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Abstract. Exact solution of two dimensional problems of elasticity are constructed in the
parabolic coordinates in domain bounded by coordinate lines of the parabolic coordinate
system. Here we represent internal boundary value problems of elastic equilibrium of the
homogeneous isotropic body bounded by coordinate lines of the parabolic coordinate system,
when on parabolic border normal or tangential stresses are given. Exact solutions are obtained
using the method of separation of variables. Using the MATLAB software numerical results
and constructed graphs of the mentioned boundary value problems are obtained.
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1. Introduction

In order to solve the boundary value problems and boundary-contact problems
in the areas with curvilinear border, it is purposeful to consider such tasks in
the corresponding curvilinear coordinate system. For example, for a circle and its
parts the tasks are considered in the polar coordinate system [1-4], for an ellipse
and its parts the tasks are considered in elliptical coordinate system [5-8], for
areas with circle with different centers and radiuses the tasks are considered in
the bipolar coordinate system [9-11]. The above-mentioned tasks are solved by
both analytical and numerical methods. In [12] the boundary value problems are
formulated according to the complex potential function, using parabolic coordinate
systems.
In the present paper the boundary value problems are considered in a parabolic

coordinate system (see appendix A). In the parabolic coordinates are written the
equilibrium equation system and Hooke’s law, analytical (exact) solution of 2D
problems of elasticity are constructed in the domain bounded by coordinate lines
of the parabolic coordinate system. Here we represent internal boundary value
problems of elastic equilibrium of the homogeneous isotropic body bounded by
coordinate lines of the parabolic coordinate system, when on parabolic border
normal or tangential stresses are given. Exact solutions are obtained using the
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method of separation of variables. Numerical results and corresponding graphs of
above-mentioned problems are presented.

2. Statement of the problems

We consider the homogeneous isotropic elastic body, to which the following area
(see fig. 1) corresponds

Ω1 = {0 < ξ < ξ1, 0 < η < η1} (1)

Figure 1. Ω1 = {0 < ξ < ξ1, 0 < η < η1} area bounded by parabolic line and line y = 0.

In a parabolic coordinate system equilibrium equations with respect to the func-
tion D, K, u, v and Hooke’s law can be written as [13]

a) D,ξ −K,η = 0, c) ū,ξ + v̄,η =
æ− 2

æµ
h20D,

b) D,η +K,ξ = 0, d) v̄,ξ − ū,η =
1

µ
h20K,

(2)

σξξ + σηη = 2 (λ+ µ)h−2
0

[
(ū),ξ + (v̄),η

]
,

σξξ − σηη = 2µ
[(
h−2
0 ū

)
,ξ
−
(
h−2
0 v̄
)
,η

]
,

τξη = µh−2
0

[(
h−2
0 v̄
)
,ξ
+
(
h−2
0 ū

)
,η

]
,

(3)

where ū = hu
c2 , v̄ = hv

c2 ; h0 =
√
ξ2 + η2, h = hξ = hη = c

√
ξ2 + η2 are Lamé

coefficients (see appendix A), u, v are components of the displacement vector at
tangents to the coordinate lines η, ξ; æ−2

æµ D is the divergence of the displacement

vector, K
µ is the rotor of the displacement vector; σξξ, σηη and τξη = τηξ are normal

and tangential stresses; subscripts ξ, η denote partial derivatives with respect to the
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corresponding coordinates; λ = Eν
(1+ν)(1−2ν) , µ = E

2(1−ν) are elastic Lamé constants;

