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The purpose of this paper is to consider the basic boundary value problems of the fully coupled
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of statics in the fully coupled theory for a sphere. The explicit solutions of these BVPs are
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1. Introduction

The theory of consolidation with double porosity was first proposed by Aifantis
and co-authors in the papers [1,3]. This theory unifies a model proposed by Biot
for the consolidation of deformable single porosity media with a model proposed
by Barenblatt for seepage in undeformable media with two degrees of porosity. In
a material with two degrees of porosity, there are two pore systems, the primary
and the secondary. For example in a fissured rock (i.e.a mass of porous blocks sep-
arated from each other by an interconnected and continuously distributed system
of fissures) most of the porosity is provided by the pores of the blocks or primary
porosity, while most of permeability is provided by the fissures or the secondary
porosity. In part I of a series of paper on the subject, Wilson and Aifantis [1] gave
detailed physical interpretations of the phenomenological coefficients appearing in
the double porosity theory. In part II of this series, uniqueness and variational
principles were established by Beskos and Aifantis [2] for the equations of double
porosity, while in part III Khaled, Beskos and Aifantis [3] provided a related finite
element to consider the numerical solution of Aifantis’ equations of double porosity
(see [1],[2],[3] and the references cited therein.) The basic results and the historical
information on the theory of porous media may be found in [4]. However, Aifantis’
quasi-static theory ignored the cross-coupling effect between the volume change of
the pores and fissures in the system. The cross-coupled terms were included in the
equations of conservation of mass for the pore and fissure fluid and in Darcy’s law
for solids with double porosity by Khalili and coauthors in [5,8]. The phenomeno-
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logical equations of the quasi-static theory for double porous media are established
in [9,10], where a method to calculate the relevant coefficients is also presented.

For the past years many authors have investigated the BVPs of the theory of elas-
ticity for materials with double porosity, publishing a large number of papers(for
details see [11-16] and references therein).

In [17-20] the fully coupled linear theory of elasticity is considered for solids
with double porosity. Four special cases of the dynamical equations are considered.
The fundamental solutions are constructed by means of elementary functions and
the basic properties of the fundamental solutions are established. In [21,22] for
Aifantis’ equations, explicit solution of the problems of elastostatics for an elastic
circle with double porosity, are considered. In [23-25], for Aifantis’ equations, the
explicit solutions of some BVPs of elasticity for an elastic sphere, for the space
with a spherical cavity and for the half-space are constructed.

The purpose of this paper is to consider the basic boundary value problems of
the fully coupled equilibrium theory of elasticity for solids with double porosity
and explicitly solve the BVPs of statics in the fully coupled theory for a sphere.
The explicit solutions of these BVPs are represented by means of absolutely and
uniformly convergent series.

2. Basic equations and boundary value problems

Let x = (x1, x2, x3) be a point of the Euclidean three-dimensional space E3. Let us
assume that D is a ball of radius R, centered at point O(0, 0, 0) in space E3 and S
is a spherical surface of radius R. Let us assume that the domain D is filled with
an isotropic material with double porosity.

The system of homogeneous equations in the fully coupled linear equilibrium
theory of elasticity for materials with double porosity can be written as follows
[6,17]

µ∆u + (λ+ µ)graddivu− grad(β1p1 + β2p2) = 0, (1)

(k1∆− γ)p1 + (k12∆ + γ)p2 = 0,

(k21∆ + γ)p1 + (k2∆− γ)p2 = 0,
(2)

where u(x) = u(u1, u2, u3) is the displacement vector in a solid, p1(x) and p2(x)
are the pore and fissure fluid pressures respectively. β1 and β2 are the effective
stress parameters, γ > 0 is the internal transport coefficient and corresponds to
fluid transfer rate with respect to the intensity of flow between the pore and fissures,

λ, µ, are constitutive coefficients, kj =
κj
µ′
, k12 =

κ12
µ′
, k21 =

κ21
µ′
. µ′ is the

fluid viscosity, κ1 and κ2 are the macroscopic intrinsic permeabilities associated
with matrix and fissure porosity, respectively, κ12 and κ21 are the cross-coupling
permeabilities for fluid flow at the interface between the matrix and fissure phases,
∆ is the Laplace operator. If needed, we consider vectors as column matrices.

