On the Representations of Solutions in the Plane of Theory of Thermodynamics with Microtemperatures

Lamara Bitsadze*
I. Vekua Institute of Applied Mathematics of Tbilisi State University of Iv. Javakhishvili Tbilisi State University
2 University St., 0186, Tbilisi, Georgia
(Received December 18, 2013; Revised August 1, 2014; Accepted November 3, 2014)

Abstract

In the present paper the mathematical model of the linear 2D dynamical theory of thermoelasticity with microtemperatures is considered. The representation of regular solution, the fundamental and singular solutions for a governing system of equations of this theory in the Laplace transform space are constructed. Finally, the single-layer, double-layer and volume potentials are presented.

Key words: Thermoelasticity with microtemperatures, Linear dynamical theory, Laplace transform method.

AMS Subject Classification: $74 \mathrm{H} 45,74 \mathrm{H} 05$.

1. Introduction

This paper concerns with the mathematical model of the linear 2D dynamical theory of thermoelasticity with microtemperatures. A thermodynamic theory for elastic materials with inner structure whose particles, in addition to microdeformations, possess microtemperatures that was proposed by Grot [1]. In [1] the thermodynamics of a continuum with microstructure is extended in that it is assumed that the temperatures of the particles of microcontinuum are different. Several mathematical models of continua with microtemperature have been formulated in which the deformation is described not only by the usual displacement vector field, but by other vector fields as well, see [2-3]. In [4] existence theorems were proved and the continuous dependence of solutions of the initial data and body loads was established. In [5] the mathematical model of the 3D linear dynamical theory of thermoelasticity with microtemperatures is considered and the basic initial-boundary value problems (BVPs) in the Laplace transform space are investigated. In [68] the fundamental solutions of the equations of theory of thermoelasticity with microtemperatures, the representations of Galerkin type and general solutions of equations of dynamic and steady vibrations were constructed. The basic theorems in the equilibrium theory of thermoelasticity with microtemperatures are proved. Effective solutions of the Dirichlet and the Neumann BVP of the linear theory of

[^0]thermoelasticity with microtemperatures for a spherical ring are given in [9-10]. A wide class of external 3D BVPs of steady vibrations is investigated in [11].

The two-dimensional model of thermoelasticity with microtemperatures are devoted in [12-15]. In particular, fundamental and singular solutions of the system of equations of the equilibrium of the plane thermoelastisity theory with microtemperatures was constructed, uniqueness and existence theorems of some basic boundary value problems of the plane thermoelasticity with microtemperatures are proved. Explicit solutions of boundary value problems of 2D theory of thermoelasticity with microtemperatures for the half-plane are constructed in [15].

In the present paper the mathematical model of the linear 2D dynamical theory of thermoelasticity with microtemperatures is considered. The representation of regular solution, the fundamental and singular solutions for a governing system of equations of this theory in the Laplace transform space are constructed. Finally, the single-layer, double-layer and volume potentials are presented.

2. Basic equations

Let S be the smooth closed curve surrounding the finite domain D in Euclidean 2 D space E_{2}. Let $\quad \mathbf{x}=\left(x_{1}, x_{2}\right) \in E_{2}, \quad \partial \mathbf{x}=\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}\right)$, and let t denote the time variable $t>0$. Let us assume that the domain D is filled with an isotropic thermoelastic material possessing microtemperatures.

In 2D space "rot" is defined as a scalar

$$
r o t \phi=\frac{\partial \phi_{2}}{\partial x_{1}}-\frac{\partial \phi_{1}}{\partial x_{2}}
$$

for a vector $\phi=\left(\phi_{1}, \phi_{2}\right)$ and as a vector

$$
\operatorname{rot} \psi=\left(\frac{\partial \psi}{\partial x_{2}},-\frac{\partial \psi}{\partial x_{1}}\right)
$$

for a scalar ψ.
The basic homogeneous system of equations of motion in the linear theory thermoelasticity with microtemperatures for isotropic materials can be written as [4]

$$
\begin{align*}
& \mu \Delta \mathbf{u}+(\lambda+\mu) \text { graddiv } \mathbf{u}-\beta g r a d \theta-\rho \frac{\partial^{2} \mathbf{u}}{\partial t^{2}}=0 \\
& k_{6} \Delta \mathbf{w}+\left(k_{4}+k_{5}\right) \text { graddiv } \mathbf{w}-k_{3} \theta-k_{2} \mathbf{w}-b \frac{\partial \mathbf{w}}{\partial t}=0 \tag{1}\\
& k \Delta \theta-c T_{0} \frac{\partial}{\partial t} \theta-\beta T_{0} \frac{\partial}{\partial t} \operatorname{div} \mathbf{u}+k_{1} \operatorname{div} \mathbf{w}=0
\end{align*}
$$

where $\mathbf{u}=\left(u_{1}, u_{2}\right)^{T}$ is the displacement vector, $\mathbf{w}=\left(w_{1}, w_{2}\right)^{T}$ is the microtemperature vector, θ is the temperature measured from the constant absolute temperature $T_{0} \quad\left(T_{0}>0\right)$ by the natural state, ρ is the reference mass density $(\rho>0), \Delta$ is the 2D Laplace operator. The superscript " T " denotes transposition,
$\lambda, \quad \mu, \quad \beta, \quad b, \quad c, \quad k, \quad k_{j}, \quad j=1, \ldots, 6$, are constitutive coefficients and they satisfy the following conditions

$$
\begin{aligned}
& \lambda+\mu>0 \quad \mu>0 \quad k_{5} \pm k_{6}>0 \quad\left(k_{1}+T_{0} k_{3}\right)^{2}<4 T_{0} k k_{2} \\
& b>0 \quad c>0 \quad k>0 \quad 2 k_{4}+k_{5}+k_{6}>0 .
\end{aligned}
$$

Let $\tau=\sigma+i \omega$ be a complex variable, $\Pi_{\sigma_{0}}=\left\{\tau: \sigma>\sigma_{0}>0,-\infty<\omega<+\infty\right\}$ is the half-plane. By applying formally the Laplace transform, as in the classical theory of thermoelasticity, from Eq.(1) we obtain (for details see [5],[16])

$$
\begin{align*}
& \mu \Delta \tilde{\mathbf{u}}+(\lambda+\mu) \operatorname{graddiv} \tilde{\mathbf{u}}-\beta \operatorname{grad} \tilde{\theta}-\rho \tau^{2} \tilde{\mathbf{u}}=0 \\
& k_{6} \Delta \tilde{\mathbf{w}}+\left(k_{4}+k_{5}\right) \operatorname{graddiv} \tilde{\mathbf{w}}-k_{3} \operatorname{grad} \tilde{\theta}-k_{8} \tilde{\mathbf{w}}=0 \tag{2}\\
& \left(k \Delta-a_{0}\right) \tilde{\theta}-\beta_{0} \operatorname{div} \tilde{\mathbf{u}}+k_{1} \operatorname{div} \tilde{\mathbf{w}}=0
\end{align*}
$$

where $k_{8}=k_{2}-b \tau, b>0, a_{0}=-c T_{0} \tau, \beta_{0}=-\tau \beta T_{0}, \tilde{\mathbf{u}}=\left(\tilde{u}_{1}, \tilde{u}_{2}\right), \tilde{\mathbf{w}}=\left(\tilde{w}_{1}, \tilde{w}_{2}\right)$.
We assume that the inversion formulas

$$
\begin{aligned}
& \mathbf{u}(\mathbf{x}, t)=\frac{1}{2 \pi i} \int_{\substack{\sigma-i \infty \\
\sigma+i \infty}}^{\sigma+i \infty} \tilde{\mathbf{u}}\left(x_{1}, x_{2}, \tau\right) \exp (\tau t) d \tau \\
& \mathbf{w}(\mathbf{x}, t)=\frac{1}{2 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} \tilde{\mathbf{w}}\left(x_{1}, x_{2}, \tau\right) \exp (\tau t) d \tau \\
& \theta(\mathbf{x}, t)=\frac{1}{2 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} \tilde{\theta}\left(x_{1}, x_{2}, \tau\right) \exp (\tau t) d \tau
\end{aligned}
$$

are valid at any point t.