æ = 4 (1− ν); ν is the Poisson’s ratio andE is the modulus of elasticity.
Boundary conditions can be written as:

for η = η1 : a) σηη = Q1 (ξ) , τξη = Q2 (ξ) or b) u = H1 (ξ) , v = H2 (ξ) , (4)

for ξ = ξ1 : a) σξξ = F1 (η) , τξη = F2 (η) or b) u = G1 (η) , v = G1 (η) ,
(
4′
)

for ξ = 0 : a) v = 0, σξξ = 0 or b) u = 0, τξη = 0, (5)

for η = 0 : a) u = 0, σηη = 0, or b) v = 0, τξη = 0, (6)

where Fi, Qi (i = 1, 2) with the first derivative, and Gi,Hi with the first and sec-
ond derivatives can be decomposed into the trigonometric absolute and uniform
convergent Fourier series.
Boundary conditions on the linear parts ξ = 0 and η = 0 of consideration area

enables us to continue the solutions continuously (symmetrically or anti symmet-
rically) in the domain, that is the mirror reflection of the consideration area in a
relationship y = 0 line (see Fig.2).

Figure 2. D1 = {−ξ1 < ξ < ξ1, 0 < η < η1} area bounded by parabola.

3. Solution of problems

We have to find the solution of tasks (1) (see Figure 1), (2)-(6), which belongs
to the C2 (D1) (see D1 area on Fig. 2) ). The solution is constructed using its
general representation by two harmonic functions φ1 and φ2 (see Appendix B).
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From formulas (B11)-(B13) we will have:

ū = − [η (φ1,η − φ2,ξ) + (æ− 1)φ1] ξ +

[
η21
η

(φ1,ξ + φ2,η)− (æ− 1)φ2

]
η,

v̄ =

[
η21
η

(φ1,η − φ2,ξ) + (æ− 1)φ1

]
η + [η (φ1,ξ + φ2,η)− (æ− 1)φ2] ξ;

(7)

D =
æµ

h20
[(φ1,η − φ2,ξ) η − (φ1,ξ + φ2,η) ξ] ,

K =
æµ

h20
[(φ1,η − φ2,ξ) ξ + (φ1,ξ + φ2,η) η] ,

where

1

h2
(φi,ξξ + φi,ηη) = 0, i = 1, 2. (8)

The stress tensor components can be written as:

h20
2µ
σηη = −

[
η21
η

(φ1,ξξ + φ2,ξη)−
æ

2
φ1,η −

æ− 2

2
φ2,ξ

]
η

+

[
η (φ1,ξη − φ2,ηη) +

æ− 2

2
φ1,ξ −

æ

2
φ2,η

]
ξ

− η21 − η

ξ2 + η2
[(φ1,η − φ2,ξ) η − (φ1,ξ + φ2,η) ξ] ,

h20
2µ
τξη =

[
η21
η

(φ1,ξη − φ2,ξξ) +
æ− 2

2
φ1,ξ −

æ

2
φ2,η

]
η

+

[
η (φ1,ξξ + φ2,ξη)−

æ

2
φ1,η −

æ− 2

2
φ2,ξ

]
ξ

− η21 − η

ξ2 + η2
[(φ1,η − φ2,ξ) ξ + (φ1,ξ + φ2,η) η] ,

(9)

h20
2µ
σξξ =

[
η21
η

(φ1,ξξ + φ2,ξη)−
æ− 4

2
φ1,η −

æ+ 2

2
φ2,ξ

]
η

−
[
η (φ1,ξη − φ2,ξξ) +

æ + 2

2
φ1,ξ −

æ− 4

2
φ2,η

]
ξ

+
η21 − η

ξ2 + η2
[(φ1,η − φ2,ξ) η − (φ1,ξ + φ2,η) ξ] ,

From (8) by the separation of variables method we obtain (see Appendix A)

φi =

∞∑
n=1

φin, i = 1, 2, (10)
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where

φ1n = A1n cosh (nη) cos (nξ) , φ2n = A2n sinh (nη) sin (nξ)

or

φ1n = A1n sinh (nη) sin (nξ) , φ2n = A2n cosh (nη) cos (nξ) .

