ⊂ E1 with
φ(G) ⊂ F and rk(G) = rk(F ). One verifies that

deg(F )− deg(G) = deg(F/G) ≤ deg(E2/E1) = d2 − d1.

Semistability applied to the commutative diagram

G −−−−→ Fy y
E1

φ−−−−→ E2

yields

(κ+ 1) · deg(F ) + κ · (d1 − d2) ≤ κ · deg(G) + deg(F ) ≤ −rk(F ) · (χ1 + χ2)

=
rk(F )

r2
· (κ · d1 + d2) ≤ κ · d1 + d2

and, thus,

deg(F ) ≤ d2. (7)

2π ∈ N
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If φ is not generically surjective, we look at the commutative diagram

0 −−−−→ Fy y
E1

φ−−−−→ E2

,

so that deg(F ) + χ2 · rk(F ) ≤ 0 and

χ2 ≤ −µ(F ). (8)

The OX -module Q := E2/im(φ) has positive rank and may have torsion, and there
is the commutative diagram

E1 −−−−→ im(φ)∥∥∥ y
E1

φ−−−−→ E2y y
0 −−−−→ Q

with exact columns. We derive1

deg(Q)− µ(F ) · rk(Q)
(8)

≥ deg(Q) + χ2 · rk(Q) ≥ 0, (9)

so that

µ(F ) ≤ µ(Q) =
d2 − deg

(
im(φ)

)
rk(Q)

=
d2 −

(
d1 − deg(K)

)
rk(Q)

(6)

≤ d2
rk(Q)

d2>0
≤ d2. (10)

Any subbundle F ⊂ E1 may be written as an extension

0 −−−−→ F ∩K −−−−→ F −−−−→ φ(F ) −−−−→ 0.

With (5), (7), and (10), we find

deg(F ) = deg(F ∩K) + deg
(
φ(F )

)
≤ d1 + r2 · d2.

This concludes the argument. �

3. The chamber decomposition

3.1. The general construction

We fix a type t = (r1, r2, d1, d2) as before und look at the space P of stability
parameters introduced in (2). Suppose that π1 and π2 are two elements in P which

1Compare Remark 1.



108 Bulletin of TICMI

induce distinct notions of semistability on the family of holomorphic triples of type
t. Then, after possibly exchanging the roles of π1 and π2, we may assume that there
is a holomorphic triple (E1, E2, φ) which is π1-semistable but not π2-semistable.
In this situation, there is a subtriple (F1, F2) of (E1, E2, φ) with degπ1

(F1, F2) ≤ 0

and degπ2
(F1, F2) > 0. Set

π(λ) :=
(
κ1(λ), κ2(λ), χ1(λ), χ2(λ)

)
:= (1− λ) · π1 + λ · π2, λ ∈ [0, 1].

So, there exists a value λ0 ∈ [0, 1] with

κ1(λ0) · deg(F1) + κ2(λ0) · deg(F2) + χ1(λ0) · rk(F1) + χ2(λ0) · rk(F2) = 0. (11)

If π1 and π2 define different notions of stability, there are a holomorphic triple
(E1, E2, φ) which is, say, π1-stable but not π2-stable and a subtriple (F1, F2) of
(E1, E2, φ) with degπ1

(F1, F2) < 0 and degπ2
(F1, F2) ≥ 0. Again, we arrive at an

equation as (11).
A test type is a tuple u = (s1, s2, e1, e2) with 0 ≤ s1 ≤ r1, 0 ≤ s2 ≤ r2, 0 <

s1 + s2 < r1 + r2, and e1, e2 ∈ Z. A test type u determines a wall

W (u) :=
{
(ν1, ν2, η1, η2) ∈ P

∣∣ ν1 · e1 + ν2 · e2 + η1 · r1 + η2 · r2 = 0
}
.

These walls induce a decomposition

P :=
⊔
i∈I

Ci (12)

into locally closed subsets Ci, i ∈ I, called chambers. By construction, the chamber
decomposition (12) has the following property.

Proposition 3.1: i) Let i0 ∈ I, π1, π2 ∈ Ci0, and (E1, E2, φ) be a holomor-
phic triple of type t. Then, (E1, E2, φ) is π1-(semi)stable if and only if it is π2-
(semi)stable.
ii) Assume i0 ∈ I, π1 ∈ Ci0, π2 ∈ Ci0,

1 and that (E1, E2, φ) is a holomorphic
triple of type t. If (E1, E2, φ) is π2-stable, then it is also π1-stable. If (E1, E2, φ) is
π1-semistable, then it is also π2-semistable. In particular, there is a morphism

M(t, π1) −→ M(t, π2).

