On Mazurkiewicz Sets from the Measure-Theoretical Point of View

Alexander Kharazishvili*

I. Javakhishvili Tbilisi State University I. Vekua Institute of Applied Mathematics 2 University St., 0186, Tbilisi, Georgia (Received January 16, 2017; Revised April 19, 2017; Accepted June 1, 2017)

Mazurkiewicz subsets of the Euclidean plane \mathbf{R}^2 are considered from the view-point of their potential measurability with respect to the class of all nonzero σ -finite translation invariant measures on \mathbf{R}^2 .

 ${\bf Keywords:}$ Mazurkiewicz set, Negligible set, Absolutely negligible set, Extension of an invariant measure.

AMS Subject Classification: 28A05, 28D05.

This paper may be treated as a continuation of [4], where some measurability properties of well-known Mazurkiewicz type subsets of the Euclidean plane \mathbf{R}^2 are considered. So, we follow the notation and terminology adopted in [4].

The symbol $\mathcal{M}(\mathbf{R}^2)$ stands for the family of all those nonzero σ -finite measures on \mathbf{R}^2 which are translation invariant (i.e., \mathbf{R}^2 -invariant).

A set $X \subset \mathbf{R}^2$ is called negligible with respect to $\mathcal{M}(\mathbf{R}^2)$ (briefly, \mathbf{R}^2 -negligible) if these two conditions are satisfied for X:

(*) there exists a measure $\nu \in \mathcal{M}(\mathbf{R}^2)$ such that $X \in \operatorname{dom}(\nu)$;

(**) for any measure $\mu \in \mathcal{M}(\mathbf{R}^2)$, the relation $X \in \operatorname{dom}(\mu)$ implies the equality $\mu(X) = 0$.

A set $Y \subset \mathbf{R}^2$ is called absolutely negligible with respect to $\mathcal{M}(\mathbf{R}^2)$ (briefly, \mathbf{R}^2 -absolutely negligible) if, for every measure $\mu \in \mathcal{M}(\mathbf{R}^2)$, there exists a measure $\mu' \in \mathcal{M}(\mathbf{R}^2)$ such that the relations

$$\mu'$$
 extends μ , $Y \in dom(\mu')$, $\mu'(Y) = 0$

hold true.

Let us remark that any \mathbb{R}^2 -absolutely negligible set is also \mathbb{R}^2 -negligible, but the converse assertion fails to be valid.

In what follows, the symbol ω stands for the least infinite ordinal (cardinal) number and the symbol **c** stands for the cardinality continuum.

^{*}Corresponding author. Email: kharaz2@yahoo.com

A set $T \subset \mathbf{R}^2$ is called almost \mathbf{R}^2 -invariant if $\operatorname{card}(T) = \mathbf{c}$ and

$$\operatorname{card}((h+T) \triangle T) < \mathbf{c}$$

for each vector $h \in \mathbf{R}^2$ (here \triangle denotes, as usual, the operation of symmetric difference of two sets).

The symbol λ_2 will be used below for denoting the classical two-dimensional Lebesgue measure on the plane \mathbb{R}^2 .

A set $W \subset \mathbf{R}^2$ is called λ_2 -thick (or λ_2 -massive) in \mathbf{R}^2 if $B \cap W \neq \emptyset$ for every Borel set $B \subset \mathbf{R}^2$ with $\lambda_2(B) > 0$.

Let e be an arbitrary nonzero vector in \mathbf{R}^2 .

According to the standard terminology (see, e.g., [5]), a set $A \subset \mathbb{R}^2$ is uniform in direction e if $\operatorname{card}(l \cap A) \leq 1$ for any straight line $l \subset \mathbb{R}^2$ parallel to e.

A set $A \subset \mathbf{R}^2$ is called finite in direction e (cf. [7]) if $\operatorname{card}(l \cap A) < \omega$ for every straight line $l \subset \mathbf{R}^2$ parallel to e.

A set $A \subset \mathbf{R}^2$ is called countable in direction e if $\operatorname{card}(l \cap A) \leq \omega$ for every straight line $l \subset \mathbf{R}^2$ parallel to e.

Obviously, A is uniform (finite, countable) in direction e if and only if A is uniform (finite, countable) in direction -e.

Recall also that $S \subset \mathbf{R}^2$ is a Mazurkiewicz set if $\operatorname{card}(l \cap S) = 2$ for each straight line l lying in \mathbf{R}^2 .

