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The present paper is devoted to construction of hierarchical models for porous elastic and
viscoelastic Kelvin-Voigt prismatic shells on the basis of linear theories. Using I. Vekua’s [1],
[2] dimension reduction method, governing systems are derived and in the Nth approximation
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Keywords: Hierarchical models, Viscoelastic prismatic shells, Porous elastic prismatic
shells, Materials with voids.

AMS Subject Classification: 74K20, 74K25, 74F99, 74D05.

1. Introduction

The present paper is devoted to construction of hierarchical models for porous
elastic and viscoelastic Kelvin-Voigt prismatic shells on the basis of linear theories.
Using I. Vekua’s [1], [2] dimension reduction method, governing systems are de-
rived and in the Nth approximation boundary value problems are set. In the N = 0
approximation, considering plates of a constant thickness, governing systems math-
ematically coincide with the governing systems of the plane strain corresponding
to the basic three-dimensional (3D) linear theories [3]-[6] up to a separate equation
for the out of plane component of the displacement vector in our cases. The ways
of investigation of boundary value problems (BVPs) and initial boundary value
problems (IBVPs), including the case of cusped prismatic shells [2], are indicated
and some preliminary results are presented.

2. Field equations for Kelvin-Voigt materials

The field equations have the following form [4], [5]:
Motion Equations

Xji,j+Φi = ρ
..
ui(x1, x2, x3, t), (x1, x2, x3) ∈ Ω ⊂ R3, t > t0, i, j = 1, 2, 3; (2.1)
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Hj,j +H0 = ρ0φ̈−F , (2.2)

where Xij ∈ C1(Ω) is the stress tensor; Φi are the volume force components;
ρ0 := ρk′ (k′ is equilibrated inertia), ρ is the reference mass density; ui ∈ C2(Ω)
are the displacements; Hj ∈ C1(Ω) is the component of the equilibrated stress
vector, H0 and F are the intrinsic and extrinsic equilibrated volume forces; the
points as superscripts mean differentiation with respect to the time, and Einstein’s
summation convention is used; indices after comma mean differentiation with re-
spect to the corresponding variables of the Cartesian frame Ox1x2x3 (throughout
the paper we assume existence of the indicated (continuous) derivatives); dots as
superscripts of the symbols mean derivatives with respect to time t;
Constitutive Equations (isotropic case)

Xij = λekkδij + 2µeij + λ∗ėkkδij + 2µ∗ėij + bφδij + b∗φ̇δij , i, j = 1, 2, 3, (2.3)

Hj = α̃φ,j + α∗φ̇,j , j = 1, 2, 3, (2.4)

H0 = −bekk − ξφ− ν∗ėkk − ξ∗φ̇, (2.5)

where eij ∈ C1(Ω) is the strain tensor; φ := ν0 − ν ∈ C2(Ω) is the change in
the volume fraction from the matrix reference volume fraction ν (clearly, the bulk
reference density ρ = νγ, 0 < ν ≤ 1, here γ is the matrix reference density);
λ, λ∗, µ, µ∗, b, b∗, α̃, α∗, ν∗, ξ, ξ∗ are the constitutive coefficients;
Kinematic Relations

eij =
1

2
(ui,j + uj,i), i, j = 1, 2, 3. (2.6)

3. Construction of hierarchical models. Nth approximation.

Let us consider prismatic shells (see, e.g., Fig. 1 and [2], [7]) occupying 3D domain
Ω with the projection ω (on the plane x3 = 0) and the face surfaces

x3 =
(+)

h (x1, x2) ∈ C2(ω) and x3 =
(−)

h (x1, x2) ∈ C2(ω), (x1, x2) ∈ ω.

x1

x2

x3

x3=  ( , )h x x1 2

(-)

x3=  ( , )h x x1 2

(+)

Figure 1. Prismatic shell of a constant thickness. ∂Ω is a Lipschitz boundary
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rth order moments of the following quantities are defined as

(
uir, Xijr, eijr, Φjr, Hir, H0r, φr, Fr

)
(x1, x2, t)

:=

(+)

h (x1,x2)∫
(−)

h (x1,x2)

(
ui, Xij , eij , Φj , Hi, H0, φ, F

)
(x1, x2, x3, t)Pr(ax3 − b) dx3,

i, j = 1, 2, 3, (3.1)

where

Pr(ax3 − b)

a(x1, x2) := 2
(+)

h −
(−)

h

, b(x1, x2) :=

(+)

h +
(−)

h
(+)

h −
(−)

h

 , r = 0, 1, · · · ,

are the rth order Legendre polynomials.