Introduce the definition of a regular vector-function.

Definition 2.1: A vector-function U(x) = (u1, u2, u3, p1, p2) defined in the do-
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main D is called regular if it has integrable continuous second derivatives in D
and U(x) itself and its first order derivatives are continuously extendable at every
point of the boundary of D, i.e., U(x) ∈ C2(D)

⋂
C1(D).

For system (1),(2) we pose the following BVPs.

Problem 1: Find in the domain D a regular solution U(x) = (u, p1, p2), of equa-
tions (1),(2) by the boundary conditions

u+(z) = Ψ(z), p+1 (z) = f4(z), p+2 (z) = f5(z), z ∈ S. (3)

Problem 2: Find in the domain D a regular solution U(x) = (u, p1, p2), of equa-
tions (1),(2) by the boundary conditions

[P(∂x,n)U]+ = G(z),
(
P(1)(∂x,n)p

)+
= g(z), z ∈ S, (4)

where [·]+ denotes the limiting value from D, the vector-functions Ψ(z) =
(Ψ1,Ψ2,Ψ3), G(z) = (G1, G2, G3), g(z) = (g1, g2) and the functions f4(z), f5(z)
are given functions on S, n(z) = (n1, n2, n3) is the external unit normal vector on
S at z and P(∂x,n)U is the stress vector in the considered theory, which acts on
the elements of S with the normal n,

P(∂x,n)U = T(∂x,n)u− n(β1p1 + β2p2),

T(∂x,n)u is the stress vector in the classical theory of elasticity

T(∂x,n)u(x) = 2µ
∂u(x)

∂n
+ λndivu(x) + µ[n× rotu(x)],

and

P(1)(∂x,n)p =

(
k1 k12
k21 k2

)
∂p

∂n
, p = (p1, p2),

∂

∂n
= n1

∂

∂x1
+ n2

∂

∂x2
+ n3

∂

∂x3
.

Note that BVPs for the system (2) which contain only p1 and p2 can be inves-
tigated separately. Then suppose pj as known we can study BVPs for system (1)
with respect to u. Combining the results obtained we arrive at explicit solutions
of BVPs for system (1)-(2).

On the basis of equations (2) we can write

∆(∆ + λ21)pj = 0, j = 1, 2.

We can easily see that the solution of system (2) can be represented in the form

p1(x) = ϕ(x) +Aϕ1(x), p2(x) = ϕ(x) + ϕ1(x), (5)
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where the functions ϕ and ϕ1 are the solutions of the following equations

∆ϕ = 0, (∆ + λ21)ϕ1 = 0, (6)

respectively,

A =
γ − k12λ21
γ + k1λ21

= −k2 + k12
k1 + k21

,

λ1 = i

√
γk0

k1k2 − k12k21
= iλ0, i =

√
−1, k0 = k1 + k2 + k12 + k21;

k1 > 0, k2 > 0, γ > 0, k1k2 − k12k21 > 0, k0 > 0.

Let us substitute the expression (5) into (1) and let us search the particular
solution of the following nonhomogeneous equation

µ∆u + (λ+ µ)graddivu = grad[(β1 + β2)ϕ+ (Aβ1 + β2)ϕ1].