An application of Theorem 2.1 shows that there is a finite collection of test types

u1, ..., uℓ, such that the induced finite chamber decomposition P =
m⊔
j=1

Kj has the

same properties as the one in (12) (see [3], Proposition 21). In the next section,
we will explain this observation for holomorphic triples with r1 = r2 = 2. For a
finite chamber decomposition, we have only finitely many distinct moduli spaces
and the last statement in Proposition 3.1 gives us a first important indication how
the distinct moduli spaces interact. A concrete example for holomorphic triples
and stability parameters with κ1 = 1 = κ2 is contained in [5].

1The symbol · indicates the closure.
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3.2. Explicit examples

We will now look at a type t = (2, 2, d1, d2) with d1 ≤ d2, so that holomorphic
triples (E1, E2, φ) of type t in which φ is injective are not a priori excluded. Since,
for a stability parameter π ∈ P , χ2 is determined by κ1, κ2, and χ1, and κ1 = 1 or
κ2 = 1, we may think of P as the union of

P1 = (0, 1]× {1} × R and P2 := {1} × (0, 1]× R.

We will discuss the chamber decomposition of P1. The one of P2 is analogous.

Remark 1 : i) Given a stability parameter π = (κ, 1, χ1, χ2) ∈ P1 and a π-
semistable holomorphic triple (E1, E2, 0) of type t, we have

κ · d1 + 2 · χ1 = 0 and d2 + 2 · χ2 = 0.

Parameters satisfying these equations correspond to the case when equality holds
in (4). A triple (E1, E2, 0) will be semistable for such a parameter if and only
if E1 and E2 are semistable vector bundles. We may neglect the case φ = 0 in
the following discussions. Note that the above equations describe the wall that is
associated with the test type (2, 0, d1, 0) or (0, 2, 0, d2).
ii) The last property stated in Proposition 3.1 shows that, for a holomorphic triple

(E1, E2, φ) of type (2, 2, d1, d2) which is semistable with respect to a parameter π
which lies in a chamber which is adjacent to the line defined by equality in (4), the
bundles E1 and E2 are semistable.

Remark 2 : Let (E1, E2, φ) be a holomorphic triple and (F1, F2) a subtriple.
There is an induced homomorphism φ : Q1 −→ Q2, Qi := Ei/Fi, i = 1, 2. If
(E1, E2, φ) is π-semistable and

κ · deg(F1) + 1 · deg(F2) + χ1 · rk(F1) + χ2 · rk(F2) = 0, π = (κ, 1, χ1, χ2),

(F1, F2, φ|F1
), (Q1, Q2, φ), and (F1⊕Q1, F2⊕Q2, φ|F1

⊕φ) are π-semistable as well.

Remark 3 : Let (E1, E2, φ) be a holomorphic triple of type (2, 2, d1, d2) in which
K = ker(φ) has rank one. By (5), deg(K) ≤ d1/2. Setting Q := E2/im(φ), In-
equality (3), the second inequality in (9) and the first inequality in (5) show

d2
2

≤ −χ2 ≤ deg(Q) = d2 − deg
(
im(φ)

)
= d2 − d1 + deg(K) ≤ d2 − d1 −

χ1

κ
.

This yields

χ1 ≤ κ ·
(
d2
2

− d1

)
. (13)

3.2.1. Test types with s1 = 1, s2 = 0

Of course, these are relevant only for holomorphic triples of type t in which φ is
not generically surjective. A test type (1, 0, e1, 0) defines the line

κ · e1 + χ1 = 0 or χ1 = −e1 · κ.
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By Inequalities (5) and (13), we need to look only at the cases where

d1 −
d2
2

≤ e1 ≤
d1
2
.

3.2.2. Test types with s1 = 1, s2 = 2

By Remark 2, the walls defined by test types of the form (1, 2, e1, e2) are included
in the walls defined by test types of the form (1, 0, f1, f2) and vice versa.

3.2.3. Test types with s1 = 0, s2 = 1

For e2 ∈ Z, the test type (0, 1, 0, e2) defines the line

0 = e2 + χ2 = e2 − χ1 − κ · d1
2

− d2
2
.

In view of Remark 3 and 0 < κ ≤ 1, we may limit ourselves to test types with

d2
2

≤ e2 < d2 −
d1
2
.