Such a set S was first constructed by Mazurkiewicz in his remarkable paper [6]. The above definition immediately implies that, for any nonzero vector $e \in \mathbf{R}^2$, the set S is finite in direction e.

As mentioned in [4], every Mazurkiewicz set turns out to be \mathbf{R}^2 -negligible. Moreover, there exists a measure ν on \mathbf{R}^2 which extends the Lebesgue measure λ_2 , is invariant under the group of all isometries of \mathbf{R}^2 , and contains in its domain all Mazurkiewicz subsets of \mathbf{R}^2 .

Also, there exist Mazurkiewicz sets which are \mathbf{R}^2 -absolutely negligible. The latter fact readily follows from the statement that there is a Mazurkiewicz set Z in \mathbf{R}^2 which simultaneously is a Hamel basis of \mathbf{R}^2 . The transfinite construction of Z modifies, in certain respects, the usual construction of Mazurkiewicz type sets in \mathbf{R}^2 and is fairly standard. However, we would like to give here a detailed proof of the existence of Z.

Lemma 1: There exists a Mazurkiewicz set $Z \subset \mathbf{R}^2$ which is a Hamel basis of \mathbf{R}^2 .

Proof: For our further purposes, it is convenient to introduce the following notation:

 α = the least ordinal number of cardinality **c**;

 $\{l_{\xi}: \xi < \alpha\} =$ an α -sequence consisting of all straight lines in \mathbf{R}^2 ;

 $\{z_{\xi}: \xi < \alpha\} =$ an α -sequence consisting of all points of \mathbb{R}^2 .

We may assume, without loss of generality, that the partial family

$$\{l_{\xi}: \xi < \alpha \& \xi \text{ is an odd ordinal}\}\$$

contains all straight lines of \mathbf{R}^2 , and that the partial family

 $\{z_{\xi}: \xi < \alpha \& \xi \text{ is an even ordinal}\}\$

contains all points of \mathbf{R}^2 .

In addition to the said earlier, we will use the symbol l(y, z) for denoting the straight line in \mathbf{R}^2 which passes through two distinct points $y \in \mathbf{R}^2$ and $z \in \mathbf{R}^2$.

We are going to construct by the method of transfinite recursion an increasing (by inclusion) α -sequence $\{Z_{\xi} : \xi < \alpha\}$ of subsets of \mathbb{R}^2 , for which the following conditions would be satisfied:

(a) $\operatorname{card}(Z_{\xi}) \leq \operatorname{card}(\xi) + \omega$ for any ordinal $\xi < \alpha$;

(b) every set Z_{ξ} is linearly independent over the field **Q** of all rational numbers;

- (c) every Z_{ξ} is a set of points in general position in \mathbf{R}^2 ;
- (d) if an ordinal $\xi < \alpha$ is odd, then

$$\operatorname{card}(Z_{\xi} \cap l_{\xi}) = 2;$$

(e) if an ordinal $\xi < \alpha$ is even, then the point z_{ξ} belongs to the linear hull (over **Q**) of the set Z_{ξ} .

Suppose that, for an ordinal $\xi < \alpha$, the partial family $\{Z_{\zeta} : \zeta < \xi\}$ has already been constructed fulfilling the above conditions (a), (b), (c), (d), and (e). Let us put

$$Z(\xi) = \cup \{ Z_{\zeta} : \zeta < \xi \}.$$

Observe that the set $Z(\xi)$ is linearly independent over **Q** and, at the same time, is a set of points in general position in \mathbf{R}^2 . Also, it is clear that

$$\operatorname{card}(Z(\xi)) \le \operatorname{card}(\xi) + \omega.$$

Now, consider the two possible cases.

1. The ordinal ξ is odd.

In this case, we take the straight line l_{ξ} and claim that there exists a subset T of l_{ξ} such that:

(i) $Z(\xi) \cup T$ is linearly independent over **Q** and, simultaneously, is a set of points in general position in **R**²;

(ii) $\operatorname{card}((Z(\xi) \cup T) \cap l_{\xi}) = 2.$

Indeed, the validity of our assertion follows from the relation

$$\operatorname{card}(Z(\xi)) \le \operatorname{card}(\xi) + \omega < \mathbf{c}$$

and from the fact that the line l_{ξ} contains continuum many linearly independent points over \mathbf{Q} .