It is well-known that a general solution of the last equation can be presented in
the form

u(x) = v(x) + v0(x), (7)

where v(x) is a general solution of equation

µ∆v + (λ+ µ)graddivv = 0, (8)

and v0(x) is a particular solution of the nonhomogeneous equation. It is easy to
see, that the vector v0(x) has the form

v0(x) =
1

λ+ 2µ
grad

[
(β1 + β2)ϕ0(x)− β1A+ β2

λ21
ϕ1(x)

]
, x ∈ D, (9)

where the function ϕ0 must satisfy the condition ∆ϕ0 = ϕ. Thus, ∆∆ϕ0 = 0.
We will study separately the following BVPs:

Problem B1. Find in the domain D the regular solutions of system (6) satisfying
the following boundary conditions

ϕ+(z) = h(z), ϕ+
1 (z) = h1(z), z ∈ S, (10)

respectively, where h(z) and h1(z) are known functions defined by formulas

h(z) =
1

k0
[(k1 + k21)f4(z) + (k2 + k12)f5(z)],

h1(z) =
1

k0
(k1 + k21)[f5(z)− f4(z)].
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Problem B2. Find in the domain D the solutions of system (6) satisfying the
following boundary conditions

(
∂ϕ

∂R

)+

= h2(z),

(
∂ϕ1

∂R

)+

= h3(z), z ∈ S, (11)

respectively, where

h2(z) =
g1(z) + g2(z)

k0
,

h3(z) =
(k1 + k21)[(k1 + k12)g2(z)− (k2 + k21)g1(z)]

k0(k1k2 − k12k21)
.

Problem A1. Find in the domain D a regular solution v(x) of equation (8),
satisfying the following boundary condition

v+(z) = Ψ(z)− v0(z) = ω(z), z ∈ S. (12)

Problem A2. Find in the domain D a solution v(x) of equation (8), satisfying the
following boundary condition

[T(∂z,n)v(z)]+ = G(z)−T(∂z,n)v0(z) + n[β1p1(z) + β2p2(z)] = Ω(z), (13)

z ∈ S.

In problems A1 and A2 the functions p1(x) and p2(x) are solutions of problems B1

and B2 respectively.

3. Explicit solutions of the boundary value problems

3.1. Problem B1.

Let us introduce the equalities of spherical coordinates

x1 = ρ sinϑ cos η, x2 = ρ sinϑ sin η, x3 = ρ cosϑ, x ∈ D+,

y1 = R sinϑ0 cos η0, y2 = R sinϑ0 sin η0, y3 = R cosϑ0, y ∈ S,

|x|2 = ρ2 = x21 + x22 + x23, 0 ≤ ϑ ≤ π, 0 ≤ η ≤ 2π 0 ≤ ρ ≤ R.

Let us expand the functions h and h1 in spherical harmonics

h(z) =

∞∑
n=0

hn(ϑ, η), h1(z) =

∞∑
n=0

h1n(ϑ, η),
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where hn and h1n are the spherical harmonics of order n :

hn =
2n+ 1

4πR2

∫
S

Pn(cos γ)h(y)dyS,

h1n =
2n+ 1

4πR2

∫
S

Pn(cos γ)h1(y)dyS,

Pn is Legender polynomial of the n-th order, γ is an angle formed by the radius-
vectors Ox and Oy,

cos γ =
1

|x||y|

3∑
k=1

xkyk.

For the unknowns harmonic function ϕ(x) and metaharmonic function ϕ1(x) we
obtain the Dirichlet BVPs for system (6) with boundary conditions (10). The
solutions of Problem B1 in D have the form [26,27]:

ϕ(x) =
∞∑
n=0

ρn

Rn
hn(ϑ, η), ρ < R,

ϕ1(x) =
∞∑
n=0

φ
(1)
n (λ1ρ)h1n(ϑ, η), ρ < R,

(14)

respectively, where

φ(1)n (λ1ρ) =

√
RJn+ 1

2
(λ1ρ)

√
ρJn+ 1

2
(λ1R)

,

Jn+ 1

2
(λ1ρ) is the Bessel function.

If we substitute the values of ϕ(x) and ϕ1(x) from (14) into (5), we find the
functions p1(x) and p2(x) in D.