For n = 0 φ10 = A10+a02ξ++a03η+a04ξη, φ20 = A20+b02ξ+b03η+b04ξη, where
A10, a02, . . . , b04 are constant coefficients. When n = 0 and 0 < ξ < ξ1, then the
terms ξ, η and ξη will not be contained in φ10 and φ20. If the foregoing solutions
are presented in expressions of φ10 and φ20, then it would be impossible on ξ = ξ1
to satisfy the boundary conditions and gradφi0 = 1

h (φi0,ξ + φi0,η) (i = 1, 2) will
not be bounded in the point M (0, 0).

Statement 1. Here and in what follows it will be assumed that
1) ξ1 is a sufficiently large positive number;
2) at η = η1 given boundary conditions, i.e. displacements or stresses, on the

interval ξ̃1 < ξ < ξ1 will be equal to zero;
3) when on η = η1 is given stresses the main vector and main moment will equal

to zero.
It is clear that

D =
æ

4
(σξξ + σηη) , σξξ =

4

æ
D − σηη.

By ultimately opening expressions σηη and τξη (in details), we can demonstrate
that at point M (0, 0) , σηη and τξη (and naturally, σξξ , too) are determined, i.e.
they are finite.
When at η = η1 are given and v̄, then it is expedient to take instead of them as

their equivalent the following expressions:

1

h20
(ū · η1 + v̄ · ξ) = η1 (φ1,ξ + φ2,η)− (æ− 1)φ2,

1

h20
(ū · ξ − v̄ · η1) = η1 (φ1,η − φ2,ξ) + (æ− 1)φ1

(11)

and if at η = η1 are given h2
0

2µσηη and h2
0

2µσξη, then instead of them we have to take
their equivalent following expressions :

1

2µ
(σηη · η1 − σξη · ξ) = −η1 (φ1,ξξ + φ2,ξη)−

æ

2
φ1,η −

æ− 2

2
φ2,ξ,

1

2µ
(σηη · ξ + σξη · η1) = η1 (φ1,ξη − φ2,ξξ) +

æ− 2

2
φ1,ξ −

æ

2
φ2,η.

(12)

Considering the homogeneous boundary conditions of the concrete problem, we
will insert φ1 and φ2 functions selected from the (10) in the right sides of the
(11) or (12) equation, and we will expand the left sides in Fourier series. In both
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sides expressions which are with identical combinations of trigonometric functions
will equate to each other and will receive the infinite system of linear algebraic
equations to unknown coefficients A1n and A2n of harmonic functions, with its
main matrix having a block-diagonal form. The dimension of each block is 2 × 2
and determinant is not equal to zero, but in infinite the determinant of block strive
to the finite number different to zero.
It is very easy to establish convergence of (7), (9) functional series on the area

D̄1 = {−ξ1 ≤ ξ ≤ ξ1, 0 ≤ η ≤ η1} by construction of the corresponding uniform
convergent numerical majorizing series. So we have valid the following

Proposal 1. The functional series corresponding to (7), (9) are absolutely and
uniformly convergent series on the area D̄1 = {−ξ1 ≤ ξ ≤ ξ1, 0 ≤ η ≤ η1}.

4. Examples

We will set and solve the concrete internal boundary value problem in stresses.
Let us find the solution of equilibrium equation system (2) of the homogeneous
isotropic body in the area Ω1 = {0 < ξ < ξ1, 0 < η < η1}, which satisfies the
following boundary conditions:

for ξ = 0 : v̄ = 0, ū,ξ = 0,

for η = 0 : ū = 0, v̄,η = 0,
(13)

for η = η1 :
h20
2µ
σηη = Q1 (ξ) ,

h20
2µ
τξη = Q2 (ξ) (14)

From (11), (13)

φi =

∞∑
n=1

φin, (15)

where φ1n == A1n sinh (nη) sin (nξ) , φ2n == A2n cosh (nη) cos (nξ) .
By inserting (15) in (7) and (9) we will receive the following expressins for the

displacements:

ū =

∞∑
n=1

{− [nηξ cosh (nη) (A1n +A2n) + (æ− 1) ξ sinh (nη)A1n] sin (nξ)