2h(x1, x2) :=
(+)

h (x1, x2)−
(−)

h (x1, x2), (x1, x2) ∈ ω,

is the thickness of the prismatic shell.
Under the well-know restrictions (see, e.g., [1]) the following Fourier-Legendre

series (
ui, Xij , eij , Hi, H0, φ, F

)
(x1, x2, x3, t)

=

∞∑
r=0

a
(
r +

1

2

)(
uir, Xijr, eijr, Hir, H0r, φr, Fr

)
(x1, x2, t)Pr(ax3 − b),(3.2)

are convergent.
Therefore on the upper and lower face surfaces of the prismatic shell under

consideration

(±)
u i := ui(x1, x2,

(±)

h (x1, x2), t) =

∞∑
s=0

a
(
s+

1

2

)
uis(±1)s =

∞∑
s=0

(±1)s(2s+ 1)

2h
uis,

i = 1, 2, 3,

whence

(+)
u i − (−1)r

(−)
u i = −

∞∑
s=0

r
a3suis, i = 1, 2, 3,

(+)
u i

(+)

h ,α−(−1)r
(−)
u i

(−)

h ,α=

∞∑
s=0

r

a∗αsuis, α = 1, 2,
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where

r

a∗αs =
r
aαs, s ̸= r,

r

a∗αr = (2r + 1)
h,α
h
,

r
aαr := r

h,α
h
,

r
aαs := (2s+ 1)

(+)

h ,α−(−1)r+s
(−)

h ,α
2h

, s ̸= r.

r
a3s := −(2s+ 1)

1− (−1)s+r

2h
.

Using

(+)

h (x1, x2)∫
(−)

h (x1, x2)

Pr(ax3 − b)f,α dx3 = fr,α +

r∑
s=0

r
aαsfs −

(+)

f
(+)

h ,α + (−1)r
(−)

f
(−)

h ,α, α = 1, 2,

(+)

h (x1, x2)∫
(−)

h (x1, x2)

Pr(ax3 − b)f,3 dx3 =

r∑
s=0

r
a3sfs +

(+)

f − (−1)r
(−)

f ,

from (2.1)-(2.6), after multiplying them by Pr(ax3−b) and then integrating within

the limits
(−)

h (x1, x2) and
(+)

h (x1, x2) with respect to the thickness variable x3, we
obtain the following formulas in ω:

Xαir,α +

r∑
s=0

r
ajsXjis +

r
Xi = ρ

∂2uir
∂t2

, i = 1, 3, r = 0, 1, · · · , (3.3)

Hαr,α +

r∑
s=0

r
aisHis +H0r +

r
H = ρ0φ̈r −Fr, r = 0, 1, · · · , (3.4)

r
H :=

(+)

H3 −
(+)

Hα

(+)

h,α + (−1)r
[
−

(−)

H3 +
(−)

Hα

(−)

h,α

]
+H0r

=
(+)

H

√
1 +

((+)

h,1

)2
+
((+)

h,2

)2
+ (−1)r

(−)

H

√
1 +

((−)

h,1

)2
+
((−)

h,2

)2
, r = 0, 1, · · · ,
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Xijr = λekkrδij + 2µeijr + λ∗ėkkrδij + 2µ∗ėijr + bφrδij + b∗φ̇rδij ,

i, j = 1, 3, r = 0, 1, · · · , (3.5)

Hαr = α̃
[
φr,α +

r∑
s=0

r
aαsφs −

(+)
φ

(+)

h,α + (−1)r
(−)
φ

(−)

h,α

]