So, we may define

$$Z_{\xi} = Z(\xi) \cup T.$$

Notice that, by virtue of $\operatorname{card}(T) \leq 2$, we also have

$$\operatorname{card}(Z_{\xi}) \leq \operatorname{card}(\xi) + \omega.$$

2. The ordinal ξ is even.

In this case, we take the point z_{ξ} . If z_{ξ} belongs to the linear hull (over **Q**) of the set

$$Z(\xi) = \cup \{ Z_{\zeta} : \zeta < \xi \},$$

then we define $Z_{\xi} = Z(\xi)$.

It remains to consider the situation when z_{ξ} is linearly independent (again, over **Q**) of the set $Z(\xi)$.

In such a situation, we introduce the following notation:

$$U_{\xi}$$
 = the vector space over **Q** generated by $Z(\xi)$.

Evidently, we may write

$$\operatorname{card}(U_{\xi}) \leq \operatorname{card}(\xi) + \omega < \mathbf{c}.$$

Further, we define the three sets:

$$K_1 = \bigcup \{ l(z, z') : z \in Z(\xi), \ z' \in Z(\xi), \ z \neq z' \},$$

$$K_2 = z_{\xi} + K_1,$$

$$K_3 = \bigcup \{ l_{\xi}(z) : z \in Z(\xi) \},$$

where, for each point $z \in Z(\xi)$, the symbol $l_{\xi}(z)$ denotes the straight line in \mathbb{R}^2 passing through z and parallel to the nonzero vector z_{ξ} .

According to the above definitions, the set

$$K = K_1 \cup K_2 \cup K_3$$

is a union of straight lines in \mathbb{R}^2 , the total number of which is strictly less than **c**. This circumstance implies at once that

$$\operatorname{card}(\mathbf{R}^2 \setminus K) = \mathbf{c}$$

and, consequently,

$$\operatorname{card}(\mathbf{R}^2 \setminus (K \cup U_{\xi} \cup (U_{\xi} + z_{\xi}))) = \mathbf{c}.$$

Also, it can readily be seen that if z is an arbitrary point from $\mathbf{R}^2 \setminus K$, then

$$\{z\} \cup \{z - z_{\xi}\} \cup Z(\xi)$$

turns out to be a set of points in general position in \mathbf{R}^2 .

Our goal now is to choose a point $z' \in \mathbf{R}^2 \setminus K$ so that the set

$$\{z'\} \cup \{z' - z_{\xi}\} \cup Z(\xi)$$

would be linearly independent over \mathbf{Q} . For this purpose, it suffices to find a point $z' \in \mathbf{R}^2 \setminus K$ having the property that, for any two rational numbers p and r, the

relation

$$pz' + r(z' - z_{\xi}) \in U_{\xi}$$

necessarily implies the equalities p = r = 0. To see the existence of such a z', let us take an injective family of points

$$\{z_i: i \in I\} \subset \mathbf{R}^2 \setminus (K \cup U_{\xi} \cup (U_{\xi} + z_{\xi})),\$$

where $\operatorname{card}(I) = \mathbf{c}$ and $z_i - z_j \notin U_{\xi}$ for any two distinct indices *i* and *j* from the set *I*.

Supposing, contrary to our assertion, the non-existence of a desired z', we get

$$p_i z_i + r_i (z_i - z_\xi) \in U_\xi \qquad (i \in I),$$

where rational numbers p_i and r_i are such that $|p_i| + |r_i| > 0$ for each index $i \in I$. Since the set $\mathbf{Q} \times \mathbf{Q}$ is countable and the set I is uncountable, there are two distinct indices $i \in I$ and $j \in I$ and two rational numbers p and r satisfying the relations

$$|p| + |r| > 0,$$

$$pz_i + r(z_i - z_{\xi}) \in U_{\xi}, \quad pz_j + r(z_j - z_{\xi}) \in U_{\xi}.$$

The last two relations lead us to

$$(p+r)(z_i-z_j) \in U_{\xi},$$

and we obtain a contradiction, because $p + r \neq 0$ and U_{ξ} is a vector space over **Q**. The obtained contradiction shows that we may put

$$Z_{\xi} = \{z', z' - z_{\xi}\} \cup Z(\xi)$$

for an appropriate point z' from the family $\{z_i : i \in I\}$. Since we trivially have

$$z_{\xi} = z' - (z' - z_{\xi}),$$

the point z_{ξ} belongs to the linear hull (over **Q**) of the set Z_{ξ} .