+
[
nη21 sinh (nη) (A1n +A2n)− (æ− 1) η cosh (nη)A2n

]
cos (nξ)

}
,

v̄ =

∞∑
n=1

{[
nη21 cosh (nη) (A1n +A2n) + (æ− 1) η sinh (nη)A1n

]
sin (nξ)

+ [nηξ sinh (nη) (A1n +A2n)− (æ− 1) ξ cosh (nη)A2n] cos (nξ)} ,

(16)
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but for the stresses the following:

h20
2µ
σηη =

∞∑
n=1

{[
n2η21 sinh (nη) (A1n +A2n)

+nη cosh (nη)

(
æ

2
A1n − æ− 2

2
A2n

)]
sin (nξ)

+
[
n2ηξ cosh (nη) (A1n +A2n)

+nξ sinh (nη)

(
æ− 2

2
A1n − æ

2
A2n

)]
cos (nξ)

− η21 − η2

ξ2 + η2
[nη cosh (nη) (A1n +A2n) sin (nξ)

−nξ sinh (nη) (A1n +A2n) cos (nξ)]} ,

h20
2µ
τξη =

∞∑
n=1

{[
n2η21 cosh (nη) (A1n +A2n)

+nη sinh (nη)

(
æ− 2

2
A1n − æ

2
A2n

)]
cos (nξ)

−
[
n2ηξ sinh (nη) (A1n +A2n)

+nξ cosh (nη)

(
æ

2
A1n − æ− 2

2
A2n

)]
sin (nξ)

− η21 − η2

ξ2 + η2
[nξ cosh (nη) (A1n +A2n) sin (nξ)

+nη sinh (nη) (A1n +A2n) cos (nξ)]} ,

(17)

h20
2µ
σξξ =

∞∑
n=1

{
−
[
n2η21 sinh (nη) (A1n +A2n)

+nη cosh (nη)

(
æ− 4

2
A1n − æ+ 2

2
A2n

)]
sin (nξ)

−
[
n2ηξ cosh (nη) (A1n +A2n)

+nξ sinh (nη)

(
æ+ 2

2
A1n − æ− 4

2
A2n

)]
cos (nξ)

+
η21 − η2

ξ2 + η2
[nη cosh (nη) (A1n +A2n) sin (nξ)

−nξ sinh (nη) (A1n +A2n) cos (nξ)]} .

Example a. We have to solve problem (2), (13), (14), when Q1 (ξ) = P and

Q2 (ξ) = 0 , i.e. at η = η1 boundary the normal load
1

2µ
σηη =

P

h20
is given,

but tangent stress is equal to zero. From (12), (14), (15) we obtain the following
equations:
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∞∑
n=1

[
n2η1 sinh (nη1) (A1n +A2n)− n cosh (nη1)

(
æ

2
A1n − æ− 2

2
A2n

)]
sin (nξ)

=
Pη1

ξ2 + η21
,

∞∑
n=1

[
n2η1 cosh (nη1) (A1n +A2n) + n sinh (nη1)

(
æ− 2

2
A1n − æ

2
A2n

)]
cos (nξ)

=
Pξ

ξ2 + η21
.

From here we obtained the infinite system of the linear algebraic equations with
unknown A1n and A2n coefficients

[(
n2η1 sinh (nη1)− n

æ

2
cosh (nη1)

)
A1n

+

(
n2η1 sinh (nη1) + n

æ− 2

2
cosh (nη1)

)
A2n

]
= F̃1n,

[(
n2η1 cosh (nη1) + n

æ− 2

2
sinh (nη1)

)
A1n

+
(
n2η1 cosh (nη1)− n

æ

2
sinh (nη1)

)
A2n

]
= F̃2n, n = 1, 2, . . .