3. A representation of regular solutions

Let further $\mathbf{U}=(\tilde{\mathbf{u}}, \tilde{\mathbf{w}}, \tilde{\theta})$, is a regular solutions of the homogeneous system (2).

Theorem 3.1: The regular solution $\boldsymbol{U}=(\tilde{\boldsymbol{u}}, \tilde{\boldsymbol{w}}, \tilde{\theta})$ of the system (2) admits in the domain of regularity a representation

$$
\boldsymbol{U}=\left(\boldsymbol{u}^{(1)}+\boldsymbol{u}^{(2)}, \boldsymbol{w}^{(1)}+\boldsymbol{w}^{(2)}, \tilde{\theta}\right)
$$

where $\boldsymbol{u}^{(1)}, \quad \boldsymbol{u}^{(2)}, \quad \boldsymbol{w}^{(1)}$ and $\boldsymbol{w}^{(2)}$ are the regular vectors, satisfying the equations

$$
\begin{aligned}
& \left(\Delta-\lambda_{4}^{2}\right) \boldsymbol{u}^{(2)}=0, \quad\left(\Delta-\lambda_{5}^{2}\right) \boldsymbol{w}^{(2)}=0, \quad \operatorname{rot} \boldsymbol{u}^{(1)}=0 \\
& \operatorname{rot} \boldsymbol{w}^{(1)}=0, \quad \operatorname{div} \boldsymbol{u}^{(2)}=0, \quad \operatorname{div} \boldsymbol{w}^{(2)}=0 \\
& \left(\Delta+\lambda_{1}^{2}\right)\left(\Delta+\lambda_{2}^{2}\right)\left(\Delta+\lambda_{3}^{2}\right) \boldsymbol{u}^{(1)}=0 \\
& \left(\Delta+\lambda_{1}^{2}\right)\left(\Delta+\lambda_{2}^{2}\right)\left(\Delta+\lambda_{3}^{2}\right) \boldsymbol{w}^{(1)}=0 \\
& \left(\Delta+\lambda_{1}^{2}\right)\left(\Delta+\lambda_{2}^{2}\right)\left(\Delta+\lambda_{3}^{2}\right) \tilde{\theta}=0
\end{aligned}
$$

$\lambda_{j}^{2}, \quad j=1,2,3$, are roots of equation $\operatorname{det} D(-\xi)=0$, where

$$
\begin{gathered}
\operatorname{det} D(\Delta)=\left(\mu_{0} \Delta-\rho \tau^{2}\right) k_{1} k_{3} \Delta+\left(k_{7} \Delta-k_{8}\right)\left[\left(\mu_{0} \Delta-\rho \tau^{2}\right)\left(k \Delta-a_{0}\right)-\beta \beta_{0} \Delta\right] \\
\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}=-\frac{1}{\mu_{0} k k_{7}}\left[\mu_{0}\left(a_{0} k_{7}+k k_{8}-k_{1} k_{3}\right)+\rho \tau^{2} k k_{7}+\beta \beta_{0} k_{7}\right] \\
\lambda_{1}^{2} \lambda_{2}^{2}+\lambda_{1}^{2} \lambda_{3}^{2}+\lambda_{2}^{2} \lambda_{3}^{2}=\frac{1}{\mu_{0} k k_{7}}\left[k_{8}\left(\mu_{0} a_{0}+\beta \beta_{0}\right)+\rho \tau^{2}\left(a_{0} k_{7}+k k_{8}-k_{1} k_{3}\right)\right] \\
\lambda_{1}^{2} \lambda_{2}^{2} \lambda_{3}^{2}=-\frac{a_{0} k_{8} \rho \tau^{2}}{\mu_{0} k k_{7}}, \quad \mu_{0}=\lambda+2 \mu, \quad k_{7}=k_{4}+k_{5}+k_{6}>0
\end{gathered}
$$

and the constants λ_{4}^{2} and λ_{5}^{2} are determined by the formulas

$$
\lambda_{4}^{2}:=\frac{\tau^{2} \rho}{\mu}, \quad \lambda_{5}^{2}:=\frac{k_{8}}{k_{6}}
$$

The quantities $\lambda_{j}^{2}, \quad j=1, . ., 5$ are complex numbers and are chosen so as to ensure positivity of their imaginary part, i.e. it is assumed that $\operatorname{Im} \lambda_{j}^{2}>0$.

Proof: Let $\mathbf{U}=(\tilde{\mathbf{u}}, \tilde{\mathbf{w}}, \tilde{\theta})$ be a regular solution of the system (2). Taking into account the identity

$$
\begin{equation*}
\Delta \mathbf{v}=\operatorname{graddiv} \mathbf{v}-\operatorname{rotrot} \mathbf{v} \tag{3}
\end{equation*}
$$

where

$$
\text { rotrot } \mathbf{v}:=\left(\frac{\partial}{\partial x_{2}}\left(\frac{\partial v_{2}}{\partial x_{1}}-\frac{\partial v_{1}}{\partial x_{2}}\right),-\frac{\partial}{\partial x_{1}}\left(\frac{\partial v_{2}}{\partial x_{1}}-\frac{\partial v_{1}}{\partial x_{2}}\right)\right),
$$

from the equation (2) we obtain

$$
\tilde{\mathbf{u}}=\frac{\mu_{0}}{\rho \tau^{2}} \operatorname{graddiv} \tilde{\mathbf{u}}-\frac{\mu}{\rho \tau^{2}} \operatorname{rotrot} \tilde{\mathbf{u}}-\frac{\beta}{\rho \tau^{2}} \operatorname{grad} \tilde{\theta}
$$

$$
\tilde{\mathbf{w}}=\frac{k_{7}}{k_{8}} \operatorname{graddiv} \tilde{\mathbf{w}}-\frac{k_{6}}{k_{8}} \operatorname{rotrot} \tilde{\mathbf{w}}-\frac{k_{3}}{k_{8}} \operatorname{grad} \tilde{\theta}
$$

We introduce the notations

$$
\begin{gather*}
\boldsymbol{u}^{(1)}=\frac{\mu_{0}}{\rho \tau^{2}} \text { graddiv } \tilde{\mathbf{u}}-\frac{\beta}{\rho \tau^{2}} \operatorname{grad} \tilde{\theta} \tag{4}\\
\boldsymbol{u}^{(2)}=-\frac{\mu}{\rho \tau^{2}} \operatorname{rotrot} \tilde{\mathbf{u}} \tag{5}\\
\boldsymbol{w}^{(1)}=\frac{k_{7}}{k_{8}} \operatorname{graddiv} \tilde{\mathbf{w}}-\frac{k_{3}}{k_{8}} \operatorname{grad} \tilde{\theta} \tag{6}\\
\boldsymbol{w}^{(2)}=-\frac{k_{6}}{k_{8}} \operatorname{rotrot} \tilde{\mathbf{w}} \tag{7}
\end{gather*}
$$

Clearly

$$
\begin{equation*}
\tilde{\mathbf{u}}=\boldsymbol{u}^{(1)}+\boldsymbol{u}^{(2)}, \quad \tilde{\mathbf{w}}=\boldsymbol{w}^{(1)}+\boldsymbol{w}^{(2)} \tag{8}
\end{equation*}
$$

Acting with the operator rot on (4) and (6) and considering the identity rotgrad \equiv 0 and with the operator $d i v$ on (5), (7) we have

$$
\begin{equation*}
\operatorname{rot} \boldsymbol{u}^{(1)}=0, \quad \operatorname{rot} \boldsymbol{w}^{(1)}=0, \quad \operatorname{div} \boldsymbol{u}^{(2)}=0, \quad \text { and } \quad \operatorname{div} \boldsymbol{w}^{(2)}=0 \tag{9}
\end{equation*}
$$

respectively. Taking into account the last equalities, we have from equations (5)-(7)

$$
\begin{equation*}
\left(\Delta-\lambda_{4}^{2}\right) \boldsymbol{u}^{(2)}=0, \quad\left(\Delta-\lambda_{5}^{2}\right) \boldsymbol{w}^{(2)}=0 \tag{10}
\end{equation*}
$$