Proceeding in this manner, we will come to the family $\{Z_{\xi} : \xi < \alpha\}$ of subsets of \mathbf{R}^2 , for which all conditions (a), (b), (c), (d), and (e) hold true. Now, we define

$$Z = \cup \{ Z_{\xi} : \xi < \alpha \}.$$

Conditions (b) and (c) give us that the set Z is linearly independent over \mathbf{Q} and, simultaneously, is a set of points in general position in \mathbf{R}^2 . By virtue of condition (d), the same Z is a Mazurkiewicz subset of \mathbf{R}^2 . Finally, in view of condition (e), the set Z is a Hamel basis of \mathbf{R}^2 . Lemma 1 has thus been proved.

Further, we need the following auxiliary proposition.

Lemma 2: Let E be an uncountable vector space over the field \mathbf{Q} of all rational numbers and let H be a Hamel basis of E. Then H is an E-absolutely negligible subset of E.

Actually, the argument presented in [3] yields also a proof of Lemma 2. Notice that a more general result can be stated. For any natural number n, denote by H_n the set of all those vectors in E whose representation via the Hamel basis Hcontains at most n nonzero rational coefficients. Then each set H_n $(n < \omega)$ turns out to be E-absolutely negligible in E.

Lemmas 1 and 2 imply the following statement.

Theorem 3: There exists a Mazurkiewicz subset X of \mathbf{R}^2 which is absolutely negligible with respect to the class $\mathcal{M}(\mathbf{R}^2)$. Therefore, for an arbitrary measure $\mu \in \mathcal{M}(\mathbf{R}^2)$, there exists a measure $\mu' \in \mathcal{M}(\mathbf{R}^2)$ extending μ and such that $X \in$ dom(μ') and $\mu'(X) = 0$.

It was proved in [4] that, under the Continuum Hypothesis (**CH**), there are Mazurkiewicz sets which are not \mathbf{R}^2 -absolutely negligible. Here we wish to establish the same result without using any additional set-theoretical assumptions. The method applied below is primarily taken from the paper [2]. As demonstrated in [2], there exists a set of points in general position in \mathbf{R}^2 which is not \mathbf{R}^2 -absolutely negligible. However, it should be emphasized that not every set of points in general position in \mathbf{R}^2 is contained in an appropriate Mazurkiewicz set. There are known rather simple examples of plane sets of points in general position, which do not admit an expansion to a Mazurkiewicz set (see, for instance, [1]). For this reason, the method of [2] needs certain modifications.

We begin with the following easy auxiliary proposition.

Lemma 4: Let e be a nonzero vector in \mathbf{R}^2 and let Z be a subset of \mathbf{R}^2 countable in direction e. Then there exist a set $Z_0 \subset \mathbf{R}^2$ and a countable family $\{h_n : n < \omega\} \subset \mathbf{R}^2$ such that:

- (1) Z_0 is uniform in direction e;
- (2) $Z \subset \cup \{h_n + Z_0 : n < \omega\}.$

Proof: We may assume, without loss of generality, that the vector e is parallel to the axis $\{0\} \times \mathbf{R}$. Since Z is countable in direction e, it suffices to show that, for any function

$$\phi: \mathbf{R} \to \mathbf{R}$$

and for any disjoint countable family $\{[a_n, b_n] : n < \omega\}$ of half-open subintervals of **R** such that

$$\sum \{b_n - a_n : n < \omega\} = +\infty,$$

there exist a family $\{h_n : n < \omega\} \subset \mathbf{R}^2$ and a partial function

$$\psi : \mathbf{R} \to \mathbf{R}$$

having the property that:

(a) dom $(\psi) = \cup \{ [a_n, b_n[: n < \omega \};$

(b) $\operatorname{Gr}(\phi) \subset \bigcup \{\operatorname{Gr}(\psi) + h_n : n < \omega\}$, where $\operatorname{Gr}(\phi)$ and $\operatorname{Gr}(\psi)$ denote, respectively, the graph of ϕ and the graph of ψ .

Now, it is not difficult to see that the existence of the required $\{h_n : n < \omega\}$ and ψ is guaranteed by the assumption $\sum\{b_n - a_n : n < \omega\} = +\infty$.