+α∗
[
φ̇r,α +

r∑
s=0

r
aαsφ̇s −

(+)

φ̇
(+)

h,α − (−1)r
(−)

φ̇
(−)

h,α

]
, α = 1, 2, (3.6)

H3r = α̃
[ r∑
s=0

r
a3sφs +

(+)
φ − (−1)r

(−)
φ
]
+ α∗

[ r∑
s=0

r
a3sφ̇s +

(+)

φ̇ − (−1)r
(−)

φ̇
]
, (3.7)

i.e.,

Hjr = α̃
(
φr,j +

∞∑
s=r

r
bjsφs

)
+ α∗

(
φ̇r,j +

∞∑
s=r

r
bjsφ̇s

)
, j = 1, 3, r = 0, 1, · · · , (3.8)

evidently,

Hjr = α̃
(
hr+1ψr,j +

∞∑
s=r+1

hs+1
r
bjsψs

)
+ α∗

(
hr+1ψ̇r,j +

∞∑
s=r+1

hs+1
r
bjsψ̇s

)
,

j = 1, 3, r = 0, 1, · · · ,

ψr :=
φr

hr+1
,

H0r = −bekkr − ξφr − ν∗ėkkr − ξ∗φ̇r, r = 0, 1, · · · . (3.9)

H0r = −b
(
hr+1vγr,γ +

∞∑
s=r+1

hs+1
r
bisvis

)
− ξhr+1ψr

−ν∗
(
hr+1v̇γr,γ +

∞∑
s=r+1

hs+1
r
bisv̇is

)
− ξ∗hr+1ψ̇r, r = 0, 1, · · · .
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eijr =
1

2

(
uir,j + ujr,i

)
+

1

2

∞∑
s=r

r
bisujs +

1

2

∞∑
s=r

r
bjsuis,

i, j = 1, 3, r = 0, 1, · · · , (3.10)

where

θr := eiir = uγr,γ +

∞∑
s=r

r
bksuks,

r
bαr := −(r + 1)

h,α
h
,

r
b3r = 0,

r
bjs :=


0, s < r,

− r
aαs = −(2s+ 1)

(+)

h ,α−(−1)r+s
(−)

h ,α
2h

, j = α, s > r,

− r
a3s = (2s+ 1)

1− (−1)s+r

2h
, j = 3, s > r,

α = 1, 2, j = 1, 3, r, s = 0, 1, 2, · · · ;

r
Xj : =

(+)

X3j −
(+)

Xαj

(+)

h,α + (−1)r
[
−

(−)

X3j +
(−)

Xαj

(−)

h,α

]
+Φjr

= Q(+)
n j

√
1 +

((+)

h,1

)2
+
((+)

h,2

)2

+ (−1)rQ(−)
n j

√
1 +

((−)

h,1

)2
+
((−)

h,2

)2
+Φjr,

j = 1, 3, r = 0, 1, 2, · · · ;

Q(+)
n j

and Q(−)
n j

are components of the stress vectors acting on the upper and lower

face surfaces with normals
(+)
n and

(−)
n , respectively. So, we get the equivalent1 to

(2.2)-(3.6), infinite system (3.3)-(3.5), (3.8)-(3.10) with respect to the so called r-th
order moments Xijr, eijr, uir, Hjr, H0r, φr. Then, substituting (3.10) into (3.5)
and the obtained into (3.3), and (3.8) into (3.4) we construct an equivalent infinite
system with respect to the r-th order moments uir, φr. After this, if we suppose
that the moments whose subscripts, indicating moments’ order, are greater than
N equal zero and consider only the first N+1 equations (r = 0, N) in the obtained
infinite system of equations with respect to the r-th order moments uir, we obtain
the N−th order approximation (hierarchical model) governing system consisting

