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We investigate some aspects of the so called direct boundary integral equation method in
acoustic scattering theory. It is well known that by the direct approach the uniquely solv-
able exterior boundary value problems for the Helmholtz equation can not be reduced to the
boundary integral equations which are uniquely solvable for arbitrary value of the frequency
parameter. This implies that for such resonant frequencies the corresponding integral opera-
tors are not invertible and consequently solutions to the nonhomogeneous integral equations
are not defined uniquely. They are defined modulo a linear combination of the elements of the
null spaces of the corresponding integral operators. In the paper, it is shown that among the
infinitely many solutions of the corresponding integral equations there is only one solution
which has a physical meaning and corresponds either to the boundary trace of the unique
solution to the exterior problem or to the boundary trace of its normal derivative. We analyze
also modified direct boundary integral equation approaches which reduce the Dirichlet and
Neumann boundary value problems to the equivalent uniquely solvable integral or singular
integro-differential equations.
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1. Introduction

Here we investigate some aspects of the so called direct boundary integral equa-
tion method in acoustic scattering theory. The basic interior and exterior boundary
value problems for the Helmholtz equation by different methods are studied in sci-
entific literature in various function spaces for smooth and non-smooth domains(see
[20], [18], [3], [4], [5], [13]). It is well known that by the direct boundary integral
equation approach the uniquely solvable exterior boundary value problems for the
Helmholtz equation can not be reduced to the equivalent boundary integral equa-
tions which are uniquely solvable for arbitrary value of the frequency parameter.
Exceptional values of the frequency parameter are called resonant (exceptional)
frequencies. For the resonant frequencies the integral operators associated with
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the integral equations obtained by the direct approach, i.e., obtained by using the
general integral representation of solutions, are not invertible. However, as we will
show that the corresponding nonhomogeneous equations are always solvable but
unfortunately solutions to the nonhomogeneous integral equations are not defined
uniquely. They are defined modulo a linear combination of the elements of the null
spaces of the corresponding integral operators. The elements of the null spaces are
related to the nontrivial solutions of the corresponding interior boundary value
problems. In the paper, we show that among the infinitely many solutions of the
corresponding integral equations obtained by the direct approach there is only
one solution which has a physical meaning and corresponds either to the bound-
ary trace of the unique solution to the exterior problem or to the boundary trace
of its normal derivative. For illustration we consider the exterior Dirichlet prob-
lem for the Helmholtz equation. However, the arguments applied in the paper can
be successfully extended to other boundary value problems including mixed type
problems, to the acoustic wave scattering problems in anisotropic media and also
to elastic steady state oscillation problems for isotropic and anisotropic solids (cf.
[11], [16], [8], [9]).

In the final part of the paper, we also analyze modified direct boundary integral
equation approaches which reduce the Dirichlet and Neumann boundary value
problems to the equivalent uniquely solvable integral or singular integro-differential
(pseudodifferential) equations.

2. Preliminary material

Let Ω+ ⊂ R
3 be a bounded domain with a smooth or Lipschitz boundary S.

Further, let Ω− := R
3 \ Ω+, ∂Ω± = S, Ω± = Ω± ∪ S. Throughout the paper n(x)

stands for the outward unit normal vector at the point x ∈ S. The symbols {·}±
denote one sided limiting values (traces) on S = ∂Ω± from Ω±.

By L2, Hs
2 , and W r

2 we denote the well-known Lebesgue, Bessel potential, and
Sobolev-Slobodetskii function spaces, respectively (see, e.g., [10], [19]). The corre-
sponding locally integrable and compactly supported function spaces are denoted
by the symbols L2, loc , Hs

2, loc , W r
2, loc and L2, comp , Hs

2, comp , W r
2, comp respectively.

Recall that Hr
2 = W r

2 for any r ≥ 0. Further, by Ck,α with nonnegative integer k
and 0 < α 6 1 is denoted the space of functions whose k-th order partial derivatives
are Hölder continuous functions with exponent α.

Consider the Helmholtz equation

L(∂, ω)u(x) := (∆ + ω2) u(x) = f(x), x ∈ Ω±, (2.1)

where ∆ = ∂2
1 + ∂2

2 + ∂2
3 is the Laplace operator, ∂j = ∂/∂xj , ∂ := (∂1, ∂2, ∂3),

ω ∈ R is the so called frequency parameter, and the right hand side function f is
compactly supported in the case of an exterior domain, i.e., suppf∩Ω− is compact.

We say that u belongs to the Sommerfeld class of radiating functions in the
unbounded domain Ω− and write u ∈ S(Ω−) if for sufficiently large |x| the relation

∂u(x)

∂r
− i ω u(x) = O(r−2), r = |x| , (2.2)
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holds uniformly in all directions x/|x| (see [20], [18], [3], [4]).
Denote by Γ(x − y, ω) the fundamental solution that corresponds to outgoing

waves and satisfies the Sommerfeld radiation condition,

Γ(x− y, ω) = − 1

4π

ei ω |x−y|

|x− y|
. (2.3)

Introduce the volume, single and double layer potentials associated with the fun-
damental solution (2.3)

P
Ω±

(
f
)

(x) =

∫
Ω±

Γ(x− y, ω) f(y) dy, x ∈ R3, (2.4)

V (g)(x) ≡ V
S
(g)(x) =

∫
S

Γ(x− y, ω) g(y) dS, x ∈ R3 \ S, (2.5)

W (g)(x) ≡W
S
(g)(y) =

∫
S

[
∂n(y)Γ(x− y, ω)

]
g(y) dS, x ∈ R3 \ S, (2.6)

where f and g are densities of the potentials and ∂n := ∂
∂n denotes the normal

derivative.
It is well known that these potentials have the following properties (see, e.g.,

[14], [20], [3], [3], [7], [5], [13]).

Theorem 2.1 : Let S be a Lipschitz surface. Then the operators

V : H
−1/2
2 (S) −→ H1

2 (Ω+), V : H
−1/2
2 (S) −→ H1

2, loc(Ω
−) ∩ S(Ω−) ,

W : H
1/2
2 (S) −→ H1

2 (Ω+), W : H
1/2
2 (S) −→ H1

2, loc(Ω
−) ∩ S(Ω−) ,

P
Ω+ : H0

2 (Ω+) −→ H2
2, loc(R

3) ∩ S(R3), P
Ω− : H0

2, comp(Ω
−) −→ H2

2, loc(R
3) ∩ S(R3)

are continuous.