(18)

where F̃1n and F̃2n are the coefficients of expansion into Fourier series f1 (ξ) =
∞∑
n=1

F̃1n sin (nξ) and f2 (ξ) =

∞∑
n=1

F̃2n cos (nξ), respectively, f1 (ξ) =
Pη1

ξ2 + η21
and

f2 (ξ) =
Pξ

ξ2 + η21
functions.

As seen, the main matrix of system (18) has a block-diagonal form, dimension
of each block is 2 × 2 . Thus, will be solved two equations, to twoA1n and A2n

unknowns. After solving this system, we find A1n and A2n coefficients, and put
them into formulas (16) and (17), we get displacements and stresses at any points
of the body.
Numerical results obtained for some characteristic points of the body, in partic-

ular, M1 (0, η1), M2 (ξ1, η1), M3 (ξ1, 0) points (see. Fig. 1), when 0.1 ≤ η1 ≤ 3 for
the following data:ν = 0.3, E = 2 ∗ 106kg/cm2, P = −10kg/cm2, 0.1 ≤ η1 ≤ 3,
ξ1 = 2 ∗ π, ξ1 = 4 ∗ π and ξ1 = 6 ∗ π. Numerical calculations and the visual
presentation are made by MATLAB’s software.
Example b. We solve problem (2), (13), (14), when Q1 (ξ) = 0 and Q2 (ξ) = P ,

i.e. at η = η1 is given the tangent stress
1

2µ
τξη =

P

h20
, but the normal stress is
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Figure 3. Stresses and displacements in points M2 (ξ1, η1) for ξ1 = 2 ∗ π, ξ1 = 4 ∗ π and ξ1 = 6 ∗ π, when
0.1 ≤ η1 ≤ 3.

equal to zero. From (12), (14), (15) we will receive the following equations:

∞∑
n=1

[
n2η1 sinh (nη1) (A1n +A2n)− n cosh (nη1)

(
æ

2
A1n − æ− 2

2
A2n

)]
sin (nξ)

= −
∞∑
n=1

G̃1n sin (nξ) ,

∞∑
n=1

[
n2η1 cosh (nη1) (A1n +A2n) + n sinh (nη1)

(
æ−2
2 A1n − æ

2A2n

)]
cos (nξ)

=

∞∑
n=1

G̃2n cos (nξ) ,

where G̃1n and G̃2n are the coefficients of expansion into Fourier series f1 (ξ) =
∞∑
n=1

G̃1n sin (nξ) and f2 (ξ) =

∞∑
n=1

G̃2n cos (nξ), respectively, f1 (ξ) =
Pξ(

ξ2 + η21
) and

f2 (ξ) =
Pη1(

ξ2 + η21
) functions.
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Figure 4. Tangent stress and displacements in points M3 (ξ1, 0) and M1 (0, η1) for ξ1 = 2 ∗ π, ξ1 = 4 ∗ π
and ξ1 = 6 ∗ π, when 0.1 ≤ η1 ≤ 3.

[(
n2η1 sinh (nη1)− n

æ

2
cosh (nη1)

)
A1n

+

(
n2η1 sinh (nη1) + n

æ− 2

2
cosh (nη1)

)
A2n

]
= −G̃1n,[(

n2η1 cosh (nη1) + n
æ− 2

2
sinh (nη1)

)
A1n

+
(
n2η1 cosh (nη1)− n

æ

2
sinh (nη1)

)
A2n

]
= G̃2n, n = 1, 2, . . .

(19)

Here about system (25) we can say the same what has been said about system
(24) . For mutual comparison of the results obtained in both problems, the numer-
ical solutions, tables and graphs obtained for the same data that was used in the
previous problem.
In points M1 (0, η1), (0.1 ≤ η1 ≤ 3 and ξ1 = 2 ∗ π, ξ1 = 4 ∗ π, ξ1 = 6 ∗ π)

graphs and tables of values of tangential τξη stresses and normal displacements
u are presented, when on the parabolic boundary the normal load (see Fig.4 and
Tab.4) and the tangential load is given (see Fig.6 and Tab.8).
In points M2 (ξ1, η1), (0.1 ≤ η1 ≤ 3 and ξ1 = 2 ∗ π, ξ1 = 4 ∗ π, ξ1 = 6 ∗ π) graphs