For the solution of equation ∆ϕ0 = ϕ, where ϕ is given by (14), we have

ϕ0(x) =
1

2

∞∑
n=0

ρn+2hn(ϑ, η)

(3 + 2n)Rn
, x ∈ D. (15)

3.2. Problem B2.

For the unknowns harmonic function ϕ(x) and metaharmonic function ϕ1(x) we
obtain the Neumann BVPs for system (6) with boundary conditions (11). The
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solutions of Problem B2 in D have the form [27,28]:

ϕ(x) = C +
∞∑
n=1

ρn

nRn−1
h2n(ϑ, η), ρ < R,

ϕ1(x) =
∞∑
n=0

φ
(1)
n (λ1ρ)h3n(ϑ, η)

Hn(R)
, ρ < R.

(16)

respectively, where

Hn(ρ) =
∂

∂ρ
φ(1)n (λ1ρ), φ(1)n (λ1ρ) =

Jn+ 1

2
(λ1ρ)
√
ρ

,

h2n =
2n+ 1

4πR2

∫
S

Pn(cos γ)h2(y)dyS,

h3n =
2n+ 1

4πR2

∫
S

Pn(cos γ)h3(y)dyS,

C is an arbitrary constant.
For the solution to exist it is necessary that the condition

h20 =

∫
S

h2(y)ds = 0

be fulfilled.
If we substitute the values of ϕ(x) and ϕ1(x) from (16) into (5), we find the

functions p1(x) and p2(x) in D.
For the solution of equation ∆ϕ0 = ϕ, where ϕ is given by (16), we have

ϕ0(x) =
ρ2

6
C +

1

2

∞∑
n=1

ρn+2h2n(ϑ, η)

n(3 + 2n)Rn−1
, x ∈ D. (17)

3.3. Problem A1.

For a ball the solution v(x) of equation (8), with boundary condition (12) is given
in [29,30] in the following form

ρv(x) = xψ1(x) +

[
∂ψ2(x)

∂s
· x
]

+ ρ
∂ψ3(x)

∂s
, x ∈ D, (18)

where

∂

∂s
=

(
∂

∂s1
,
∂

∂s2
,
∂

∂s3

)
;

∂

∂sk(x)
= [x · ∇]k, k = 1, 2, 3;
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∇ is the Hamiltonian operator and the functions ψj , j = 1, 2, 3 are represented in
the following form

ψ1(x) =
ρ

R
f0(θ, η) +

a− 1

2(a+ 1)

∞∑
n=1

{[
(n+ b)(n+ 1)

n+ α

( ρ
R

)n+1

−(n+ c)n

n+ α

( ρ
R

)n−1]
fn(θ, η) +

n+ b

n+ α

[( ρ
R

)n+1
−
( ρ
R

)n−1]
Fn(θ, η)

}
,

ψ2(x) =
a− 1

2(a+ 1)

∞∑
n=1

{[
(n+ c)

(n+ 1)(n+ α)

( ρ
R

)n+1

− (n+ b)

n(n+ α)

( ρ
R

)n−1]
Fn(θ, η) +

n+ c

n+ α

[( ρ
R

)n+1
−
( ρ
R

)n−1]
fn(θ, η)

}
,

ψ3(x) = −
∞∑
n=1

1

n(n+ 1)

( ρ
R

)n
Φn(θ, η).

(19)

Here

a =
µ

λ+ 2µ
, α =

a

a+ 1
< 1, b =

2a

a− 1
, c =

a− 3

a− 1
,

fn =
2n+ 1

4πR2

∫
S

Pn(cos γ)f(y)dyS, Fn =
2n+ 1

4πR2

∫
S

Pn(cos γ)F (y)dyS,

Φn =
2n+ 1

4πR2

∫
S

Pn(cos γ)Φ(y)dyS.

The functions f, F, and Φ are given by the formulas

f(z) =
1

R

3∑
k=1

zkωk(z), F (z) =

3∑
k=1

[
∂

∂sk(x)

[x · ω(x)]k
ρ

]
ρ=R

,

Φ(z) =
3∑

k=1

[
∂ωk(x)

∂sk

]
ρ=R

, z ∈ S.