If g ∈
[
H
− 1

2

2 (S)
]3
, h ∈

[
H

1

2

2 (S)
]3
, f ∈ L2(Ω+) or f ∈ L2, comp(Ω

−). Then

L(∂, ω)P
Ω+

(
f
)

(x) =

{
f(x) in Ω+,

0 in Ω−,
(2.7)

L(∂, ω)P
Ω−

(
f
)

(x) =

{
0 in Ω+,

f(x) in Ω−,
(2.8)

L(∂, ω)V
(
g
)

(x) = 0, L(∂, ω)W
(
g
)

(x) = 0, in Ω±, (2.9){
V (g)(x)}+ = {V (g)(x)

}−
= H g(x) in S, (2.10){

∂n(x) V (g)(x)
}±

=
[
∓ 2−1 I + K̃

]
g(x), in S, (2.11)
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W (h) (x)

}±
=
[
± 2−1I +K

]
h(x) in S, (2.12){

∂nW (h)(x)
}+

=
{
∂nW (h)(x)

}− ≡ Lh(x) in S, (2.13)

where K̃, K, and H are boundary integral operators

K̃ g(x) :=

∫
S

[
∂n(x)Γ(x− y, ω)

]
g(y) dS, x ∈ S, (2.14)

K g(x) :=

∫
S

[
∂n(y)Γ(x− y, ω)

]
g(y) dS, x ∈ S, (2.15)

H g(x) :=

∫
S

Γ(x− y, ω) g(y) dS, x ∈ S. (2.16)

Moreover, the following mappings are bounded

H : H
−1/2
2 (S) −→ H

1/2
2 (S) , K̃ : H

−1/2
2 (S) −→ H

−1/2
2 (S) ,

K : H
1/2
2 (S) −→ H

1/2
p (S) , L : H

1/2
2 (S) −→ H

−1/2
2 (S) .

For S ∈ C1,α, 0 < α 6 1, the operators H, K̃, and K are weakly singular
operators, while L is a singular integro-differential operator.

If S ∈ Ck+1,α with k > 1 and 0 < β < α 6 1. Then the following operators are
continuous

V : Ck,β(S) −→ Ck+1,β(Ω±), W : Ck,β(S) −→ Ck,β(Ω±),

H : Ck,β(S) −→ Ck+1,β(S) , K̃, K : Ck,β(S) −→ Ck,β(S) ,

L : Ck,β(S) −→ Ck−1,β(S) .

For ω = 0 we equip the corresponding potential and boundary operators by the
subindex 0, P

0, Ω± , V0, W0, K̃0, K0, H0, and they correspond to the fundamental
solution Γ(x− y) := Γ(x− y, 0) of the Laplace operator.

For regular functions u, v ∈ C2(Ω+) and S ∈ C1,α the following Green’s formulas
are valid

∫
Ω+

(
∆u+ ω2u

)
v dx =

∫
Ω+

[
−

3∑
k=1

∂ku ∂kv + ω2 u v
]
dx+

∫
∂Ω+

{∂nu}+ {v}+ dS, (2.17)

∫
Ω+

[
(∆u+ ω2u) v − u (∆v + ω2v)

]
dx=

∫
∂Ω+

[
{∂n u}+ {v}+− {u}+ {∂n v}+

]
dS. (2.18)

Further, for a regular function u ∈ C2(Ω+) we have the following integral repre-
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sentation (Green’s third formula)

P
Ω+

(
Lu
)
(x)− V

(
{∂nu}+

)
(x) +W

(
{u}+

)
(x) =

{
u(x), x ∈ Ω+,

0, x ∈ Ω−.
(2.19)

If u ∈ C2(Ω−), Lu has a compact support and, in addition, u belongs to the
Sommerfeld class S(Ω−) of radiating functions, then the following counterpart of
identity (2.19) holds true

P
Ω−

(
Lu
)

(x) + V
(
{∂nu}−

)
(x)−W

(
{u}−

)
(x) =

{
0, x ∈ Ω+,

u(x), x ∈ Ω−.
(2.20)

Note that by standard limiting procedure Green’s formulas (2.17), (2.18), and the
integral representations (2.19), (2.20) can be extended respectively to functions

from the Bessel potential spaces H1,0
2 (Ω+) and H1,0

2, loc (Ω−) ∩ S(Ω−), where

H1,0
2 (Ω+) := {u ∈ H1

2 (Ω+) : ∆u ∈ H0
2 (Ω+)} ,

H1,0
2, loc (Ω−) := {u ∈ H1

2, loc (Ω−) : ∆u+ ω2u ∈ H0
2, comp (Ω−)}

(for details see, e.g., [6], [13], [7], [5]).
In this case, the surface integrals in (2.17) and (2.18) are understood as dualities
between the corresponding function spaces. In particular, for u, v ∈ H1,0 (Ω+) we
have the following Green’s formulas

∫
Ω+

(
∆u+ ω2u

)
v dx=

∫
Ω+

[
−

3∑
k=1

∂ku ∂kv + ω2u v
]
dx+

〈
{v}+ , {∂nu}+

〉
S

(2.21)

∫
Ω+

[
(∆u+ ω2u)v−u(∆v + ω2v)

]
dx=

〈
{v}+, {∂nu}+

〉
S
−
〈
{u}+, {∂nv}+

〉
S
, (2.22)

where 〈· , ·〉S denotes the duality relation between the spacesH
1/2
2 (S) andH

−1/2
2 (S)

which extends the usual L2(S) inner product,

〈
g , h

〉
S

=

∫
S

g(y)h(y) dS for g, h ∈ L2(S).

By relation (2.21) with arbitrary v ∈ H1
2 (Ω+) the generalized trace {∂n u}+ ∈

H
−1/2
2 (S) is correctly defined for a function u ∈ H1,0

2 (Ω+).

Analogously, for a function u ∈ H1,0
2, loc (Ω−) the generalized trace {∂n u}− ∈
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H
−1/2
2 (S) is correctly defined by the relation

∫
Ω−

(
∆u+ ω2u

)
v dx =

∫
Ω+

[
−

3∑
k=1

∂ku ∂kv + ω2 u v
]
dx−

〈
{v}−, {∂nu}−

〉
S

(2.23)

where v ∈ H1
2, comp(Ω

−) is an arbitrary function with compact support in Ω−.