Applying the operator div to system (2), and taking into account the identity divgrad $\equiv \Delta$, we obtain

$$
\begin{align*}
& \left(\mu_{0} \Delta-\rho \tau^{2}\right) \operatorname{div} \tilde{\mathbf{u}}-\beta \Delta \tilde{\theta}=0 \\
& \left(k_{7} \Delta-k_{8}\right) \operatorname{div} \tilde{\mathbf{w}}-k_{3} \Delta \tilde{\theta}=0 \tag{11}\\
& k \Delta \tilde{\theta}+k_{1} \operatorname{div} \tilde{\mathbf{w}}-\beta_{0} \operatorname{div} \tilde{\mathbf{u}}-a_{0} \tilde{\theta}=0
\end{align*}
$$

The system (11) may be written as

$$
D(\Delta) \Psi:=\left(\begin{array}{lrr}
\mu_{0} \Delta-\rho \tau^{2} & 0 & -\beta \Delta \tag{12}\\
0 & k_{7} \Delta-k_{8} & -k_{3} \Delta \\
-\beta_{0} & k_{1} & k \Delta-a_{0}
\end{array}\right) \Psi=0,
$$

where $\Psi=(\operatorname{div} \tilde{\mathbf{u}}, \operatorname{div} \tilde{\mathbf{w}}, \tilde{\theta})^{T}$. It is easily seen that

$$
\begin{align*}
& \left(\Delta+\lambda_{1}^{2}\right)\left(\Delta+\lambda_{2}^{2}\right)\left(\Delta+\lambda_{3}^{2}\right) \operatorname{div} \tilde{\mathbf{u}}=0 \\
& \left(\Delta+\lambda_{1}^{2}\right)\left(\Delta+\lambda_{2}^{2}\right)\left(\Delta+\lambda_{3}^{2}\right) \operatorname{div} \tilde{\mathbf{w}}=0 \tag{13}\\
& \left(\Delta+\lambda_{1}^{2}\right)\left(\Delta+\lambda_{2}^{2}\right)\left(\Delta+\lambda_{3}^{2}\right) \tilde{\theta}=0
\end{align*}
$$

where λ_{j}^{2} are the roots of the equation $D(-\xi)=0$ (with respect to ξ.) Applying the operator $\left(\Delta+\lambda_{1}^{2}\right)\left(\Delta+\lambda_{2}^{2}\right)\left(\Delta+\lambda_{3}^{2}\right)$ to Eqs. (4),(6) and taking into account the the latter relations we obtain

$$
\begin{align*}
& \left(\Delta+\lambda_{1}^{2}\right)\left(\Delta+\lambda_{2}^{2}\right)\left(\Delta+\lambda_{3}^{2}\right) \mathbf{u}^{(\mathbf{1})}=\mathbf{0} \\
& \left(\Delta+\lambda_{1}^{2}\right)\left(\Delta+\lambda_{2}^{2}\right)\left(\Delta+\lambda_{3}^{2}\right) \mathbf{w}^{(\mathbf{1})}=\mathbf{0} \tag{14}\\
& \left(\Delta+\lambda_{1}^{2}\right)\left(\Delta+\lambda_{2}^{2}\right)\left(\Delta+\lambda_{3}^{2}\right) \tilde{\theta}=0
\end{align*}
$$

The latter formulas prove the theorem.
Theorem 3.2: The regular solution $\boldsymbol{U}=(\tilde{\boldsymbol{u}}, \tilde{\boldsymbol{w}}, \tilde{\theta}) \in C^{2}(D)$ of system (2) is represented as the sum

$$
\begin{equation*}
\tilde{\boldsymbol{u}}=\sum_{j=1}^{4} \boldsymbol{u}^{(j)}(\boldsymbol{x}), \quad \tilde{\boldsymbol{w}}=\sum_{j=1,2,3,5} \boldsymbol{w}^{(j)}(\boldsymbol{x}), \quad \tilde{\theta}=\sum_{j=1}^{3} \varphi_{j} \tag{15}
\end{equation*}
$$

where $\boldsymbol{u}^{(j)}, \boldsymbol{w}^{(j)}$ and φ_{j} are regular functions satisfying the following equations

$$
\begin{align*}
& \left(\Delta+\lambda_{j}^{2}\right) \boldsymbol{u}^{(j)}=0, \quad\left(\Delta+\lambda_{l}^{2}\right) \boldsymbol{w}^{(l)}=0, \quad\left(\Delta+\lambda_{m}^{2}\right) \varphi_{m}=0, \quad\left(\Delta-\lambda_{4}^{2}\right) \boldsymbol{u}^{(4)}=0 \\
& \left(\Delta-\lambda_{5}^{2}\right) \boldsymbol{w}^{(5)}=0, \quad j, l, m=1,2,3, \quad \operatorname{div} \boldsymbol{u}^{4}=0, \quad \operatorname{div} \boldsymbol{w}^{5}=0 \tag{16}
\end{align*}
$$

Proof: Applying to both sides of the equation (2) the operator $\left(\Delta+\lambda_{1}^{2}\right)(\Delta+$ $\left.\lambda_{2}^{2}\right)\left(\Delta+\lambda_{3}^{2}\right)$ and taking into account the relations (11),(12) and (13), we obtain

$$
\begin{align*}
& \left(\Delta+\lambda_{1}^{2}\right)\left(\Delta+\lambda_{2}^{2}\right)\left(\Delta+\lambda_{3}^{2}\right)\left(\Delta-\lambda_{4}^{2}\right) \tilde{\mathbf{u}}=0 \\
& \left(\Delta+\lambda_{1}^{2}\right)\left(\Delta+\lambda_{2}^{2}\right)\left(\Delta+\lambda_{3}^{2}\right)\left(\Delta-\lambda_{5}^{2}\right) \tilde{\boldsymbol{w}}=0 \tag{17}\\
& \left(\Delta+\lambda_{1}^{2}\right)\left(\Delta+\lambda_{2}^{2}\right)\left(\Delta+\lambda_{3}^{2}\right) \tilde{\theta}=0
\end{align*}
$$

We introduce the notations

$$
\begin{aligned}
& \mathbf{u}^{(1)}=-\frac{\left(\Delta+\lambda_{2}^{2}\right)\left(\Delta+\lambda_{3}^{2}\right)\left(\Delta-\lambda_{4}^{2}\right)}{\left(\lambda_{1}^{2}-\lambda_{2}^{2}\right)\left(\lambda_{1}^{2}-\lambda_{3}^{2}\right)\left(\lambda_{1}^{2}+\lambda_{4}^{2}\right)} \tilde{\mathbf{u}}, \quad \mathbf{u}^{(2)}=-\frac{\left(\Delta+\lambda_{1}^{2}\right)\left(\Delta+\lambda_{3}^{2}\right)\left(\Delta-\lambda_{4}^{2}\right)}{\left(\lambda_{2}^{2}-\lambda_{1}^{2}\right)\left(\lambda_{2}^{2}-\lambda_{3}^{2}\right)\left(\lambda_{2}^{2}+\lambda_{4}^{2}\right)} \tilde{\mathbf{u}} \\
& \mathbf{u}^{(3)}=-\frac{\left(\Delta+\lambda_{1}^{2}\right)\left(\Delta+\lambda_{2}^{2}\right)\left(\Delta-\lambda_{4}^{2}\right)}{\left(\lambda_{3}^{2}-\lambda_{1}^{2}\right)\left(\lambda_{3}^{2}-\lambda_{2}^{2}\right)\left(\lambda_{3}^{2}+\lambda_{4}^{2}\right)} \tilde{\mathbf{u}}, \quad \mathbf{u}^{(4)}=\frac{\left(\Delta+\lambda_{1}^{2}\right)\left(\Delta+\lambda_{2}^{2}\right)\left(\Delta+\lambda_{3}^{2}\right)}{\left(\lambda_{4}^{2}+\lambda_{1}^{2}\right)\left(\lambda_{4}^{2}+\lambda_{2}^{2}\right)\left(\lambda_{4}^{2}+\lambda_{3}^{2}\right)} \tilde{\mathbf{u}}
\end{aligned}
$$