and tables of values of a) normal σηη, tangential τξη and shearing σξξ stresses are
presented, when on the parabolic boundary the normal load is given (see Fig. 3 and
Tab.1) and when on parabolic boundary tangential load (see Fig. 5 and Tab.5); b)
normal u and tangential v displacements, when on the parabolic boundary normal
load is given (see Fig.3 and Tab.2) are given and when on the parabolic boundary
is given the tangential load (see Fig.5 and Tab.6).
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Figure 5. Stresses and displacements in points M2 (ξ1, η1) for ξ1 = 2 ∗ π, ξ1 = 4 ∗ π and ξ1 = 6 ∗ π, when
0.1 ≤ η1 ≤ 3.
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Figure 6. Values of tangent stress and displacements in points M3 (ξ1, 0) and M1 (0, η1) for ξ1 = 2 ∗ π,
ξ1 = 4 ∗ π and ξ1 = 6 ∗ π, when 0.1 ≤ η1 ≤ 3.

In points M3 (ξ1, 0), (0.1 ≤ η1 ≤ 3 and ξ1 = 2 ∗ π, ξ1 = 4 ∗ π, ξ1 = 6 ∗ π ) graphs
and tables of values of tangential τξη stresses and tangential v displacements are
presented, when on the parabolic boundary normal load is given (see Fig.4 and
Tab.3) and when on the parabolic boundary tangential load (see Fig.6 and Tab.7)
is given.
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The obtained results show that in case of the normal loads on the parabolic
boundary the displacements are more than in case of the tangential loads.

5. Conclusion

The main results of this work can be formulated as follows.

(1) The equilibrium equations (2) are written in terms of elliptic coordinates.
(2) The solution of the equilibrium equation (2) is obtained by the method

of separation of variables. The solution is constructed using its general
representation by two harmonic functions.

(3) In the parabolic coordinates exact solutions of two-dimensional static
boundary value problems for the elasticity are constructed for homoge-
neous isotropic bodies occupying domains bounded by coordinate lines of
parabolic coordinates.

(4) To set and solve two concrete internal boundary value problems in stresses.
(5) Numerical values of the components of stress tensor and displacement vec-

tor at some points of the body and corresponding graphs are presented.
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6. Appendices

Appendix A.
Some basic formulas in parabolic coordinates
In orthogonal parabolic coordinate system ξ, η(−∞ < ξ <∞, 0 ≤ η <∞)

[l4,15] we have

hξ = hη = h = c
√
ξ2 + η2, x =

c

2

(
ξ2 − η2

)
, y = cξη,

where hξ, hη are Lame’s coefficients of the system of parabolic coordinates, c is a
scale coefficient,x, y are Cartesian coordinates.
The coordinate axes are parabolas

y2 = −2cξ20

(
x− cξ20

2

)
, ξ0 = const,

y2 = −2cη20

(
x+

cη20
2

)
, η0 = const.

Laplace’s equation ∆f = 0, where f = f (ξ, η), in the parabolic coordinates has
the form

1

c2 (ξ2 + η2)

(
∂2f

∂ξ2
+
∂2f

∂η2

)
= 0.

We have to find solution of the equation in the following form

f = X (ξ) · E (η) ,

Then by separation of variables we will receive.

1

c2 (ξ2 + η2)

[
X ′′

X
+
E′

E

]
= 0.

From here

X ′′ +mX = 0,
E′′ −mE = 0,

where m is any constant, their solutions are [16]

X = C1 cos (mξ) + C2 sin (mξ) ,

E = C3e
mη + C4e

−mη = C∗
3
cosh (mη) + C∗

4
sinh (mη) .
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Figure 7. Parabolic coordinate system.