3. The Dirichlet and Neumann interior problems

Consider the homogeneous interior Dirichlet problem

(∆ + ω2)u(x) = 0, x ∈ Ω+, (3.1)

{u(x)}+ = 0, x ∈ S. (3.2)

This problem possesses either only a trivial solution or a finite number of linearly
independent solutions {uk}Nk=1 with N > 1 being a natural number and due to
(2.19) they are representable in the form (see, e.g., [20], [13])

u
k

(x) = V
(
{∂n uk

}+
)

(x), x ∈ Ω+, k = 1, N, (3.3)

where {∂n uk
}+ ∈ H−1/2

2 (S).

Moreover since 0 =
{
V
(
{∂n u}+

)}+
=
{
V
(
{∂n u}+

)}−
it follows that

V
(
{∂n uk

}+
)

(x) = 0, x ∈ Ω−, k = 1, N, (3.4)

and
{
{∂n uk

}+
}N
k=1

are linearly independent on S. Equations (3.4) follow from the
uniqueness theorem for the exterior Dirichlet problem, while the linear indepen-

dency of the system
{
{∂n uk

}+
}N
k=1

is a consequence of linear independency of
functions (3.3).

Denote

ψ
k

= {∂nuk
}+, k = 1, N. (3.5)

Evidently {
uk(x), x ∈ Ω+

}N
k=1

(3.6)

is a basis in the space of eigenfunctions of the Dirichlet interior problem (3.1)-(3.2).
Quite similarly, for the homogeneous Neumann problem

(∆ + ω2)u(x) = 0, x ∈ Ω+, (3.7)

{∂n u(x)}+ = 0, x ∈ S (3.8)

we have (see, e.g., [20], [13]):
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(i) The problem (3.7)-(3.8) possesses either only a trivial solution or a finite di-
mensional space of eigenfunctions with basis {vk}Mk=1 with M > 1 being a natural
number and in view of (2.19) they are representable in the form

v
k

(x) = −W
(
{v

k
}+
)

(x), x ∈ Ω+, k = 1,M ; (3.9)

(ii) The following equalities are valid

W
(
{v

k
}+
)

(x) = 0, x ∈ Ω−, k = 1,M, (3.10)

due to (2.13) and the uniqueness theorem for the exterior Neumann problem;

(iii) The system of functions {ϕ
k
}Mk=1 with

ϕ
k

=
{
v

k

}+
, k = 1,M, (3.11)

is linearly independent on S. Indeed, if
M∑
k=1

c
k
ϕ

k
= 0 on S, then

M∑
k=1

c
k
v

k
(x) =

−W
( M∑
k=1

c
k
ϕ

k

)
= 0 in Ω+ which contradicts the linear independence of the system

{v
k
}Mk=1 in Ω+.

Note that if ω is not a resonant frequency for the Dirichlet (Neumann) problem,
then N = 0 (M = 0).

4. Traditional direct approach in exterior problems

Let us consider the nonhomogeneous Dirichlet exterior problem: Find u ∈
H1,0

2, loc(Ω
−) ∩ S(Ω−) such that

(∆ + ω2) u (x) = f(x), x ∈ Ω−, (4.1)

{u (x)}− = ϕ
0

(x), x ∈ S, (4.2)

where

f ∈ L2,comp(Ω
−), ϕ

0
∈ H

1

2

2 (S). (4.3)

4.1. The first kind Fredholm integral equation approach

With the help of the representation formula (2.20) we get the following integral
relation

u(x)− V
(
{∂n u}−

)
(x) = P

Ω− (f)(x)−W (ϕ
0
)(x), x ∈ Ω−, (4.4)
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whence by taking trace on S from Ω− we arrive at the first kind Fredholm integral
equation for the unknown ψ̃ = {∂n u}−,

H ψ̃ = −
{
P

Ω− (f)
}−

+ 2−1 ϕ
0

+K (ϕ
0
) on S. (4.5)

Note that for the right hand side expression in (4.5) we have (see (2.12))

−
{
P

Ω− (f)
}−

+ 2−1 ϕ
0

+K (ϕ
0
) =

{
− P

Ω− (f) +W (ϕ
0
)
}+

on S, (4.6)

since for f ∈ L2,comp(Ω
−) the volume potential P

Ω− (f) belongs to the space
H2
loc(R

3) and

{
P

Ω− (f)
}+

=
{
P

Ω− (f)
}−

,
{
∂n PΩ− (f)

}+
=
{
∂n PΩ− (f)

}−
on S. (4.7)

Thus the integral equation (4.5) can be rewritten as

H ψ̃ = Ψ on S (4.8)

with

Ψ(x) :=
{
− P

Ω− (f)(x) +W (ϕ
0
)(x)

}+
, x ∈ S. (4.9)

Here arise two questions:

• Question 1. Is (4.8) solvable in the space H
−1/2
2 (S) for all f ∈ L2,comp(Ω

−) and

ϕ
0
∈ H1/2

2 (S)?

• Question 2. It is well known that the boundary value problem (4.1)-(4.2) is
uniquely solvable (see, e.g., [20], [3], [13]) for arbitrary data satisfying the con-

ditions (4.3) and the solution u ∈ H1,0
2, loc(Ω

−) ∩ S(Ω−). What is the relationship

between a solution ψ̃ of the integral equation (4.8) and the trace of the normal
derivative {∂nu}−? This question becomes essential if ω is a resonant frequency
for the interior Dirichlet problem implying that the homogeneous version of the
integral equation (4.8) with Ψ = 0 possesses nontrivial solutions. Evidently,
in this case, if nonhomogeneous equation (4.5) is solvable, then solution is not

unique and the problem is how to choose a solution ψ̃ which has a physical
meaning and coincides with the uniquely defined function {∂n u}−.

Below we analyse both questions.
First, let us note that the operator

H : H−1/2(S)→ H1/2(S) (4.10)

is Fredholm with zero index, since it is a compact perturbation of the invertible
operator H

0
,

H0 : H−1/2(S)→ H1/2(S),

that corresponds to ω = 0, i.e., H
0

is the boundary integral operator generated by
the harmonic single layer potential (see [6], [7], [13]).
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On the one hand, if ω is a resonant frequency for the interior Dirichlet problem
for the domain Ω+, due to (3.4) and (3.5) we then have

H(ψ
k
) = 0 on S, k = 1, · · · , N, (4.11)

and consequently

dim kerH > N. (4.12)

On the other hand, if a vector ψ̃ solves the homogeneous equation H (ψ̃) = 0 on

S, then it follows that, the corresponding single layer potential V (ψ̃) solves the
homogeneous interior Dirichlet problem in Ω+ and therefore

V (ψ̃) (x) =
N∑
k=1

c
k
u

k
(x) in Ω+, (4.13)

since
{
u

k
(x), x ∈ Ω+

}N
k=1

is a basis in the space of eigenfunctions of the Dirichlet
interior problem (3.1)-(3.2) corresponding to the resonant frequency ω.