$$
\begin{align*}
& \mathbf{w}^{(1)}=-\frac{\left(\Delta+\lambda_{2}^{2}\right)\left(\Delta+\lambda_{3}^{2}\right)\left(\Delta-\lambda_{5}^{2}\right)}{\left(\lambda_{1}^{2}-\lambda_{2}^{2}\right)\left(\lambda_{1}^{2}-\lambda_{3}^{2}\right)\left(\lambda_{1}^{2}+\lambda_{5}^{2}\right)} \tilde{\mathbf{w}}, \quad \mathbf{w}^{(2)}=-\frac{\left(\Delta+\lambda_{1}^{2}\right)\left(\Delta+\lambda_{3}^{2}\right)\left(\Delta-\lambda_{5}^{2}\right)}{\left(\lambda_{2}^{2}-\lambda_{1}^{2}\right)\left(\lambda_{2}^{2}-\lambda_{3}^{2}\right)\left(\lambda_{2}^{2}+\lambda_{5}^{2}\right)} \tilde{\mathbf{w}}, \\
& \mathbf{w}^{(3)}=-\frac{\left(\Delta+\lambda_{1}^{2}\right)\left(\Delta+\lambda_{2}^{2}\right)\left(\Delta-\lambda_{5}^{2}\right)}{\left(\lambda_{3}^{2}-\lambda_{1}^{2}\right)\left(\lambda_{3}^{2}-\lambda_{2}^{2}\right)\left(\lambda_{3}^{2}+\lambda_{5}^{2}\right)} \tilde{\mathbf{w}}, \quad \mathbf{w}^{(5)}=\frac{\left(\Delta+\lambda_{1}^{2}\right)\left(\Delta+\lambda_{2}^{2}\right)\left(\Delta+\lambda_{3}^{2}\right)}{\left(\lambda_{5}^{2}+\lambda_{1}^{2}\right)\left(\lambda_{5}^{2}+\lambda_{2}^{2}\right)\left(\lambda_{5}^{2}+\lambda_{3}^{2}\right)} \tilde{\mathbf{w}}, \\
& \varphi_{1}=\frac{\left(\Delta+\lambda_{2}^{2}\right)\left(\Delta+\lambda_{3}^{2}\right)}{\left(\lambda_{1}^{2}-\lambda_{2}^{2}\right)\left(\lambda_{1}^{2}-\lambda_{3}^{2}\right)} \tilde{\theta}, \quad \varphi_{2}=\frac{\left(\Delta+\lambda_{1}^{2}\right)\left(\Delta+\lambda_{3}^{2}\right)}{\left(\lambda_{2}^{2}-\lambda_{1}^{2}\right)\left(\lambda_{2}^{2}-\lambda_{3}^{2}\right)} \tilde{\theta}, \\
& \varphi_{3}=\frac{\left(\Delta+\lambda_{1}^{2}\right)\left(\Delta+\lambda_{2}^{2}\right)}{\left(\lambda_{3}^{2}-\lambda_{1}^{2}\right)\left(\lambda_{3}^{2}-\lambda_{2}^{2}\right)} \tilde{\theta} . \tag{18}
\end{align*}
$$

By virtue of (18), it follows

$$
\begin{gather*}
\tilde{\mathbf{u}}=\sum_{j=1}^{4} \mathbf{u}^{(j)}, \quad \tilde{\mathbf{w}}=\sum_{j=1,2,3,5} \mathbf{w}^{(j)}, \quad \tilde{\theta}=\sum_{j=1}^{3} \varphi_{j}, \tag{19}\\
\left(\Delta+\lambda_{j}^{2}\right) \mathbf{u}^{(j)}=0, \quad\left(\Delta+\lambda_{l}^{2}\right) \mathbf{w}^{(l)}=0, \quad\left(\Delta+\lambda_{m}^{2}\right) \varphi_{m}=0, \quad\left(\Delta-\lambda_{4}^{2}\right) \mathbf{u}^{(4)}=0, \\
\left(\Delta-\lambda_{5}^{2}\right) \mathbf{w}^{(5)}=0, \quad j=1,2,3, \quad l=1,2,3, \quad m=1,2,3 . \tag{20}
\end{gather*}
$$

Thus, the regular in D solution of system (2) is represented as a sum of functions $\mathbf{u}^{(j)}, \mathbf{w}^{(j)}, \varphi_{j}$, which satisfies Helmholtz' equations in D.

Theorem 3.3: In the domain of regularity the regular solution of system (2) can be represented in the form

$$
\begin{equation*}
\tilde{\boldsymbol{u}}=\sum_{j=1}^{3} a_{j} \operatorname{grad} \varphi_{j}+\boldsymbol{u}^{(4)}, \quad \tilde{\boldsymbol{w}}=\sum_{j=1}^{3} b_{j} g r a d \varphi_{j}+\boldsymbol{w}^{(5)}, \quad \tilde{\theta}=\sum_{j=1}^{3} \varphi_{j}, \tag{21}
\end{equation*}
$$

where

$$
\begin{align*}
& \left(\Delta+\lambda_{j}^{2}\right) \varphi_{j}=0, \quad j=1,2,3, \quad\left(\Delta-\lambda_{4}^{2}\right) \boldsymbol{u}^{(4)}=0 \tag{22}\\
& \left(\Delta-\lambda_{5}^{2}\right) \boldsymbol{w}^{(5)}=0, \quad \operatorname{div} \boldsymbol{u}^{(4)}=0, \quad \operatorname{div} \boldsymbol{w}^{(5)}=0,
\end{align*}
$$

a_{j} and b_{j} are constants.
Proof: Substituting $\tilde{\mathbf{u}}, \quad \tilde{\mathbf{w}}$ and $\tilde{\theta}$ from (15) into (2), after some calculations we obtain

$$
\begin{align*}
& \left(\mu \Delta-\rho \tau^{2}\right)\left(k_{7} \Delta-k_{8}\right)\left(\boldsymbol{u}^{(1)}+\boldsymbol{u}^{(2)}+\boldsymbol{u}^{(3)}\right) \\
& =\operatorname{grad}\left[-\frac{(\lambda+\mu) k_{1} k_{3}}{\beta_{0}}\left(\lambda_{1}^{2} \varphi_{1}+\lambda_{2}^{2} \varphi_{2}+\lambda_{3}^{2} \varphi_{3}\right)+\beta\left(k_{7} \Delta-k_{8}\right)\left(\varphi_{1}+\varphi_{2}+\varphi_{3}\right)\right. \tag{23}\\
& \left.+\frac{(\lambda+\mu)}{\beta_{0}}\left(k \Delta-a_{0}\right)\left(k_{7} \Delta-k_{8}\right)\left(\varphi_{1}+\varphi_{2}+\varphi_{3}\right)\right] .
\end{align*}
$$