So

f (ξ, η) = (C3e
mη + C4e

−mη) (C1 cos (mξ) + C2 sin (mξ))

or

f (ξ, η) =
(
C∗

3
cosh (mη) + C∗

4
sinh (mη)

)
(C1 cos (mξ) + C2 sin (mξ)) .

eξ, eη are unit vectors .

Appendix B. Solution of system of partial differential equations

We solve of system of partial differential equations (2)
We have introduce φ1 harmonic function and if we take

a) D =
æµ

h20

(
∂φ1

∂η
η − ∂φ1

∂ξ
ξ

)
,

b) K =
æµ

h20

(
∂φ1

∂η
ξ +

∂χφ1

∂ξ
η

)
, (B1)

then (2a) and (2b) equations will be satisfied identically, while (2c) and (2d) equa-
tions will receive the following lform:

a)
∂ū

∂ξ
+
∂v̄

∂η
= (æ− 2)

(
∂φ1

∂η
η − ∂φ1

∂ξ
ξ

)
,

b)
∂v

∂ξ
− ∂ū

∂η
= æ

(
∂φ1

∂η
ξ +

∂φ1

∂ξ
η

)
, (B2)
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a)
∂ū

∂ξ
+
∂v̄

∂η
= (æ− 2)

(
∂φ1

∂η
η − ∂φ1

∂ξ
ξ

)
,

b)
∂

∂ξ
(v − æφ1η) =

∂

∂η
(ū+æφ1ξ) , (B3)

From (B3b) imply that exists such type harmonic function ϕ, for which fulfil the
following

ū =
∂ϕ

∂ξ
− æφ1ξ, v̄ =

∂ϕ

∂η
+æφ1η. (B4)

Considering (B4), from the equation (B3a) will be obtain following

h2∆ϕ =
∂2ϕ

∂ξ2
+
∂2ϕ

∂η2
= æφ1 +æ

∂φ1

∂ξ
ξ − æφ1 − æ

∂φ1

∂η
η

+(æ− 2)

(
∂φ1

∂η
η − ∂φ1

∂ξ
ξ

)
= 2

(
∂φ1

∂ξ
ξ − ∂φ1

∂η
η

)
(B5)

General solution of the system (B2) can be write in the form ū = ψ1, v̄ = ψ2,
where

∂ψ1

∂ξ
+
∂ψ2

∂η
= 0,

∂ψ2

∂ξ
− ∂ψ1

∂η
= 0.

The full solution of the equation system (B2) is written in following form

ū =
∂ϕ

∂ξ
− æφ1ξ + ψ1, v̄ =

∂ϕ

∂η
+æφ1η + ψ2 (B6)

where ϕ is the partial solution of the (B5).
If we take æ = const, then

ϕ =
ξ2 − η2

2
φ1

and (B6) formula will receive the following form:

ū =
ξ2 − η2

2

∂φ1

∂ξ
− (æ− 1)φ1ξ + ψ1, v̄ =

ξ2 − η2

2

∂φ1

∂η
+ (æ− 1)φ1η + ψ2.

From here

ū =

(
ξ2 − η2

2

∂φ1

∂ξ
+ ξη

∂φ1

∂η

)
− ξη

∂φ1

∂η
− (æ− 1)φ1ξ + ψ1,

v̄ =

(
ξ2 − η2

2

∂φ1

∂η
− ξη

∂φ1

∂ξ

)
+ ξη

∂φ1

∂ξ
+ (æ− 1)φ1η + ψ2.
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Without loss of generality the expression in brackets can be taken to be zero,
because we already have in ū and v̄ of the solutions Laplacian (we mean ψ1 and
ψ2 ). Therefore, the solutions of system (2) are given in the following form:

a) h20D = æµ

(
∂φ1

∂η
η − ∂φ1

∂ξ
ξ

)
,

b) h20K = æµ

(
∂φ1

∂η
ξ +

∂φ1

∂ξ
η

)
, (B7)

c) ū = −ξη∂φ1

∂η
− (æ− 1)φ1ξ + ψ1,

d) v̄ = ξη
∂φ1

∂ξ
+ (æ− 1)φ1η + ψ2.