Further, due to the continuity of the single layer potential V (ψ̃) across the
boundary S and the uniqueness theorem for the exterior Dirichlet problem we find

V (ψ̃) (x) = 0, x ∈ Ω−. (4.14)

From (4.13) and (4.14) along with (3.5) we get

−ψ̃ = {∂n V (ψ̃)}+ − {∂n V (ψ̃)}− =
N∑
k=1

c
k
{∂nuk

}+ =
N∑
k=1

c
k
ψ

k
on S,

whence it follows that dim kerH 6 N which together with (4.12) implies that

dim kerH = N and {ψ
k
}Nk=1 is a basis of kerH. (4.15)

It is easy to see that, if ψ̃ is a solution to the homogeneous equation

H ψ̃ = 0 on S

then the complex conjugate function ψ̃ solves the adjoint equation

H∗ ψ̃ = 0 on S,

where H∗ is the adjoint operator to H,

H∗ g (x) =

∫
S

Γ(x− y, ω) g (y) dS = H g (x). (4.16)

Therefore the basis
{
ψ∗

k

}N
k=1

of the null space of the operator H∗ : H
−1/2
2 (S) →
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H
1/2
2 (S) is

{
ψ∗

k

}N
k=1
≡
{
ψ

k

}N
k=1

=
{{
∂n uk

}+
}N
k=1

. (4.17)

The necessary and sufficient conditions for the nonhomogeneous equation (4.5) (i.e.
(4.8)) to be solvable read as〈

Ψ , ψ∗
k

〉
S

=
〈{
− P

Ω− (f) +W (ϕ
0
)
}+

, ψ
k

〉
S

= 0, k = 1, N. (4.18)

Using (4.17) rewrite equation (4.18) in the form〈{
− P

Ω− (f) +W (ϕ
0
)
}+
,
{
∂nuk

}+
〉

= 0, k = 1, N. (4.19)

Denote

v (x) := −P
Ω− (f) (x) +W (ϕ

0
) (x), x ∈ Ω+. (4.20)

Evidently

L(∂, ω)v (x) =
(
∆ + ω2

)
v (x) = 0 in Ω+

due to (4.20) and Theorem 2.1. Therefore by Green’s formula (2.17) we have∫
Ω+

[
L(∂, ω)v u

k
− v L(∂, ω)u

k

]
dy=

〈
{∂n v}+, {uk

}+
〉
S
−
〈
{v}+, {∂nuk

}+
〉
S
, (4.21)

whence equality (4.19) follows for arbitrary f ∈ L2,comp(Ω
−) and ϕ

0
∈ H1/2(S).

Thus, the above posed Question 1 has a positive answer.
Now we go over to the second question, Question 2.
From the above analysis in accordance with (4.15) it follows that a general solu-

tion of equation (4.5) can be written as

ψ̃ = ψ
0

+
N∑
k=1

c
k
ψ

k
, (4.22)

where ψ
0

is a particular solution of the nonhomogeneous equation (4.5), c
k

are

arbitrary complex constants, while
{
ψ

k

}N
1

is a basis of the null space kerH with ψ
k

defined by (3.5), where
{
uk(x), x ∈ Ω+

}N
k=1

is a basis of the space of eigenfunctions
of the interior homogeneous Dirichlet problem (3.1)-(3.2).

Now we show that it is possible to choose efficiently the parameters c
k

in (4.22)

such that the function ψ̃ defined by (4.22) coincides with the uniquely defined

function
{
∂nu

}−
on S which in turn is also a solution of (4.5).

Let us construct the function

U (x) = V
(
ψ

0
+

N∑
k=1

c
k
ψ

k

)
(x) + P

Ω− (f) (x)−W (ϕ0) (x), x ∈ Ω+. (4.23)
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With the help of (4.5) and (4.22) we find that U solves the homogeneous interior
Dirichlet problem

∆U(x) + ω2 U(x) = 0, x ∈ Ω+, (4.24)

{U(x)}+ = 0, x ∈ S. (4.25)

Consequently U is representable as

U (x) =
N∑
k=1

d
k
u

k
(x) in Ω+, (4.26)

where d
k

are complex constants and u
k

are the elements of the above introduced
basis in the space of eigenfunctions of the interior homogeneous Dirichlet problem
(3.1)-(3.2).

In accordance with the notations (3.5) we have from (3.3)

V (ψ
k
) = u

k
in Ω+, (4.27)

and consequently from (4.23) we conclude

U (x) ≡
N∑
k=1

c
k
u

k
(x) + V (ψ

0
) (x) + P

Ω− (f) (x)−W (ϕ
0
) (x) in Ω+. (4.28)

On the other hand, it is evident that if U is orthogonal to all u
k

in the L2(Ω+)
sense, then it is identically zero in Ω+ in accordance with (4.26).

In view of (4.28) the orthogonality conditions (U, u
j
)L2(Ω+) = 0, j = 1, · · · , N,

lead to the system of linear algebraic equations for c
k
:

N∑
k=1

bjk ck = bj , j = 1, N, (4.29)

where

bjk = (u
k
, u

j
)L2(Ω+), b

j
= −(F, u

j
)L2(Ω+) , (4.30)

F (x) := V (ψ
0
)(x) + P

Ω− (f)(x)−W (ϕ
0
)(x) , x ∈ Ω+. (4.31)

Note that the Gram determinant det [b
jk

]
N×N
6= 0, since {u

k
}N1 is a set of linearly

independent functions. Therefore by the system (4.29) the coefficients c
k

are defined
uniquely. Denote these constants by c(0)

k
and by U (0) (x) the function given by (4.23)

with c(0)
k

for c
k
. Then we evidently have

U (0) (x)=V
(
ψ

0
(x) +

N∑
k=1

c(0)
k
ψ

k

)
(x) + P

Ω− (f) (x)−W (ϕ0) (x)= 0, x ∈ Ω+.(4.32)
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We set

ψ(1) := ψ
0

+
N∑
k=1

c(0)
k
ψ

k
on S. (4.33)

It is now evident that ψ(1) is a solution of equation (4.5) which has the property

V
(
ψ(1)

)
(x) + P

Ω− (f) (x)−W (ϕ
0
) (x) = 0, x ∈ Ω+. (4.34)

It is easy to show that ψ(1) is uniquely defined by the property (4.34). Indeed, if
there are two such solutions ψ(1) and ψ(2) satisfying (4.34), the difference V (ψ(1))−
V (ψ(2)) = V (ψ(1)−ψ(2)) vanishes in Ω+, and by continuity of single layer potential
and in view of the uniqueness theorem for the exterior Dirichlet problem, we deduce
that V (ψ(1)−ψ(2)) = 0 in R3, implying ψ(1)−ψ(2) = 0 on S due to the jump relations
(2.11).