Equation (23) is satisfied by

$$
\begin{aligned}
& \left(\mu \Delta-\rho \tau^{2}\right)\left(k_{7} \Delta-k_{8}\right) \boldsymbol{u}^{(1)} \\
& =\left\{\frac{(\lambda+\mu)}{\beta_{0}}\left[\left(a_{0}+k \lambda_{1}^{2}\right)\left(k_{8}+k_{7} \lambda_{1}^{2}\right)-k_{1} k_{3} \lambda_{1}^{2}\right]-\beta\left(k_{8}+k_{7} \lambda_{1}^{2}\right)\right\} g r a d \varphi_{1}, \\
& \left(\mu \Delta-\rho \tau^{2}\right)\left(k_{7} \Delta-k_{8}\right) \boldsymbol{u}^{(2)} \\
& =\left\{\frac{(\lambda+\mu)}{\beta_{0}}\left[\left(a_{0}+k \lambda_{2}^{2}\right)\left(k_{8}+k_{7} \lambda_{2}^{2}\right)-k_{1} k_{3} \lambda_{2}^{2}\right]-\beta\left(k_{8}+k_{7} \lambda_{2}^{2}\right)\right\} g r a d \varphi_{2}, \\
& \left(\mu \Delta-\rho \tau^{2}\right)\left(k_{7} \Delta-k_{8}\right) \boldsymbol{u}^{(3)} \\
& =\left\{\frac{(\lambda+\mu)}{\beta_{0}}\left[\left(a_{0}+k \lambda_{3}^{2}\right)\left(k_{8}+k_{7} \lambda_{3}^{2}\right)-k_{1} k_{3} \lambda_{3}^{2}\right]-\beta\left(k_{8}+k_{7} \lambda_{3}^{2}\right)\right\} \operatorname{grad} \varphi_{3} .
\end{aligned}
$$

The last identity gives

$$
\begin{equation*}
\boldsymbol{u}^{(1)}=a_{1} \operatorname{grad} \varphi_{1}, \quad \boldsymbol{u}^{(2)}=a_{2} \operatorname{grad} \varphi_{2}, \quad \boldsymbol{u}^{(3)}=a_{3} \operatorname{grad} \varphi_{3}, \tag{24}
\end{equation*}
$$

where

$$
a_{j}=\frac{-\beta}{\mu \lambda_{4}^{2}+\mu_{0} \lambda_{j}^{2}}, \quad j=1,2,3
$$

Quite similarly we obtain

$$
\boldsymbol{w}^{(1)}=b_{1} \operatorname{grad} \varphi_{1}, \quad \boldsymbol{w}^{(2)}=b_{2} \operatorname{grad} \varphi_{2}, \quad \boldsymbol{w}^{(3)}=b_{3} \operatorname{grad} \varphi_{3},
$$

where

$$
b_{j}=\frac{-k_{3}}{k_{6} \lambda_{5}^{2}+k_{7} \lambda_{j}^{2}}, \quad j=1,2,3
$$

Finally, the general solution of the equation (2) takes the form

$$
\begin{align*}
& \tilde{\mathbf{u}}=\sum_{j=1}^{3} a_{j} g r a d \varphi_{j}+\boldsymbol{u}^{(4)}, \quad \tilde{\mathbf{w}}=\sum_{j=1}^{3} b_{j} g r a d \varphi_{j}+\boldsymbol{w}^{(5)}, \quad \tilde{\theta}=\sum_{j=1}^{3} \varphi_{j} \\
& \left(\Delta+\lambda_{j}^{2}\right) \varphi_{j}=0, \quad j=1,2,3, \quad\left(\Delta-\lambda_{4}^{2}\right) \boldsymbol{u}^{(4)}=0 \tag{25}\\
& \left(\Delta-\lambda_{5}^{2}\right) \boldsymbol{w}^{(5)}=0, \quad \operatorname{div} \boldsymbol{u}^{(4)}=0, \quad \operatorname{div} \boldsymbol{w}^{(5)}=0
\end{align*}
$$

4. Matrix of fundamental solutions

System (2) may be written as

$$
\begin{equation*}
\mathbf{A}(\partial \mathbf{x}, \tau) \mathbf{U}=0 \tag{26}
\end{equation*}
$$

where $\mathbf{A}(\partial \mathbf{x}, \tau)$ is a matrix differential operator corresponding left-hand side of the equation(2)

$$
\begin{gathered}
\mathbf{A}(\partial \mathbf{x}, \tau)=\left\|A_{l j}(\partial \mathbf{x})\right\|_{5 x 5} \\
A_{\alpha \gamma}=\mu \delta_{\alpha \gamma}\left(\Delta-\rho \tau^{2}\right)+(\lambda+\mu) \frac{\partial^{2}}{\partial x_{\alpha} \partial x_{\gamma}}, \\
A_{\alpha+2 ; \gamma+2}=\delta_{\alpha \gamma}\left(k_{6} \Delta-k_{8}\right)+\left(k_{4}+k_{5}\right) \frac{\partial^{2}}{\partial x_{\alpha} \partial x_{\gamma}}, \\
A_{\alpha, \gamma+2}=A_{\alpha+2, \gamma}=0, \quad A_{\alpha 5}=-\beta \frac{\partial}{\partial x_{\alpha}}, \quad A_{\alpha+2 ; 5}=-k_{3} \frac{\partial}{\partial x_{\alpha}} \\
A_{5 \gamma}=-\beta_{0} \frac{\partial}{\partial x_{\gamma}}, \quad A_{5 ; \gamma+2}=k_{1} \frac{\partial}{\partial x_{\gamma}}, \quad A_{55}=k \Delta-a_{0}, \quad \alpha, \gamma=1,2
\end{gathered}
$$

$\delta_{\alpha \gamma}$ is the Kronecker delta, $\mathbf{U}=(\tilde{\mathbf{u}}, \tilde{\mathbf{w}}, \tilde{\theta})$.
The matrix $\quad \widetilde{\mathbf{A}}(\partial \mathbf{x}, \tau)=\left\|\widetilde{A}_{l j}(\partial \mathbf{x}, \tau)\right\|_{5 x 5}=\mathbf{A}^{T}(-\partial \mathbf{x}, \tau)$, where $\widetilde{A}_{l j}(\partial \mathbf{x}, \tau):=$ $A_{j l}(-\partial \mathbf{x}, \tau)$, will be called the associated operator to the differential operator $\mathbf{A}(\partial \mathbf{x}, \tau)$.

We assume that $\mu(\lambda+2 \mu) k k_{6} k_{7} \neq 0, \quad$ where $\quad k_{7}=k_{4}+k_{5}+k_{6}$. Obviously, if the latter condition is satisfied, then $\mathbf{A}(\partial \mathbf{x}, \tau)$ is the elliptic differential operator.

We introduce the matrix differential operator $\mathbf{B}(\partial \mathbf{x}, \tau)$ consisting of cofactors of elements of the transposed matrix \mathbf{A}^{T} divided on $\mu(\lambda+2 \mu) k k_{6} k_{7} \neq 0$:

$$
\mathbf{B}(\partial \mathbf{x}, \tau):=\left\|B_{l j}(\partial \mathbf{x})\right\|_{5 x 5}
$$