1in the following sense: if Xij , eij , ui, Hi, H0, and φ satisfy the relations (3.2)-(3.6), then constructed by
(3.1) functions Xijr, eijr, uir, Hir, H0r, φr will satisfy the infinite relations (3.3)-(3.5), (3.8)-(3.10) and, vice
versa, if Xijr, eijr, uir, Hir, H0r, φr satisfy the infinite relations (3.3)-(3.5), (3.8)-(3.10), then constructed
by means of (3.2) functions Xij , eij , ui, Hi, H0, φ will satisfy the relations (3.2)-(3.5).
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of 4N + 4 equations with respect to 4N + 4 unknown functions
N
uir,

N
φr (roughly

speaking
N
uir,

N
φr is an “approximate value” of uir, φr, since

N
uir,

N
φr are solutions

of the derived finite system), i = 1, 3, r = 0, N . Because of

r
b3r = 0, hr+1(h−r−1),α=

r
bαr, α = 1, 2,

we can rewrite (3.3) for

vir := h−r−1uir

as follows

eijr =
1

2
hr+1

(
vir,j + vjr,i

)
+

1

2

∞∑
s=r+1

hs+1
( r
bisvjs +

r
bjsvis

)
,

i, j = 1, 3, r = 0, 1, · · · . (3.11)

θr := eiir = hr+1vγr,γ +

∞∑
s=r+1

hs+1
r
bksvks, r = 0, 1, · · · .

Multiplying equality (3.3) by hr and, taking into account that
r
air = rh−1h,α, we

get

(hrXαjr),α+h
r
r−1∑
s=0

r
aisXijs + hr

r
Xj = ρhr

∂2hr+1vjr
∂t2

,

j = 1, 3, r = 0, 1, · · · . (3.12)

Substituting (3.11) into (3.5) we have

Xijr = λδijh
r+1vγr,γ + µhr+1(vir,j + vjr,i) +

∞∑
s=r+1

r
Bijksh

s+1vks

+λ∗δijh
r+1v̇γr,γ + µ∗hr+1(v̇ir,j + v̇jr,i) +

∞∑
s=r+1

r

B∗
ijksh

s+1v̇ks

+bhr+1ψrδij + b∗hr+1ψ̇rδij , i, j = 1, 3, r = 0, 1, · · · ,

where

r
Bijks := λδij

r
bks + µδkj

r
bis + µδik

r
bjs,
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r

B∗
ijks := λ∗δij

r
bks + µ∗δkj

r
bis + µ∗δik

r
bjs,

Multiplying (3.4) by hr we obtain

(hrHαr),α + hr
r−1∑
s=0

r
aisHis + hrH0r + hr

r
H = ρ0h

rφ̈r − hrFr. (3.13)

In the N-th Approximation the governing system has the following form

α̃
[(
h2r+1ψr,α

)
,α
+

N∑
s=r+1

(
hr+s+1

r
bαsψs

)
,α

]

+α∗
[(
h2r+1ψ̇r,α

)
,α
+

N∑
s=r+1

(
hr+s+1

r
bαsψ̇s

)
,α

]

+α̃

r−1∑
s=0

r
ais

(
hr+s+1ψs,i +

N∑
l=s+1

hr+l+1
s
bilψl

)

+α∗
r−1∑
s=0

r
ais

(
hr+s+1ψ̇s,i +

N∑
l=s+1

(
hr+l+1

s
bilψ̇l

)

−b
(
h2r+1vγr,γ +

N∑
s=r+1

hr+s+1
r
bisvis

)
− ξh2r+1ψr

−ν∗
(
h2r+1v̇γr,γ +

N∑
s=r+1

hr+s+1
r
bisv̇is

)
−ξ∗h2r+1ψ̇r + hr

r
H = ρ0h

rφ̈r − hrFr, r = 0, N. (3.14)

µ

[(
h2r+1Nvαr,i

)
,α

+

(
h2r+1Nv ir,α

)
,α

]
+ λδαi

(
h2r+1Nv γr,γ

)
,α

+

N∑
s=r+1

(
r
Bαiks h

r+s+1 N
v ks

)
,α

+

r−1∑
l=0

r
ajl

[
λδjih

r+l+1N
v γ l,γ + µh

r+l+1

(
N
v jl,i +

N
v il,j

)

+

N∑
s=l+1

l
Bjiks h

r+s+1N
v ks

]