Remark 1: Another proof of Lemma 4 is presented in [2]. Notice, by the way, that all vectors h_n $(n < \omega)$ can be taken to be parallel to the axis $\mathbf{R} \times \{0\}$.

Lemma 5: Let G, A, and B satisfy the following conditions:

(1) G is a subgroup of the additive group $(\mathbf{R}^2, +)$ and $\operatorname{card}(G) < \mathbf{c}$;

(2) A is a subset of \mathbf{R}^2 and $\operatorname{card}(A) < \mathbf{c}$;

(3) B is a λ_2 -measurable subset of \mathbf{R}^2 with $\lambda_2(B) > 0$.

Then there exists a point $z \in B$ such that:

(i) $(G+z) \cap A = \emptyset;$

(ii) for any two distinct points $a \in A$ and $a' \in A$, the line l(a, a') does not intersect the orbit G + z;

(iii) for any two distinct points $x \in G + z$ and $y \in G + z$, the line l(x, y) does not intersect the set A.

Proof: Let us denote

$$A_{1} = \bigcup \{ l(x, y) : x \in G + A, \ y \in G + A, \ x \neq y \},$$
$$A_{2} = \bigcup \{ l_{x}(y) : x \in G, \ x \neq 0, \ y \in A \},$$

where the symbol $l_x(y)$ stands for the straight line passing through a point y and parallel to a nonzero vector x. Further, consider the set

$$A_3 = (G + A) \cup (G + A_1) \cup (G + A_2).$$

Obviously, this set is contained in the union of some family of lines in \mathbb{R}^2 whose cardinality is strictly less than c. Since $\lambda_2(B) > 0$, we must have $B \setminus A_3 \neq \emptyset$. Pick a point $z \in B \setminus A_3$. It is not hard to check that the relations (i), (ii), and (iii) of Lemma 5 are fulfilled for G + z.

Lemma 6: Let Γ be any countably infinite non-collinear subgroup of \mathbb{R}^2 . There exists a Mazurkiewicz set Z such that $\Gamma + Z$ has the following property: for each countable family $\{h_m : m < \omega\} \subset \mathbb{R}^2$, the set

$$\cap \{h_m + \Gamma + Z : m < \omega\}$$

is λ_2 -thick in \mathbf{R}^2 and the equality

$$\operatorname{card}(\cap \{h_m + \Gamma + Z : m < \omega\}) = \mathbf{c}$$

holds true.

Proof: Denote again by α the least ordinal number of cardinality **c** and let $\{G_{\xi} : \xi < \alpha\}$ be an α -sequence of all those countable subgroups of \mathbf{R}^2 which contain Γ

and satisfy the relation

$$\operatorname{card}(G_{\xi}/\Gamma) = \omega.$$

For every group G from the above α -sequence, define the set

$$\Xi(G) = \{\xi < \alpha : G_{\xi} = G\}.$$

We may assume, without loss of generality, that

$$\operatorname{card}(\Xi(G)) = \mathbf{c}.$$

Further, take a family $\{B_{\xi} : \xi < \alpha\}$ of Borel subsets of \mathbf{R}^2 such that, for any ordinal $\xi < \alpha$, the partial family $\{B_{\zeta} : \zeta \in \Xi(G_{\xi})\}$ consists of all Borel subsets of \mathbf{R}^2 having strictly positive λ_2 -measure. The existence of $\{B_{\xi} : \xi < \alpha\}$ is evident.

Finally, let $\{l_{\xi} : \xi < \alpha\}$ be an α -sequence of all straight lines lying in \mathbb{R}^2 .

By using the method of transfinite recursion, let us construct a double family

$$\{z_{k,\xi}: k < \omega, \xi < \alpha\}$$

of points in \mathbf{R}^2 and a family $\{T_{\xi}: \xi < \alpha\}$ of subsets of \mathbf{R}^2 satisfying the following conditions:

(1) $(\{z_{k,\xi} : k < \omega, \xi < \alpha\}) \cup (\cup \{T_{\xi} : \xi < \alpha\})$ is a set of points in general position in \mathbf{R}^2 ;

(2) $\operatorname{card}(T_{\xi}) \leq 2$ for each $\xi < \alpha$;