where

$$
\begin{aligned}
& B_{\alpha \gamma}=B_{11}^{*} \delta_{\alpha \gamma}-B_{12}^{*} \xi_{\alpha} \xi_{\gamma}, \quad B_{\alpha+2, \gamma+2}=B_{33}^{*} \delta_{\alpha \gamma}-B_{34}^{*} \xi_{\alpha} \xi_{\gamma} \\
& B_{1 \gamma+2}=B_{13}^{*} \xi_{1} \xi_{\gamma}, \quad B_{2 \gamma+2}=B_{13}^{*} \xi_{2} \xi_{\gamma}, \quad B_{\alpha 5}=B_{15}^{*} \xi_{\alpha}, \quad B_{5 \alpha}=B_{51}^{*} \xi_{\alpha} \\
& B_{5 \gamma+2}=B_{53}^{*} \xi_{\gamma}, \quad \xi_{\alpha}:=\frac{\partial}{\partial x_{\alpha}}, \quad \alpha, \gamma=1,2, \quad B_{55}=B_{55}^{*} \\
& B_{3 \gamma}=B_{31}^{*} \xi_{1} \xi_{\gamma}, \quad B_{4 \gamma}=B_{31}^{*} \xi_{2} \xi_{\gamma}, \quad B_{2+\gamma, 5}=B_{35}^{*} \xi_{\gamma} \\
& B_{11}^{*}=\frac{1}{\mu}\left(\Delta+\lambda_{1}^{2}\right)\left(\Delta+\lambda_{2}^{2}\right)\left(\Delta+\lambda_{3}^{2}\right)\left(\Delta-\lambda_{5}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& B_{12}^{*}=\frac{\left(\Delta-\lambda_{5}^{2}\right)}{k k_{7} \mu \mu_{0}}\left\{-\beta \beta_{0}\left(k_{7} \Delta-k_{8}\right)+(\lambda+\mu)\left[\left(k \Delta-a_{0}\right)\left(k_{7} \Delta-k_{8}\right)+k_{1} k_{3} \Delta\right]\right\}, \\
& B_{13}^{*}=-\frac{\beta k_{1}}{\mu_{0} k k_{7}}\left(\left(\Delta-\lambda_{4}^{2}\right)\left(\Delta-\lambda_{5}^{2}\right), \quad B_{15}^{*}=\frac{\beta}{\mu_{0} k k_{7}}\left(\Delta-\lambda_{4}^{2}\right)\left(\Delta-\lambda_{5}^{2}\right)\left(k_{7} \Delta-k_{8}\right),\right. \\
& B_{51}^{*}=\frac{h \beta_{0}}{\mu_{0} k k_{7}}\left(\Delta-\lambda_{4}^{2}\right)\left(\Delta-\lambda_{5}^{2}\right)\left(k_{7} \Delta-k_{8}\right), \quad j=1,2, \quad \mu_{0}:=\lambda+2 \mu, \\
& B_{53}^{*}=-\frac{h k_{1}}{\mu_{0} k k_{7}}\left(\Delta-\lambda_{4}^{2}\right)\left(\Delta-\lambda_{5}^{2}\right)\left(\mu_{0} \Delta-\rho \tau^{2}\right), \\
& B_{55}^{*}=\frac{1}{\mu_{0} k k_{7}}\left(\Delta-\lambda_{4}^{2}\right)\left(\Delta-\lambda_{5}^{2}\right)\left(\mu_{0} \Delta-\rho \tau^{2}\right)\left(k_{7} \Delta-k_{8}\right), \\
& B_{31}^{*}=\frac{k_{3} \beta_{0}}{\mu_{0} k k_{7}}\left(\left(\Delta-\lambda_{4}^{2}\right)\left(\Delta-\lambda_{5}^{2}\right) \quad B_{35}^{*}=\frac{k_{3}}{\mu_{0} k k_{7}}\left(\Delta-\lambda_{4}^{2}\right)\left(\Delta-\lambda_{5}^{2}\right)\left(\mu_{0} \Delta-\rho \tau^{2}\right),\right. \\
& B_{33}^{*}=\frac{1}{k_{6}}\left(\Delta+\lambda_{1}^{2}\right)\left(\Delta+\lambda_{2}^{2}\right)\left(\Delta+\lambda_{3}^{2}\right)\left(\Delta-\lambda_{4}^{2}\right), \\
& B_{34}^{*}=\frac{\left(\Delta-\lambda_{4}^{2}\right)}{\mu_{0} k k_{6} k_{7}}\left\{k_{1} k_{3}\left(\mu_{0} \Delta-\rho \tau^{2}\right)+\left(k_{4}+k_{5}\right)\left[\left(\mu_{0} \Delta-\rho \tau^{2}\right)\left(k \Delta-a_{0}\right)-\beta \beta_{0} \Delta\right]\right\} .
\end{aligned}
$$

Substituting the vector $\mathbf{U}(\mathbf{x})=\mathbf{B}(\partial \mathbf{x}, \tau) \boldsymbol{\Psi}$ into (26), where $\boldsymbol{\Psi}=\mathbf{E} \psi$, is a fivecomponent vector function, \mathbf{E} is an unit matrix, ψ is scalar function, we get

$$
\left(\Delta+\lambda_{1}^{2}\right)\left(\Delta+\lambda_{2}^{2}\right)\left(\Delta+\lambda_{3}^{2}\right)\left(\Delta-\lambda_{4}^{2}\right)\left(\Delta-\lambda_{5}^{2}\right) \psi=0 .
$$

Whence, applying the method developed in $[16,17]$, after some calculations, the function ψ can be represented as

$$
\begin{equation*}
\psi=\sum_{j=1}^{3} d_{j} H_{0}^{(1)}\left(\lambda_{j} r\right)+\sum_{j=4}^{5} d_{j} H_{0}^{(1)}\left(i \lambda_{j} r\right) \tag{27}
\end{equation*}
$$

where

$$
\begin{aligned}
& \sum_{j=1}^{5} d_{j}=0, \quad \sum_{j=1}^{3} d_{j}\left(\lambda_{4}^{2}+\lambda_{j}^{2}\right)\left(\lambda_{5}^{2}+\lambda_{j}^{2}\right)=0, \\
& d_{1}^{-1}=\left(\lambda_{1}^{2}-\lambda_{2}^{2}\right)\left(\lambda_{1}^{2}-\lambda_{3}^{2}\right)\left(\lambda_{1}^{2}+\lambda_{4}^{2}\right)\left(\lambda_{1}^{2}+\lambda_{5}^{2}\right), \\
& d_{2}^{-1}=\left(\lambda_{2}^{2}-\lambda_{1}^{2}\right)\left(\lambda_{2}^{2}-\lambda_{3}^{2}\right)\left(\lambda_{2}^{2}+\lambda_{4}^{2}\right)\left(\lambda_{2}^{2}+\lambda_{5}^{2}\right), \\
& d_{3}^{-1}=\left(\lambda_{3}^{2}-\lambda_{1}^{2}\right)\left(\lambda_{3}^{2}-\lambda_{2}^{2}\right)\left(\lambda_{3}^{2}+\lambda_{4}^{2}\right)\left(\lambda_{3}^{2}+\lambda_{5}^{2}\right), \\
& d_{4}^{-1}=\left(\lambda_{4}^{2}+\lambda_{1}^{2}\right)\left(\lambda_{4}^{2}+\lambda_{2}^{2}\right)\left(\lambda_{4}^{2}+\lambda_{3}^{2}\right)\left(\lambda_{4}^{2}-\lambda_{5}^{2}\right), \\
& d_{5}^{-1}=\left(\lambda_{5}^{2}+\lambda_{1}^{2}\right)\left(\lambda_{5}^{2}+\lambda_{2}^{2}\right)\left(\lambda_{5}^{2}+\lambda_{3}^{2}\right)\left(\lambda_{5}^{2}-\lambda_{4}^{2}\right),
\end{aligned}
$$

$H_{0}^{(1)}\left(\lambda_{m} r\right)$ is Hankel's function of the first kind with the index 0

$$
\begin{aligned}
& H_{0}^{(1)}\left(\lambda_{m} r\right)=\frac{2 i}{\pi} J_{0}\left(\lambda_{m} r\right) \ln r+\frac{2 i}{\pi}\left(\ln \frac{\lambda_{m}}{2}+C-\frac{i \pi}{2}\right) J_{0}\left(\lambda_{m} r\right) \\
& -\frac{2 i}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k}}{(k!)^{2}}\left(\frac{\lambda_{m} r}{2}\right)^{2 k}\left(\frac{1}{k}+\frac{1}{k-1}+\ldots+1\right) \\
& J_{0}\left(\lambda_{m} r\right)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(k!)^{2}}\left(\frac{\lambda_{m} r}{2}\right)^{2 k}, \quad r^{2}=\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}
\end{aligned}
$$