Now we show that the function ψ(1) coincides with the function {∂nu}− on S.
Indeed, if we substitute ψ(1) for {∂nu}− in equation (4.4), we get

u(x) = PΩ−(f)(x)−W (ϕ
0
)(x) + V (ψ(1))(x), x ∈ Ω−. (4.35)

Taking into account (2.11), (2.13) and keeping in mind that PΩ− ∈ H2
loc(R

3) for
f ∈ L2,comp(Ω

−)), we derive

{∂nu}− =
{
∂nPΩ−(f)

}− − {∂nW (ϕ
0
)
}−

+ 2−1 ψ(1) + K̃ψ(1)

=
{
∂nPΩ−(f)

}+ −
{
∂nW (ϕ

0
)
}+

+
{
− 2−1ψ(1) + K̃ψ(1)

}
+ ψ(1)

=
{
∂n
[
PΩ−(f)−W (ϕ

0
) + V (ψ(1))

]}+
+ ψ(1) = ψ(1) (4.36)

due to (4.34).
Thus, we have shown that ψ(1) coincides with {∂nu}− and consequently Question

2 also has a positive answer.
Note that in (4.35) the right hand side will not be changed if instead of ψ(1) we

take an arbitrary solution ψ̃ of equation (4.5), since the difference ψ(1)− ψ̃ belongs

to the linear span of the system
{
ψ

k

}N
1
⊂ kerH and consequently V (ψ

k
)(x) = 0,

x ∈ Ω−, due to (3.5) and (3.4). This implies that V (ψ(1))(x) = V (ψ̃)(x) in Ω−. But
the above obtained results show that among all solutions of (4.5) there is only one
function, ψ(1), with the property ψ(1) = {∂nu}−, where u is the unique solution of
the exterior Dirichlet problem (4.1)-(4.2).

4.2. The second kind Fredholm integral equation approach

For the same Dirichlet exterior problem (4.1)-(4.2) here we develop an alternative
approach which reduces the problem to a second kind boundary integral equation.

From the integral representation formula (2.20) we have

u(x)− V
(
{∂nu}−

)
(x) = PΩ−(f)(x)−W (ϕ

0
)(x), x ∈ Ω−, (4.37)
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where f and ϕ
0

satisfy again the conditions (4.3).
Taking the trace on S from Ω− of the normal derivative of equation (4.37) we

get the relation

−2−1
{
∂nu

}−
+K∗

{
∂nu

}−
=
{
∂n
[
− PΩ−(f) +W (ϕ

0
)
]}−

on S. (4.38)

Due to Theorem 2.1 and conditions (4.3) for the right hand side expression in
(4.38) the following equality holds

Φ :=
{
∂n
[
− PΩ−(f) +W (ϕ

0
)
]}−

=
{
∂n
[
− PΩ−(f) +W (ϕ

0
)
]}+

on S . (4.39)

Denote now the unknown {∂nu}− by ϕ̃,

ϕ̃ := {∂nu}− ∈ H−1/2
2 (S) . (4.40)

Now for the unknown ϕ̃ we have equation (4.38) which can be rewritten as(
− 2−1 I + K̃

)
ϕ̃ = Φ on S. (4.41)

Note that the operator −2−1 I+K∗ is generated by the interior trace of the normal
derivative of the single layer potential (see Theorem 2.1) and it is well known that
the operator

− 2−1 I + K̃ : H
−1/2
2 (S)→ H

−1/2
2 (S) (4.42)

is Fredholm with zero index but it is not invertible, in general, if ω is a resonant
frequency for the interior Neumann problem for the domain Ω+ (see, e.g., [20],
[13]).

As we have already mentioned in Section 3, the homogeneous interior Neumann
problem (3.7)-(3.8) possesses finitely many linearly independent solutions for a

resonant frequency ω. Denote the dimension of the null space byM and let
{
vk
}M
k=1

be the corresponding basis in H1
2 (Ω+). They admit representation by the double

layer potential (3.9) in Ω+. Recall that the system of functions

ϕk =
{
vk
}+ ∈ H1/2

2 (S), k = 1, · · · ,M, (4.43)

is linearly independent on S and in accordance with (3.10) we have

W (ϕk)(x) = 0 in Ω−, k = 1, · · · ,M. (4.44)

Taking the trace of (4.44) from Ω− leads to the homogeneous equation(
− 2−1 I +K

)
ϕk = 0 on S, k = 1, · · · ,M. (4.45)

For the operator K∗, adjoint to K, we have

K∗ ψ = K̃ψ . (4.46)
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Therefore keeping in mind that −2−1 I +K and −2−1 I +K∗ are mutually adjoint
operators with zero index, in view of (4.46) and (4.45) we conclude that

dim ker
(
− 2−1 I +K

)
= dim ker

(
− 2−1 I + K̃

)
>M. (4.47)

From (4.47) it follows that equation (4.41) is not unconditionally solvable in general
and therefore solution ϕ̃ of (4.41) is not defined uniquely.

Again, here arise two questions similar to those stated in Subsection 4.1:

• Question 3. Is (4.41) solvable in the space H
−1/2
2 (S) for all f ∈L2,comp(Ω

−) and

ϕ
0
∈H1/2

2 (S)?