+µ∗

[(
h2r+1

N
v̇αr,i

)
,α

+

(
h2r+1

N
v̇ ir,α

)
,α

]
+ λ∗δαi

(
h2r+1

N
v̇ γr,γ

)
,α
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+

N∑
s=r+1

(
r

B∗
αiks h

r+s+1
N
v̇ ks

)
,α

+

r−1∑
l=0

r
ajl

[
λ∗δjih

r+l+1N
v̇ γ l,γ + µh

r+l+1

(
N
v̇ jl,i +

N
v̇ il,j

)

+

N∑
s=l+1

l

B∗
jiks h

r+s+1N
v̇ ks

]

+b
[(
h2r+1

N
ψr

)
,i
+

r−1∑
s=0

r
aish

r+s+1
N
ψs

]
+ b∗

[(
h2r+1

Ṅ
ψr

)
,i
+

r−1∑
s=0

r
aish

r+s+1
Ṅ
ψs

]

+hr
r
Xi = ρhr

∂2hr+1 N
v ir

∂ t2
, r = 0, N, i = 1, 3,

q−1∑
q

(· · · ) ≡ 0, (3.15)

where

N
v kr :=

N
ukr

hr+1
, k = 1, 3, r = 0, N. (3.16)

Now, we consider the following two mixed 3D BCs:
- on the face surfaces of the prismatic shell under consideration the stress vectors

Q(+)
n j
, j = 1, 2, 3, Q(−)

n j
, j = 1, 2, 3, and equilibrated stress vectors

(+)

Hj , j = 1, 2, 3,

(−)

Hj , j = 1, 2, 3, are prescribed;
- on the lateral boundary

Γ := {(x1, x2, x3) ∈ R3 : (x1, x2) ∈ ∂ω,
(−)

hj (x1, x2) < x3 <
(+)

h (x1, x2)}

of the prismatic shell
either BCs:

ui = ũi, φ = φ̃,

or BCs:

Xjinj = fi, Hjnj = g,

where ũi, fi, φ̃, g are given continuous functions, are prescribed.
To the last BCs on the lateral boundary Γ correspond the following BCs in the

Nth approximation:

vir =
ũir
hr+1

, i = 1, 2, 3, ψr =
φ̃r

hr+1
, r = 0, N, on ∂ω,
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and

Xjirnj = fir, i = 1, 2, 3, Hjrnj = gr, r = 0, N, on ∂ω,

respectively, where ũir, φ̃r, fir, gr, i = 1, 2, 3, r = 0, N are rth order moments of
ũi, φ̃, fi, g, i = 1, 2, 3, correspondiugly.
Note that, if we take

λ∗ = 0, µ∗ = 0, b∗ = 0, α∗ = 0, ν∗ = 0, ξ∗ = 0, (3.17)

from the above obtained governing system, we get hierarchical models for porous
elastic prismatic shells.

4. N=0 approximation for viscoelastic Kelvin-Voigt prismatic shells

The governing system has the following form (see (3.14), (3.15)):

µ
[
(hvα0,β),α + (hvβ0,α),α

]
+ λ(hvγ0,γ),β + b(hψ0),β + µ∗

[
(hv̇α0,β),α + (hv̇β0,α),α

]
+λ∗(hv̇γ0,γ),β + b∗(hψ̇0),β +

0
Xβ = ρhv̈β0, β = 1, 2; (4.1)

µ(hv30,α),α + µ∗(hv̇30,α),α +
0
X3 = ρhv̈30; (4.2)

α̃(hψ0,α),α−bhvγ0,γ−ξhψ0+α
∗(hψ̇0,α),α−ν∗hv̇γ0,γ−ξ∗hψ̇0+

0
H = ρψ̈0−F0. (4.3)

5. N=0 approximation for porous elastic prismatic shells

From (4.1)-(4.3), taking into account (3.17), we get the following governing system

µ
[
(hvα0,β),α+(hvβ0,α),α

]
+λ(hvγ0,γ),β+b(hψ0),β+

0
Xβ = ρhv̈β0, β = 1, 2; (5.1)

µ(hv30,α),α +
0
X3 = ρhv̈30; (5.2)