Substituting (27) into $\mathbf{U}=\mathbf{B} \boldsymbol{\Psi}$, we obtain the matrix of fundamental solutions of Eq. (26) which we denote by $\boldsymbol{\Gamma}(\mathbf{x}-\mathbf{y}, \tau)$

$$
\boldsymbol{\Gamma}(\mathbf{x}-\mathbf{y}, \tau)=\left\|\Gamma_{k j}(\mathbf{x}-\mathbf{y})\right\|_{5 x 5}
$$

where

$$
\begin{aligned}
& \Gamma_{\alpha \gamma}(\mathbf{x}-\mathbf{y})=\delta_{\alpha \gamma} \frac{H_{0}^{(1)}\left(i \lambda_{4} r\right)}{\mu}-\frac{\partial^{2} \Psi_{11}}{\partial x_{\alpha} \partial x_{\gamma}}, \\
& \Psi_{11}=\frac{H_{0}^{(1)}\left(i \lambda_{4} r\right)}{\mu \lambda_{4}^{2}}+\sum_{m=1}^{3} \frac{l_{m}}{\lambda_{m}^{2} \mu_{0} k k_{7}}\left[\left(k_{8}+k_{7} \lambda_{m}^{2}\right)\left(a_{0}+k \lambda_{m}^{2}\right)-k_{1} k_{3} \lambda_{m}^{2}\right] H_{0}^{(1)}\left(\lambda_{m} r\right), \\
& \Gamma_{\alpha+2, \gamma+2}(\mathbf{x}-\mathbf{y})=\delta_{\alpha \gamma} \frac{H_{0}^{(1)}\left(i \lambda_{5} r\right)}{k_{6}}-\frac{\partial^{2} \Psi_{33}}{\partial x_{\alpha} \partial x_{\gamma}}, \\
& \Psi_{33}=\frac{H_{0}^{(1)}\left(i \lambda_{5} r\right)}{k_{6} \lambda_{5}^{2}}+\sum_{m=1}^{3} \frac{l_{m}}{\lambda_{m}^{2} \mu_{0} k k_{7}}\left[\left(a_{0}+k \lambda_{m}^{2}\right)\left(\rho \tau^{2}+\mu_{0} \lambda_{m}^{2}\right)+\beta \beta_{0} \lambda_{m}^{2}\right] H_{0}^{(1)}\left(\lambda_{m} r\right), \\
& \left.\Gamma_{55}(\mathbf{x}-\mathbf{y})=\frac{1}{k k_{7} \mu_{0}} \sum_{m=1}^{3} l_{m}\left(\rho \tau^{2}+\mu_{0} \lambda_{m}^{2}\right)\left(k_{8}+k_{7} \lambda_{m}^{2}\right)\right\} H_{0}^{(1)}\left(\lambda_{m} r\right), \\
& \Gamma_{\alpha 5}(\mathbf{x - y})=-\beta \frac{\partial \psi_{15}}{\partial x_{\alpha}}, \quad \psi_{15}=\frac{1}{k k_{7} \mu_{0}} \sum_{m=1}^{3} l_{m}\left(k_{8}+k_{7} \lambda_{m}^{2}\right) H_{0}^{(1)}\left(\lambda_{m} r\right), \\
& \Gamma_{2+\alpha, 5}(\mathbf{x}-\mathbf{y})=-k_{3} \frac{\partial \psi_{51}}{\partial x_{\alpha}}, \quad \psi_{51}=\frac{1}{k k_{7} \mu_{0}} \sum_{m=1}^{3} l_{m}\left(\rho \tau^{2}+\mu_{0} \lambda_{m}^{2}\right) H_{0}^{(1)}\left(\lambda_{m} r\right), \\
& \Gamma_{5 \gamma}(\mathbf{x}-\mathbf{y})=-\beta_{0} \frac{\partial \psi_{15}}{\partial x_{\alpha}}, \quad \Gamma_{5,2+\gamma}(\mathbf{x}-\mathbf{y})=k_{1} \frac{\partial \psi_{51}}{\partial x_{\alpha}}, \quad \alpha, \gamma=1,2 \\
& \Gamma_{\alpha, 2+\gamma}(\mathbf{x}-\mathbf{y})=-k_{1} \beta \frac{\partial^{2} \psi_{13}}{\partial x_{\alpha} \partial x_{\gamma}}, \quad \Gamma_{\alpha+2, \gamma}(\mathbf{x}-\mathbf{y})=k_{3} \beta_{0} \frac{\partial^{2} \psi_{13}}{\partial x_{\alpha} \partial x_{\gamma}},
\end{aligned}
$$

$$
\begin{aligned}
& \psi_{13}=\frac{1}{k k_{7} \mu_{0}} \sum_{m=1}^{3} l_{m} H_{0}^{(1)}\left(\lambda_{m} r\right), \quad l_{m}=d_{m}\left(\lambda_{4}^{2}+\lambda_{m}^{2}\right)\left(\lambda_{5}^{2}+\lambda_{m}^{2}\right) \\
& \sum_{m=1}^{3} l_{m}=0, \quad \sum_{m=1}^{3} l_{m} \lambda_{m}^{2}=0, \quad \sum_{m=1}^{3} l_{m} \lambda_{m}^{4}=1
\end{aligned}
$$

Clearly

$$
\frac{\pi}{2 i} H_{0}^{(1)}(\lambda r)=\ln |\mathbf{x}-\mathbf{y}|-\frac{\lambda^{2}}{4}|\mathbf{x}-\mathbf{y}|^{2} \ln |\mathbf{x}-\mathbf{y}|+\text { const }+O\left(|\mathbf{x}-\mathbf{y}|^{2}\right)
$$

and we can directly prove the following
Theorem 4.1: The elements of the matrix $\boldsymbol{\Gamma}(\boldsymbol{x}-\boldsymbol{y}, \tau)$ have a logarithmic singularity as $\quad \boldsymbol{x} \rightarrow \boldsymbol{y} \quad$ and each column of the matrix $\quad \boldsymbol{\Gamma}(\boldsymbol{x}-\boldsymbol{y}, \tau)$, considered as a vector, is a solution of the system $\boldsymbol{A}(\partial \boldsymbol{x}, \tau) \boldsymbol{U}=0$ at every point \boldsymbol{x} in the space E_{2} except $\boldsymbol{x}=\boldsymbol{y}$.

Note that the matrix $\boldsymbol{\Gamma}(\mathbf{x}-\mathbf{y}, \tau), \quad$ is unsymmetrical and its rows considered as vectors do not satisfy (26).

According to the method developed in [16], we construct the matrix $\widetilde{\Gamma}(\mathbf{x}, \tau):=$ $\boldsymbol{\Gamma}^{T}(-\mathbf{x}, \tau)$ and the following basic properties of $\widetilde{\boldsymbol{\Gamma}}(\mathbf{x}, \tau)$ may be easily verified Theorem 4.2: Each column of the matrix $\widetilde{\boldsymbol{\sim}}(\boldsymbol{x}-\boldsymbol{y}, \tau)$, considered as a vector, satisfies the associated system $\quad \widetilde{\boldsymbol{A}}(\partial \boldsymbol{x}, \tau) \boldsymbol{V}=0, \quad$ at every point \boldsymbol{x} except $\boldsymbol{x}=\boldsymbol{y}$ and the elements of the matrix $\widetilde{\boldsymbol{\Gamma}}(\boldsymbol{x}-\boldsymbol{y}, \tau)$ have a logarithmic singularity as $\boldsymbol{x} \rightarrow \boldsymbol{y}$.

5. Matrix of singular solutions

In solving BVPs of the theory of thermoelasticity with microtemperatures by Boundary Integral Method, besides the matrix of fundamental solutions, some other matrices of singular solutions to system (2) are of great importance. Using the fundamental solutions, we can construct new so-called singular solutions of the system (26) by means of elementary functions, playing an important role in the theory of boundary-value problems.