• Question 4. The exterior Dirichlet boundary value problem (4.1)-(4.2) possesses

a unique solution u ∈ H1,0
2, loc(Ω

−)∩S(Ω−) for arbitrary data satisfying the condi-

tions (4.3) (see, e.g., [20], [3], [13]). What is the relationship between a solution
ϕ̃ of the integral equation (4.41) and the trace of the normal derivative {∂n u}−?
This question becomes again essential if ω is a resonant frequency for the inte-
rior Neumann problem implying that the homogeneous version of the integral
equation (4.41) with Φ = 0 possesses nontrivial solutions. Evidently, in this case,
if nonhomogeneous equation (4.41) is solvable, then the solution is not unique
and the problem is how to choose a solution ϕ̃ which has a physical meaning and
coincides with the uniquely defined function {∂n u}−.

We start with analysis of Question 3 and establish that equation (4.41) is always
solvable.

To this end, let us show that the null space of the mapping

(
− 2−1I +K

)
: H1/2(S)→ H1/2(S), (4.48)

is of dimension M and, moreover,
{
ϕk
}M
k=1

is the basis of this null space where M
is the dimension of eigenfunctions space of the Neumann problem (3.7)-(3.8).

Indeed, let

(
− 2−1I +K

)
h = 0 on S. (4.49)

Then it follows that the double layer potential W (h) solves the homogeneous
exterior Dirichlet problem, and therefore due to the corresponding uniqueness the-
orem

W (h)(x) = 0 in Ω−. (4.50)

By (2.13) we derive that W (h) solves the homogeneous interior Neumann prob-
lem (3.7)-(3.8) and therefore

W (h)(x) =

M∑
k=1

d
k
vk(x), x ∈ Ω+. (4.51)
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In view of (3.9) and (4.44) we have

W
(
h+

M∑
k=1

d
k
ϕk

)
= 0 in Ω+. (4.52)

In view of (4.44) and (4.50) we can write

W
(
h+

M∑
k=1

d
k
ϕk

)
= 0 in Ω−. (4.53)

In turn, from (4.52)-(4.53) it follows

h+

M∑
k=1

d
k
ϕk = 0 on S, (4.54)

which implies that

dim ker
(
− 2−1I +K

)
= dim ker

(
− 2−1I + K̃

)
= M. (4.55)

Evidently, the complete system of linearly independent solutions of the adjoint
equation (

− 2−1I + K̃
)∗
g =

(
− 2−1I +K

)
g = 0 (4.56)

is {
ϕ

k

}M
k=1
≡
{
{v

k
}+
}M
k=1

. (4.57)

Then the necessary and sufficient conditions of solvability of equation (4.41) read
as

〈Φ, ϕ
k
〉
S

= 0, k = 1,M, (4.58)

where Φ is defined in (4.39).
The conditions (4.58) can be checked again with the help of Green’s identity

(4.21) with v
k

for u
k

and with v as in (4.20), v = −P
Ω− (f) + W (ϕ

0
) in Ω+, and

keeping in mind that {∂nv}+ = Φ on S.
Thus the equation (4.38) (i.e. (4.41)) is solvable.
Denote the complete system of linearly independent solutions of the homogeneous

equation (
− 2−1I + K̃

)
ϕ̃ = 0 on S (4.59)

by
{
ϕ̃

k

}M
k=1

. Evidently, the corresponding single layer potentials

v
k
(x) = V (ϕ̃

k
)(x), x ∈ Ω+, k = 1,M, (4.60)
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satisfy the conditions (3.7)-(3.8).
One can easily check that the system{

v
k

}M
k=1

is linearly independent in Ω+. (4.61)

Therefore, the system
{
{v

k
}+
}M
k=1
≡
{
Hϕ̃

k

}M
k=1

is also linearly independent on S.
Indeed, if

M∑
k=1

a
k
{v

k
}+ = 0 on S with

M∑
k=1

|a
k
| 6= 0,

with the help of the equality

M∑
k=1

a
k

{
∂nvk

}+
= 0 on S

and Green’s third formula (2.19) we conclude that

M∑
k=1

a
k
v

k
(x) = 0 in Ω+

which contradicts (4.61).
So, a general solution to the equation (4.41) can be written as

ϕ̃ = ϕ̃0 +

M∑
k=1

c
k
ϕ̃

k
, (4.62)

where ϕ̃0 is some particular solution of (4.41).
Now let us analyse Question 4: How to choose the constants c

k
in (4.62) to obtain

the desired “physical” relation ϕ̃ =
{
∂nu

}−
. In other words, it means that we have

to choose the constants c
k

such that in the formula (see (4.37))

u(x) = P
Ω− (f)(x)−W (ϕ

0
)(x) + V

(
ϕ̃

0
+

M∑
k=1

c
k
ϕ̃

k

)
(x) , (4.63)

the density of the single layer potential coincides with the normal derivative of the
right hand side expression in (4.63), i.e. the following equality must be satisfied

{
∂nu

}−
= ϕ̃ ≡ ϕ̃

0
+

M∑
k=1

c
k
ϕ̃

k
on S. (4.64)

To this end, we need that the right hand side in (4.63) vanishes in Ω+, i.e., the
following relation holds

U := P
Ω− (f)−W (ϕ

0
) + V (ϕ̃) = 0 in Ω+. (4.65)
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Evidently (∆ + ω2)U = 0 in Ω+ and due to (4.41) and (4.39){
∂n U

}+
= 0 on S. (4.66)

Therefore U solves the interior homogeneous Neumann problem and consequently
U belongs to the space of eingenfunctions of this problem whose basis is {v

k
}Mk=1.

Employing (4.60), rewrite U in the following form

U = P
Ω− (f)−W (ϕ

0
) + V (ϕ̃

0
) +

M∑
k=1

ck vk in Ω+. (4.67)

Now let us choose the constants ck such that U is orthogonal to the functions
v

k
, k = 1,M .
The relations (U, v

k
)L2(Ω+) = 0 lead to the system of linear algebraic equations,

M∑
k=1

(v
k
, v

j
)L2(Ω+) ck =

(
− P

Ω− (f) +W (ϕ
0
)− V (ψ

0
) , v

j

)
L2(Ω+)

, j = 1,M. (4.68)

Since Gram’s matrix [((v
k
, v

j
)L2(Ω+))]M×M is nonsingular, the parameters ck are

defined uniquely from (4.68).

Thus there are constants c
(0)
k such that (4.65) holds. By these c

(0)
k we construct

a solution ϕ̃(1) to (4.41)

ϕ̃(1) = ϕ̃
0

+

M∑
k=1

c
(0)
k ϕ̃

k
. (4.69)

Evidently, relation (4.65) holds true.
As in the previous case we can show that ϕ̃(1) is defined uniquely.