α̃(hψ0,α),α − bhvγ0,γ − ξhψ0 +
0
H = ρφ̈0 −F0. (5.3)

BCs for the weighted displacements and the weighted volume fraction are non-
classical in the case of cusped prismatic shells (see Figures 2, 3). Namely, we are
not always able to prescribe them at cusped edges.
Let ω be a domain bounded by a sufficiently smooth arc (∂ω \ γ0) lying in the

half -plane x2 > 0 and a segment γ0 of the x1−axis (x2 = 0).
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x3

x2

x1

x3=  ( , )h x x1 2

(+)

x3=  ( , )h x x1 2

(-)

G
0= g

0

Figure 2. A sharp cusped prismatic shell with a
semicircle projection. ∂Ω is a Lipschitz boundary

x3=  ( , )h x x1 2

x3=  ( , )h x x1 2

(+)

(-)

x3

x2

x1

g
1

g
2

Figure 3. A cusped plate with sharp γ1 and
blunt γ2 edges, γ0 = γ1 ∪ γ2. ∂Ω is a non-
Lipschitz boundary

If the thickness looks like

2h(x1, x2) = h0x
κ
2 , h0, κ = const > 0, (5.4)

then the displacements and volume fraction we can prescribe at cusped edge γ0 if
κ < 1, while we cannot do it if κ ≥ 1.
Let us show it for the particular case of deformation when

vα0 ≡ 0, α = 1, 2; v30 ̸≡ 0.

Then in the static case, taking into account (5.4), from (5.2), (5.3) we get

x2v30,αα + κv30,2 = 2(µh0)
−1x1−κ

2

◦
X3, (5.5)

x2ψ0,αα + κψ0,2 − ξα−1x2ψ0 = −2(α̃h0)
−1x1−κ

2

( ◦
H + F0

)
, (5.6)

respectively.
Problem D (Find v30,Ψ0 ∈ C2(ω) ∩C(ω̄) by their values prescribed on ∂ω) and

Problem E (Find bounded v30,Ψ0 ∈ C2(ω) ∩ C(ω ∪ (∂ω \ γ0)) by their values
prescribed only on the arc ∂ω \ γ0) are uniquely solvable for equations (5.5), (5.6)
by κ2 < 1 and κ2 ≥ 1, correspondingly. It follows from the theorem (see [8]).

Theorem 5.1 : If the coefficients aα, α = 1, 2, and c of the equation

xκα

2 u,αα+aα(x1, x2)u,α+c(x1, x2)u = 0, c ≤ 0, κα = const ≥ 0, α = 1, 2,

are analytic in ω, then
(i) if either κ2 < 1, or κ2 ≥ 1,

a2(x1, x2) < xκ2−1
2 (5.7)

in ωδ for some δ = const > 0, where

ωδ := {(x1, x2) ∈ ω : 0 < x2 < δ},

the Dirichlet problem (Problem D) is well-posed;
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(ii) if κ2 ≥ 1,

a2(x1, x2) ≥ xκ2−1
2 (5.8)

in ωδ and a1(x1, x2) = O(xκ1

2 ), x2 → 0+ (O is the Landau symbol), the Keldysh
problem (Problem E) is well-posed.

Indeed, from (5.7) and (5.8), it follows a2(x1, x2) = κ < 1 for Problem D and
a2(x1, x2) = κ ≥ 1 for Problem E, respectively, since κ1 = κ2 = 1.
To the general system (5.1)-(5.3) in the static case we apply results obtained for

the more general system (see [9]).

Remark 1 : In the similar way we construct hierarchical models for piezoelectric
thermoviscoelastic Kelvin-Voigt prismatic shells with voids as well. It turned out
that considering cusped prismatic shells by setting BCs at cusped edges the elec-
tric and magnetic potentials expose the same peculiarities which characterize the
displacements and volume fraction by setting BCs for the displacements, volume
fraction, electric and magnetic potentials on the lateral boundary of the prismatic
shells. These results will be published in the forthcoming paper.
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