Because of Inequality (13), we have to draw the lines defined by these test types only
to the point where they hit the line defined by the equation 2 ·χ1 = κ · (d2−2 ·d1).

3.2.4. Test types with s1 = 2, s2 = 1

The walls obtained from test types with s1 = 2 and s2 = 1 are included in the
walls obtained from test types with s1 = 0 and s2 = 1 and vice versa.

3.2.5. Test types with s1 = 1, s2 = 1

Suppose that π = (κ, 1, χ1, χ2) ∈ P1, that (E1, E2, φ) is π-semistable and has
type t, and that (L1, L2) is a subtriple with rk(L1) = 1 = rk(L2), such that

κ · deg(L1) + deg(L2) + χ1 + χ2 = 0. (14)

If L1 ⊂ ker(φ), then (14) is equivalent to

κ · deg(L1) + χ1 = 0 and deg(L2) + χ2 = 0.

The walls corresponding to these cases have already been treated. So, we may
assume for the following that deg(L1) ̸⊂ ker(φ), so that φ|L1

: L1 −→ L2 is injec-
tive. In particular, deg(L1) ≤ deg(L2). By the same token, we may assume that
φ : E1/L1 −→ E2/L2 is non-zero. By Remark 2, we are reduced to the case that
(E1, E2, φ) = (L1, L2, χ)⊕ (M1,M2, ψ) with line bundles L1, L2, M1, M2 and non-
zero homomorphisms χ : L1 −→ L2 and ψ : M1 −→ M2. We may assume without
loss of generality that deg(M2) ≤ deg(L2). Again, by Remark 2, (L1, L2, χ) is itself
a π-semistable holomorphic triple. This amounts to the inequality

0 ≥ deg(L2) + χ2 = deg(L2)−
1

2
· (κ · d1 + d2)− χ1,
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i.e.,

χ1 ≥ deg(L2)−
1

2
· (κ · d1 + d2). (15)

Since deg(M2) ≤ deg(L2), (M1,M2, ψ) will then be π-semistable, too. Equation
(14) the implies that (L1, L2, χ)⊕ (M1,M2, ψ) is π-semistable. In the special case
that equality holds in (15), the holomorphic triple

(L1, 0, 0)⊕ (0, L2, 0)⊕ (M1,M2, ψ)

will be π-semistable, as well. Note that L1 is the kernel in this holomorphic triple.
By the discussion of the case s1 = 1, s2 = 0,

d1 −
d2
2

≤ deg(L1) ≤
d1
2
. (16)

Finally, the wall we are speaking about here is determined by the equation

κ ·
(
deg(L1)−

d1
2

)
=
d2
2

− deg(L2). (17)

Remark 4 : By this equation, a semistable holomorphic triple (L1, L2, χ) ⊕
(M1,M2, ψ) with deg(L1) = d1/2 can only exist, if deg(L2) = d2/2. This case
may occur only if d1 and d2 are both even. Suppose d1 and d2 are both even
and (L1, L2, χ) ⊕ (M1,M2, ψ) is such that deg(L1) = d1/2 = deg(M1), deg(L2) =
d2/2 = deg(M2). Then, Inequality (15) becomes χ1/κ ≥ −d1/2, i.e., it agrees with
Inequality (5). This means that such a holomorphic triple will be semistable for
every stability in P1 for which semistable holomorphic triples of type (2, 2, d1, d2)
may exist. We will omit this case in the following discussion.

By (16), the positivity of κ, and (10), it follows that

d2
2
< deg(L2) ≤ d2. (18)

Altogether, (16) and (18) show that there are only finitely many test types to
consider. The following constraints reduce the number of test types further:

• deg(L2)− deg(L1) = d2 − deg(M2)− d1 + deg(M1) ≤ d2 − d1,

• deg(L1)−
d1
2

≤ d2
2

− deg(L2).

The last inequality follows from (17), because we need κ ≤ 1.

3.2.6. Example

In the picture, the scale for the x-axis is twice the one for the y-axis. The cham-
bers in light grey are unbounded. By Proposition 3.1, the two-dimensional un-
bounded chambers parameterize extensions

0 −−−−→ (L1, L2, χ) −−−−→ (E1, E2, φ) −−−−→ (M1,M2, ψ) −−−−→ 0
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Figure 1. The chamber decomposition for d1 = 3, d2 = 8.

and the one dimensional unbounded chambers direct sums as seen in the last
section.
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