Now we show that just this function ϕ̃(1) corresponds to
{
∂n u

}−
. In other words,

if we construct a solution function of the Dirichlet boundary value problem in the
form (cf. (4.37)-(4.38))

u(x) = P
Ω− (f)(x)−W (ϕ

0
)(x) + V (ϕ̃(1))(x), x ∈ Ω−, (4.70)

then {
∂n u

}−
= ϕ̃(1)) on S. (4.71)

Indeed, with the help of (4.39) and (4.65) we get{
∂n u

}−
=
{
∂n
[
P

Ω− (f)−W (ϕ
0
) + V (ϕ̃(1))

]}−
=
{
∂n
[
P

Ω− (f)−W (ϕ
0
)
]}+

+ 2−1ϕ̃(1) + K̃ ϕ̃(1)

= ϕ̃(1) +
{
∂n
[
P

Ω− (f)−W (ϕ
0
)
]}+

− 2−1ϕ̃(1) + K̃ ϕ̃(1)

= ϕ̃(1) +
{
∂n
[
P

Ω− (f)−W (ϕ
0
) + V (ϕ̃(1)

]}+
= ϕ̃(1).
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Thus we have analysed the traditional direct boundary equation approaches for
the exterior Dirichlet boundary value problem for the Helmholtz equation which
reduce the boundary value problem either to the first kind Fredholm integral equa-
tion or to the second kind Fredholm integral equation. In both cases the corre-
sponding integral equations are not equivalent to the uniquely solvable boundary
value problem since the corresponding operators are not invertible for all values of
the frequency parameter, in particular for resonant frequencies. However we have
shown that the obtained integral equations are always solvable for arbitrary data,
solutions of the integral equations are not defined uniquely and among the solu-
tions of the integral equations there is only one solution which has a physical sense
and coincides with the trace of the normal derivative of the radiating solution on
S.

Remark 1 : Quite similarly can be analysed the traditional direct approach for
the exterior Neumann problem.

Remark 2 : If ω is not a resonant frequency, then the corresponding boundary
integral equations are uniquely solvable and the unique solution of the boundary
integral equation automatically satisfies the desired property: in the case of the
Dirichlet BVP it coincides with the normal derivative of the radiating solution,
while in the case of the Neumann BVP it coincides with the trace of the solution
on S.

5. Modified direct boundary integral equation method

Applying the approach introduced in the references [1], [12], and [17] (see also [3]
and [2]), we can use again the direct boundary integral equation method and reduce
the exterior Dirichlet and Neumann boundary value problems to the equivalent,
uniquely solvable integral equations.

5.1. Modified direct approach for the Dirichlet problem

First we deal with the Dirichlet exterior problem (4.1)-(4.2).
From the integral representation formula (4.4) we get:

u(x)− V ({∂nu}−)(x) = P
Ω− (f)(x)−W (ϕ

0
)(x), x ∈ Ω−, (5.1)

H({∂nu}−) =
{
− P

Ω− (f) +W (ϕ
0
)
}−

+ ϕ
0

on S, (5.2)

− 2−1{∂nu}− + K̃
(
{∂nu}−

)
=
{
∂n
[
− P

Ω− (f) +W (ϕ
0
)
]}−

on S . (5.3)

Our goal is to define the unknown function {∂nu}−.
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Let us introduce the notation:

ψ := {∂nu}− on S, (5.4)

Ψ :=
{[
− P

Ω− (f) +W (ϕ
0
)
]}−

+ ϕ
0

on S, (5.5)

Φ :=
{
∂n
[
− P

Ω− (f) +W (ϕ
0
)
]}−

on S . (5.6)

Let us multiply (5.2) by i α and add to (5.3) to obtain[
− 2−1I + K̃ + i αH

]
ψ = Φ + i αΨ on S . (5.7)

Here α is a real constant different from zero.
It can be shown that the operator

−2−1I + K̃ + i αH : H−1/2(S)→ H−1/2(S) (5.8)

is Fredholm with zero index (see [1], [3], [17], [12], [8], [9]). Now we show that its
kernel is trivial. Indeed, if ψ

0
solves the homogeneous equation[

− 2−1I + K̃ + i αH
]
ψ

0
= 0 on S, (5.9)

then the single layer potential u0(y) := V (ψ
0
)(x) is a solution to the interior Robin

problem (due to (5.9) and Theorem 2.1)

(∆ + ω2)u0 = 0 on Ω+, (5.10)

{∂nu0 + i α u0}+ = 0 on S. (5.11)

With the help of Green’s formula (2.17) with u = u0 and v = u0 we have

∫
Ω+

[ 3∑
k=1

|∂ku0|2 − ω2 |u0|2
]
dx = −i α

∫
∂Ω+

|{u0}+|2 dS

Since α 6= 0 and α ∈ R we conclude {u0}+ = 0 on S. Then by (5.11) we get
{∂n u0}+ = 0 on S and from Green’s third formula (2.19) it follows that u0(x) =
V (ψ

0
)(x) = 0 for x ∈ Ω+, whence ψ0 = 0 on S follows due to continuity of the

single layer potential, uniqueness theorem for the exterior Dirichlet problem and
the jump relations (2.11).

Thus, from (5.7) the unknown ψ can be defined uniquely and the solution to the
BVP (4.2) can be constructed by (5.1)

u(x) = P
Ω− (f)(x)−W (ϕ

0
)(x) + V (ψ)(x), x ∈ Ω−. (5.12)

Now we have to show that relation (5.4) holds true for the function u defined by
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(5.12). By Theorem 2.1 and using (5.12) and (5.7) we derive

{
∂n u

}−
=
{
∂n
[
P

Ω− (f)−W (ϕ
0
)
]}−

+ 2−1ψ + K̃ψ

= −Φ + 2−1ψ + K̃ψ = ψ − i αHψ + i αΨ

= ψ − i α
[
Hψ +

{
P

Ω− (f)−W (ϕ
0
)
}−

+ ϕ
0

]
= ψ − i α

[
Hψ +

{
P

Ω− (f)
}+ − 2−1ϕ

0
−Kϕ

0

]
= ψ − i α

{
V (ψ) + P

Ω− (f)−W (ϕ
0
)
}+

. (5.13)

Now we show that the function

U(x) := V (ψ)(x) + P
Ω− (f)(x)−W (ϕ

0
)(x), x ∈ Ω+, (5.14)

vanishes identically in Ω+. We proceed as follows. It is evident that U solves the
Helmholtz equation