Note that F0 = 0, Φ0 = 0.
Thus, the solutions of the Problem 1 for the sphere is represented by formulas

(5),(7),(14),(15),(9),(18), (19).
For absolutely and uniformly convergence of obtained series together with their

first derivatives it is sufficient to assume that

ω(z) ∈ C5(S), h(z) ∈ C5(S), h1(z) ∈ C5(S).

Solutions obtained under such conditions are regular in D.
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3.4. Problem A2.

For a ball the solution of equation (8), with boundary condition (13) was con-
structed in [29,30] and it is represented as (18), where

ψ1(x) =
l(x)

ρ
+

f0
3µ+ 2µ

+ c1
ρ2 −R2

R
f1(θ, η)

+

∞∑
n=2

1

2∆n

( ρ
R

)n−1{[
A1n

( ρ
R

)2
+A2n

]
R[A3nfn(θ, η) +A4nFn(θ, η)]

+
ρ2 −R2

R
A5n(A6nFn(θ, η) + n(n+ 1)A4nfn(θ, η))

}
,

ψ2(x) =
l(x)

ρ
− R

c2

[
(2− a)

( ρ
R

)2
+ 3a− 1

]
f1(θ, η) (20)

−
∞∑
n=2

1

2n(n+ 1)∆n

( ρ
R

)n−1{
(n+ 1)A2n

ρ2 −R2

R
[A3nfn(θ, η) +A4nFn(θ, η)]

+R

[
A2n

( ρ
R

)2
+ (n+ 1)A5n

]
[A6nFn(θ, η) + n(n+ 1)A4nfn(θ, η)]

}
,

ψ3(x) = q(x)− R

µ

∞∑
n=2

1

n(n2 − 1)

( ρ
R

)n
Φn(θ, η).

Here

f1 = F1, A1n = [(a− 1)n+ 2a](n+ 1), A2n = [(1− a)n+ 3− a]n,

A3n = 2n2 + (1− 2a)n− 2a, A4n = 2an+ 2a− 3, A5n = (a− 1)n+ 2a,

A6n = 2n2 + (1− 4a)n+ 3− 4a, c1 = (3a− 1)c−12 , c2 = 2µ(3− 4a),

∆n = 2µ(n− 1)[2(1− a2)n3 + 4(1− 2a2)n2 + (3 + 3a− 10a2)n+ a(3− 4a)],

l = (x · b), q = (x · q), ∆n 6= 0, n = 2, 3, ...;

q(q1, q2, q3) and b(b1, b2, b3) are arbitrary constant vectors,

fn =
2n+ 1

4πR2

∫
S

Pn(cos γ)f(y)dyS, Fn =
2n+ 1

4πR2

∫
S

Pn(cos γ)F (y)dyS,

Φn =
2n+ 1

4πR2

∫
S

Pn(cos γ)Φ(y)dyS.



Vol. 19, No. 1, 2015 35

The functions f, F, and Φ are given in the form

f(z) =
1

R

3∑
k=1

zkΩk(z), F (z) =

3∑
k=1

[
∂

∂sk(x)

[x ·Ω(x)]k
ρ

]
ρ=R

,

Φ(z) =
3∑

k=1

[
∂Ωk(x)

∂sk(x)

]
ρ=R

, z ∈ S.

For determining the stress vector we obtain

T(∂x,n)v(x) = 2µ
∂v(x)

∂n
+ λndivv(x) + µ[n× rotv(x)],

where the vector v is determined by (18).
Thus, the solution of ProblemA2 for the sphere is represented by formulas (5),(7),

(16), (17),(9),(18),(20).
For absolutely and uniformly convergence of series in (20), together with their

first derivatives, it is sufficient to assume that Ω ∈ C5(S), |Ω| ≤ 1
n4 . Solutions of

Problem A2 obtained under such conditions are regular in D. For the solution to
exist it is necessary that the conditions F0 = Φ0 = Φ1 = 0, f1 = F1 be fulfilled.

Note that Problem 2 is solvable if the principal vector and the principal moment
of external stresses are equal to zero∫

S

Ω(y)dS = 0,

∫
S

[y×Ω(y)]dS = 0.
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