(3) if $\xi < \alpha$, then $z_{0,\xi} \in B_{\xi}$; (4) for each $\xi < \alpha$, the set $\Gamma + \{z_{k,\xi} : k < \omega\}$ coincides with $G_{\xi} + z_{0,\xi}$;

(5) $\operatorname{card}\left(l_{\xi} \cap \left(\left(\cup\{T_{\zeta}: \zeta \leq \xi\}\right) \cup \{z_{k,\zeta}: k < \omega, \zeta \leq \xi\}\right)\right) = 2$ for each $\xi < \alpha$. Suppose that, for an ordinal number $\xi < \alpha$, the partial families

$$\{z_{k,\zeta}: k < \omega, \ \zeta < \xi\}, \quad \{T_{\zeta}: \zeta < \xi\}$$

have already been constructed with the properties corresponding to (1)-(5), and put

$$G = G_{\xi}, \qquad B = B_{\xi},$$
$$A = (\{z_{k,\zeta} : k < \omega, \zeta < \xi\}) \cup (\cup \{T_{\zeta} : \zeta < \xi\}).$$

Observe that A is a set of points in general position in \mathbb{R}^2 . Also,

$$\operatorname{card}(A) < \mathbf{c}, \quad \operatorname{card}(G) = \omega < \mathbf{c}, \quad \lambda_2(B) > 0.$$

So, Lemma 5 is applicable to G, A, and B. Let $z \in B$ be a point as in Lemma 5 and let us consider the G-orbit G + z of this point. Since we have the relations

$$G = G_{\mathcal{E}}, \quad \operatorname{card}(G_{\mathcal{E}}/\Gamma) = \omega,$$

the set G + z is the union of some pairwise disjoint Γ -orbits $\{Z_k : k < \omega\}$. Clearly, an enumeration of these Γ -orbits can be chosen so that $z \in Z_0$. Now, we put

$$z_{0,\xi} = z$$

and define a sequence of points $\{z_{k,\xi} : k < \omega\}$ in \mathbb{R}^2 by ordinary induction. Assume that the finite collection of points

$$z_{0,\xi} \in Z_0, \quad z_{1,\xi} \in Z_1, \quad \ldots, \quad z_{k,\xi} \in Z_k$$

has already been determined and consider the Γ -orbit Z_{k+1} . Keeping in mind the fact that Γ is not a collinear subgroup of \mathbf{R}^2 , we deduce that the set Z_{k+1} cannot be covered by finitely many straight lines in \mathbf{R}^2 . Therefore, there exists a point $t \in Z_{k+1}$ which does not belong to any line passing through two distinct points from the finite set $\{z_{0,\xi}, z_{1,\xi}, ..., z_{k,\xi}\}$. We then put

$$z_{k+1,\xi} = t.$$

Proceeding in this manner, we finally come to the desired sequence of points $\{z_{k,\xi} : k < \omega\}$.

According to the above construction, the set

$$A^* = \left(\{z_{k,\zeta} : k < \omega, \zeta \le \xi\}\right) \cup \left(\cup\{T_{\zeta} : \zeta < \xi\}\right)$$

is again in general position in \mathbb{R}^2 . Consider now the straight line l_{ξ} and the set $A^* \cap l_{\xi}$. Obviously, we have the inequalities

$$\operatorname{card}(A^*) < \mathbf{c}, \quad \operatorname{card}(A^* \cap l_{\mathcal{E}}) \le 2.$$

It is not hard to see that there exists a set $T \subset \mathbf{R}^2$ which satisfies the following relations:

(a) $\operatorname{card}(T) \leq 2$;

(b) $T \cup A^*$ is a set of points in general position;

(c) $\operatorname{card}((T \cup A^*) \cap l_{\xi}) = 2.$

So, putting $T_{\xi} = T$, we obtain the family $\{T_{\zeta} : \zeta \leq \xi\}$.

The transfinite process just described and continued up to the ordinal α yields the two families

$$\{z_{k,\xi}: k < \omega, \xi < \alpha\}, \quad \{T_{\xi}: \xi < \alpha\}.$$

A straightforward verification then shows that all conditions (1)-(5) are fulfilled for these families. In particular, conditions (1) and (5) imply at once that

$$Z = \{z_{k,\xi} : k < \omega, \xi < \alpha\} \cup (\cup \{T_{\xi} : \xi < \alpha\})$$

is a Mazurkiewicz subset of \mathbf{R}^2 . In addition to this, (3) and (4) imply that, for any countable family $\{h_m : m < \omega\} \subset \mathbf{R}^2$, the set

$$\cap \{h_m + \Gamma + Z : m < \omega\}$$

is λ_2 -thick in \mathbf{R}^2 and satisfies the equality

$$\operatorname{card}(\cap \{h_m + \Gamma + Z : m < \omega\}) = \mathbf{c}.$$

Lemma 6 has thus been proved.