(∆ + ω2)U (x) = 0, x ∈ Ω+, (5.15)

and moreover in view of (5.7)

{
∂n U + i αU

}+
=
(
− 2−1 I + K̃ + i αH

)
ψ +

{
∂n
[
P

Ω− (f)−W (ϕ
0
)
]}+

+ i α
{
P

Ω− (f)−W (ϕ
0
)
}+

=
(
− 2−1 I + K̃ + i αH

)
ψ − Φ− i αΨ = 0. (5.16)

Here we employed Theorem 2.1 and the following evident relations

{
∂n
[
P

Ω− (f)−W (ϕ
0
)
]}+

=
{
∂n
[
P

Ω− (f)−W (ϕ
0
)
]}−

= −Φ,{
P

Ω− (f)−W (ϕ
0
)
}+

=
{
P

Ω− (f)
}+ −Kϕ

0
− 2−1ϕ

0
=

=
{
P

Ω− (f)−W (ϕ
0
)
}− − ϕ

0
= −Ψ.

Therefore the function U solves the homogeneous interior Robin BVP (5.15)-(5.16).
By Green’s formula (2.17) it is easy to show that the homogeneous Robin BVP
(5.15)-(5.16) possesses only the trivial solution. Therefore the function U defined
by (5.14) vanishes identically in Ω+, and consequently

{
V (ψ) + P

Ω− (f)−W (ϕ
0
)
}+

= 0 on S. (5.17)

Then from (5.13) we get the desired equality
{
∂nu

}−
= ψ.

Thus, the above described direct approach reduces the exterior Dirichlet bound-
ary value problem (4.1)-(4.2) to the equivalent (i.e. uniquely solvable) boundary

integral equation (5.7) for the unknown function ψ =
{
∂nu

}−
.
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5.2. Modified direct approach for the Neumann problem

Now we consider the exterior Neumann problem

∆u+ ω2u = f in Ω−, (5.18)

{∂nu}− = ψ
0

on S. (5.19)

Here we assume that

f ∈ L2,comp(Ω
−), ψ

0
∈ H−1/2(S). (5.20)

We apply again Green’s third formula (2.20) and rewrite it in the following form

u(x) +W
(
{u}−

)
(x) = P

Ω− (f)(x) + V (ψ
0
)(x) , x ∈ Ω−. (5.21)

From (5.21) we derive the following two boundary relations

2−1{u}− +K{u}− = Φ on S, (5.22)

L{u}− = Ψ on S, (5.23)

where

Φ :=
{
P

Ω− (f) + V (ψ
0
)
}−

on S, (5.24)

Ψ :=
{
∂n
[
P

Ω− (f) + V (ϕ
0
)
]}− − ϕ

0
on S. (5.25)

Note that, in view of Theorem 2.1, the functions Φ and Ψ can be represented also
as

Φ =
{
P

Ω− (f) + V (ψ
0
)
}+

on S, (5.26)

Ψ =
{
∂n
[
P

Ω− (f) + V (ϕ
0
)
]}+

on S. (5.27)

Further, let us introduce the notation

ϕ := {u}−. (5.28)

Multiply (5.22) by iα and add to (5.23) to obtain[
L+ i α

(
2−1 I +K

)]
ϕ = Ψ + i αΦ on S, α ∈ R, α 6= 0. (5.29)

The operator

K := L+ i α
(
2−1 I +K

)
: H1/2(S)→ H−1/2(S) (5.30)

is Fredholm with zero index. In the case of a smooth boundary S, the operator K
is a strongly elliptic pseudodifferential operator of order 1; actually K is a singular
integro-differential operator with a positive symbol (see, e.g., [7], [8], [9]).



24 Bulletin of TICMI

Further we show that the null-space of the operator (5.30) is trivial. Indeed, let

Kϕ
0

= 0 on S (5.31)

and consider the function

u
0
(x) = W (ϕ

0
)(x), x ∈ Ω±. (5.32)

Evidently u
0

solves the homogeneous Helmholtz equation in Ω± and due to (5.31)
satisfies the homogeneous Robin condition

{∂n u0
+ i α u

0
}+ = 0 on S.

Therefore u
0
(x) = W (ϕ

0
)(x) = 0 in Ω+. By the relation (2.13) it then follows

that the radiating function u
0

= W (ϕ
0
) solves the homogeneous exterior Neumann

problem and consequently u
0
(x) = W (ϕ

0
)(x) = 0 in Ω−, implying ϕ

0
= 0 on S.

Therefore the operator (5.30) is invertible and consequently (5.29) is uniquely
solvable. From (5.21) via (5.28) we get

u(x) = P
Ω− (f)(x) + V (ψ

0
)(x)−W (ϕ)(x) in Ω−, (5.33)

where ϕ solves (5.29).
Let us show that relation (5.28) holds true for the function u defined by (5.33).
Using the same arguments as above and keeping in mind relations (5.26)-(5.27),

from (5.33) we derive

{u}− =
{
P

Ω− (f) + V (ψ
0
)
}−

+ 2−1ϕ−Kϕ = ϕ+ Φ−
(
2−1ϕ+Kϕ

)
=ϕ+

{
P

Ω− (f) + V (ψ
0
)−W (ϕ)

}+
. (5.34)

As in the previous subsection, we can show that the function

U(x) = P
Ω− (f)(x) + V (ψ

0
)(x)−W (ϕ)(x), x ∈ Ω+, (5.35)

vanishes identically in Ω+, since it solves the homogeneous Helmholtz equation and
satisfies the homogeneous Robin condition on S in accordance with (5.29),{

∂nU + iαU
}+

= Ψ + i αΦ− Lϕ− iα
(
2−1ϕ+Kϕ

)
= 0 on S. (5.36)

Therefore from (5.34) we get

{u}− = ϕ on S.

Thus, for arbitrary value of the frequency parameter ω, the above described direct
approach reduces the exterior Neumann problem (5.18)-(5.19) to the equivalent
(i.e. uniquely solvable) boundary integral equation (5.29) for the unknown function
ϕ = {u}−.
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Gebieten. Jber. Deutsch. Math. Verein, 53 (1943), 57-65

[19] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North Holand, Amsterdam,
1978

[20] I.N. Vekua, On metaharmonic functions, Proc. Tbilisi Mathem. Inst. of Acad. Sci. Georgian SSR, 12
(1943), 105–174