Now we have to write down three versions of ψ1 and ψ2 function representation.
In the first version

ψ1 =
∂φ̄1

∂η
+
∂φ̃1

∂η
+
∂φ2

∂η
,

ψ2 =
∂φ̄1

∂ξ
+
∂φ̃1

∂ξ
+
∂φ2

∂ξ
,

(B8)

φ̄1, φ̃1, φ2 are harmonic functions, in addition, φ̄1, φ̃1 are selected so that at η = α,
where α = η1 or α = η2, satisfy the following equations

−ξη∂φ1

∂η
− (æ− 1)φ1ξ +

∂φ̄1

∂η
+
∂φ̃1

∂η
= 0,

ξη
∂φ1

∂ξ
+ (æ− 1)φ1η +

∂φ̄1

∂ξ
+
∂φ̃1

∂ξ
= 0.

In the second version

ψ1 = −α

(
ξ2 − (η − α)2

2

∂φ1

∂ξ
+ ξη

∂φ1

∂η

)
+
ξ2 − η2

2

∂φ2

∂ξ
+ ξη

∂φ2

∂η
,

ψ2 = α

(
ξη
∂φ1

∂ξ
− ξ2 − (η − α)2

2

∂φ1

∂η

)
+
ξ2 − η2

2

∂φ2

∂η
− ξη

∂φ2

∂ξ
, (B9)

where φ2 is the harmonic function.
In the third version

ψ1 = −α2

(
ξ2 − η2

2

∂φ1

∂ξ
+ ξη

∂φ1

∂η

)
+
ξ2 − η2

2

∂φ2

∂ξ
+ ξη

∂φ2

∂η
,

ψ2 = α2

(
ξη
∂φ1

∂ξ
− ξ2 − η2

2

∂φ1

∂η

)
+
ξ2 − η2

2

∂φ2

∂η
− ξη

∂φ2

∂ξ
(B10)
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Inserting (B8) in (B7c,d), we will get

a) ū = −ξη∂φ1

∂η
− (æ− 1)φ1ξ +

∂φ̄1

∂η
+
∂φ̃1

∂η
+
∂φ2

∂η
,

b) v̄ = ξη
∂φ1

∂ξ
+ (æ− 1)φ1η +

∂φ̄1

∂ξ
+
∂φ̃1

∂ξ
+
∂φ2

∂ξ
. (B11)

Inserting (B9) in (B7c,d), we will have

a) ū = −α

(
ξ2 − (η − α)2

2

∂φ1

∂ξ
+ ξη

∂φ1

∂η

)
− ξη

∂φ1

∂η
− (æ− 1)φ1ξ

+
ξ2 − η2

2

∂φ2

∂ξ
+ ξη

∂φ2

∂η
,

b) v̄ = α

(
ξη
∂φ1

∂ξ
− ξ2 − (η − α)2

2

∂φ1

∂η

)
+ ξη

∂φ1

∂ξ
+ (æ− 1)φ1η

+
ξ2 − η2

2

∂φ2

∂η
− ξη

∂φ2

∂ξ
.

(B12)

Inserting (B10) in (B7c,d), we will get

a) ū = −α2

(
ξ2 − η2

2

∂φ1

∂ξ
+ ξη

∂φ1

∂η

)
− ξη

∂φ1

∂η
− (æ− 1)φ1ξ

+
ξ2 − η2

2

∂φ2

∂ξ
+ ξη

∂φ2

∂η
,

b) v̄ = α2

(
ξη
∂φ1

∂ξ
− ξ2 − η2

2

∂φ1

∂η

)
+ ξη

∂φ1

∂ξ
+ (æ− 1)φ1η

+
ξ2 − η2

2

∂φ2

∂η
− ξη

∂φ2

∂ξ
.

(B13)
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