Theorem 7: Let Z and Γ be as in Lemma 6. There exists a measure ν on \mathbb{R}^2 such that:

(1) ν is an extension of λ_2 ;

(2) ν is translation invariant, i.e., \mathbf{R}^2 -invariant;

(3) $(\Gamma + Z) \in \operatorname{dom}(\nu)$ and $\nu(\mathbf{R}^2 \setminus (\Gamma + Z)) = 0$.

In particular, the Mazurkiewicz set Z is not \mathbb{R}^2 -absolutely negligible in \mathbb{R}^2 .

Proof: Denote by \mathcal{I} the \mathbb{R}^2 -invariant σ -ideal of subsets of \mathbb{R}^2 generated by the one-element family $\{\mathbb{R}^2 \setminus (\Gamma + Z)\}$. By virtue of Lemma 6, the inner λ_2 -measure of every element of \mathcal{I} is equal to zero. So, we may apply to \mathcal{I} and λ_2 Marczewski's classical method of extending invariant measures (see [8] or [9]). This method gives us the measure ν satisfying (1), (2), and (3) of the theorem. Relation (3) trivially implies that Z is not \mathbb{R}^2 -absolutely negligible.

Remark 2: Let *e* be any nonzero vector in \mathbb{R}^2 . It is easy to see that the set $\Gamma + Z$ is countable in direction *e*. By Lemma 4, there exist a set $Z_0 \subset \mathbb{R}^2$ and a countable family $\{h_n : n < \omega\} \subset \mathbb{R}^2$ such that:

(a) Z_0 is uniform in direction e;

(b) $\Gamma + Z \subset \cup \{h_n + Z_0 : n < \omega\}.$

Consequently, Z_0 is \mathbb{R}^2 -negligible but is not \mathbb{R}^2 -absolutely negligible.

Remark 3: Assuming the Continuum Hypothesis, it was proved in [4] that, for any countably infinite non-collinear group $\Gamma \subset \mathbf{R}^2$, there exists a Mazurkiewicz set $Y \subset \mathbf{R}^2$ such that the set $\Gamma + Y$ contains some λ_2 -thick almost \mathbf{R}^2 -invariant subset of cardinality **c**. This result substantially strengthens Lemma 6, but is heavily based on **CH**. It is unknown whether the same result can be established without using additional set-theoretical assumptions.

Acknowledgements

This work is partially supported by Shota Rustaveli National Science Foundation, Grant FR/116/5-100/14.

References

- J.J. Dijkstra, J. van Mill, Two point set extensions a counterexample, Proc. Amer. Math. Soc., 125, 8 (1997), 2501-2502.
- [2] A. Kharazishvili, Some Questions of Set Theory and Measure Theory (in Russian), Izd. Tbil. Gos. Univ., Tbilisi, 1978.
- [3] A. Kharazishvili, One property of Hamel bases (in Russian), Bull. Acad. Sci. GSSR, 95, 2 (1979), 277-280.
- [4] A. Kharazishvili, Measurability properties of Mazurkiewicz sets, Bulletin of TICMI, 20, 2 (2016), 44-46.
- [5] N. N. Luzin, Collected Works (in Russian), Izd. Akad. Nauk SSSR, Moscow, 2 (1958).
- [6] S. Mazurkiewicz, Sur un ensemble plan qui a avec chaque droite deux et seulement deux points communs, C.R. Varsovie, 7 (1914), 382-384.
- [7] W. Sierpiński, Cardinal and Ordinal Numbers, PWN, Warszawa, 1958.
- [8] E. Szpilrajn (E. Marczewski), Sur l'extension de la mesure lebesguienne, Fund. Math., 25 (1935), 551-558.
- [9] E. Szpilrajn (E. Marczewski), On problems of the theory of measure (in Russian), Uspekhi Mat. Nauk, 1, 2 (12), (1946), 179-188.