We introduce the special generalized stress vector $\boldsymbol{R}^{\epsilon}(\partial \mathbf{x}, \mathbf{n}) \mathbf{U}$, which acts on the element of the arc with the unit normal $\mathbf{n}=\left(n_{1}, n_{2}\right)$ where

$$
\begin{gather*}
\boldsymbol{R}^{\epsilon}(\partial \mathbf{x}, \mathbf{n})=\left\|R_{l j}^{\epsilon}\right\|_{5 x 5} \\
R_{\alpha \gamma}^{\epsilon}=\delta_{\alpha \gamma} \mu \frac{\partial}{\partial \mathbf{n}}+(\lambda+\mu) n_{\alpha} \frac{\partial}{\partial x_{\gamma}}+\epsilon_{1} \mathcal{M}_{\alpha \gamma} \\
R_{\alpha, \gamma+2}^{\epsilon} \equiv R_{\alpha+2, \gamma}^{\epsilon} \equiv R_{\alpha+2,5}^{\epsilon} \equiv R_{5 \gamma}^{\epsilon} \equiv 0, \quad R_{\alpha 5}^{\epsilon}:=-\beta n_{\alpha} \tag{28}\\
R_{\alpha+2 ; \gamma+2}^{\epsilon}=\delta_{\alpha \gamma} k_{6} \frac{\partial}{\partial \mathbf{n}}+\left(k_{4}+k_{5}\right) n_{\alpha} \frac{\partial}{\partial x_{\gamma}}+\epsilon_{2} \mathcal{M}_{\alpha \gamma}
\end{gather*}
$$

$$
R_{5, \gamma+2}^{\epsilon}=k_{1} n_{\gamma}, \quad R_{55}^{\epsilon}=k \frac{\partial}{\partial \mathbf{n}}, \quad \mathcal{M}_{\alpha \gamma}=n_{\gamma} \frac{\partial}{\partial x_{\alpha}}-n_{\alpha} \frac{\partial}{\partial x_{\gamma}}
$$

here $\quad \boldsymbol{\epsilon}=\left(\epsilon_{1}, \epsilon_{2}\right), \quad \epsilon_{\alpha}, \quad \alpha=1,2$, are the arbitrary numbers. If $\epsilon_{1}=\mu, \quad \epsilon_{2}=k_{5}$, we have the stress vector and we denote it by $\boldsymbol{T}(\partial \mathbf{x}, \mathbf{n}) \mathbf{U}$. The operator, which we get from $\quad(\boldsymbol{R})^{\epsilon}(\partial \mathbf{x}, \mathbf{n}) \quad$ for $\epsilon_{1}=\frac{\mu(\lambda+\mu)}{\lambda+3 \mu}, \quad \epsilon_{2}=\frac{k_{6}\left(k_{4}+k_{5}\right)}{k_{4}+k_{5}+2 k_{6}}$, we denote by $\mathbf{N}(\partial \mathbf{x}, \mathbf{n})$ and the vector $\mathbf{N}(\partial \mathbf{x}, \mathbf{n}) \mathbf{U}$ will be called the pseudostress vector.

Applying the operator $\boldsymbol{R}^{\epsilon}(\partial \mathbf{x}, \mathbf{n})$ to the matrix $\boldsymbol{\Gamma}(\mathbf{x}-\mathbf{y}, \tau)$, we construct the so-called singular matrix of solutions

$$
\boldsymbol{R} \epsilon(\partial \mathbf{x}, \mathbf{n}) \boldsymbol{\Gamma}(\mathbf{x}-\mathbf{y}, \tau)=\left\|M_{l j}^{\epsilon}(\partial \mathbf{x})\right\|_{5 \times 5}
$$

where

$$
\begin{aligned}
& M_{\gamma \gamma}^{\epsilon}(\partial \mathbf{x})=\frac{\partial H_{0}^{(1)}\left(i \lambda_{4} r\right)}{\partial n}+(-1)^{\gamma}\left(\varepsilon_{1}+\mu\right) \frac{\partial}{\partial s} \frac{\partial^{2} \Psi_{11}}{\partial x_{1} \partial x_{2}}-n_{\gamma} \rho \tau^{2} \frac{\partial \Psi_{11}}{\partial x_{\gamma}}, \\
& M_{12}^{\epsilon}(\partial \mathbf{x})=\frac{\tau_{1}}{\mu} \frac{\partial}{\partial s} H_{0}^{(1)}\left(i \lambda_{4} r\right)-\left(\epsilon_{1}+\mu\right) \frac{\partial}{\partial s} \frac{\partial^{2} \Psi_{11}}{\partial x_{2}^{2}}-\rho \tau^{2} n_{1} \frac{\partial \Psi_{11}}{\partial x_{2}}, \\
& M_{21}^{\epsilon}(\partial \mathbf{x})=-\frac{\tau_{1}}{\mu} \frac{\partial}{\partial s} H_{0}^{(1)}\left(i \lambda_{4} r\right)+\left(\epsilon_{1}+\mu\right) \frac{\partial}{\partial s} \frac{\partial^{2} \Psi_{11}}{\partial x_{1}^{2}}-\rho \tau^{2} n_{2} \frac{\partial \Psi_{11}}{\partial x_{1}}, \\
& M_{1, \gamma+2}^{\epsilon}(\partial \mathbf{x})=-k_{1} \beta\left[n_{1} \varrho \tau^{2} \frac{\partial \psi_{13}}{\partial x_{\gamma}}+\left(\mu+\epsilon_{1}\right) \frac{\partial}{\partial s} \frac{\partial^{2} \psi_{13}}{\partial x_{\gamma} \partial x_{2}}\right], \\
& M_{15}^{\epsilon}(\partial \mathbf{x})=-\beta\left[\left(\epsilon_{1}+\mu\right) \frac{\partial}{\partial x_{2}} \frac{\partial}{\partial s}+\rho \tau^{2} n_{1}\right] \psi_{15}, \\
& M_{2, \gamma+2}^{\epsilon}(\partial \mathbf{x})=-k_{1} \beta\left[n_{2} \varrho \tau^{2} \frac{\partial \psi_{13}}{\partial x_{\gamma}}-\left(\mu+\epsilon_{1}\right) \frac{\partial}{\partial s} \frac{\partial^{2} \psi_{13}}{\partial x_{\gamma} \partial x_{1}}\right], \\
& M_{25}^{\epsilon}(\partial \mathbf{x})=\beta\left[\left(\epsilon_{1}+\mu\right) \frac{\partial}{\partial x_{1}} \frac{\partial}{\partial s}-\rho \tau^{2} n_{2}\right] \psi_{15}, \quad \frac{\partial}{\partial s}=n_{2} \frac{\partial}{\partial x_{1}}-n_{1} \frac{\partial}{\partial x_{2}}, \\
& M_{3 \alpha}^{\epsilon}(\partial \mathbf{x})=k_{3} \beta_{0}\left[-\frac{n_{1}}{k \mu_{0}} \sum_{m=1}^{3} l_{m} \lambda_{m}^{2} \frac{\partial}{\partial x_{\alpha}} H_{0}^{(1)}\left(\lambda_{m} r\right)+\left(\epsilon_{2}+k_{6}\right) \frac{\partial}{\partial s} \frac{\partial^{2} \psi_{13}}{\partial x_{2} \partial x_{\alpha}}\right], \\
& M_{2+\gamma, 2+\gamma}^{\epsilon}(\partial \mathbf{x})=\frac{\partial H_{0}^{(1)}\left(i \lambda_{5} r\right)}{\partial n}+(-1)^{\gamma}\left(\epsilon_{2}+k_{6}\right) \frac{\partial}{\partial s} \frac{\partial^{2} \Psi_{33}}{\partial x_{1} \partial x_{2}}+n_{\gamma} \frac{\partial}{\partial x_{\gamma}}\left[k_{1} k_{3} \psi_{51}-k_{8} \Psi_{33}\right], \\
& M_{34}^{\epsilon}(\partial \mathbf{x})=\frac{\epsilon_{2}}{k_{6}} \frac{\partial H_{0}^{(1)}\left(i \lambda_{5} r\right)}{\partial s}-\left(\epsilon_{2}+k_{6}\right) \frac{\partial^{2}}{\partial x_{2}^{2}} \frac{\partial \Psi_{33}}{\partial s}+n_{1} \frac{\partial}{\partial x_{2}}\left[k_{1} k_{3} \psi_{51}-k_{8} \Psi_{33}\right], \\
& M_{35}^{\epsilon}(\partial \mathbf{x})=\frac{k_{3}}{k \mu_{0}} \sum_{m=1}^{3} l_{m}\left(\rho \tau^{2}+\mu_{0} \lambda_{m}^{2}\right)\left[n_{1} \lambda_{m}^{2}-\frac{\epsilon_{2}+k_{6}}{k_{7}} \frac{\partial}{\partial x_{2}} \frac{\partial}{\partial s}\right] H_{0}^{(1)}\left(\lambda_{m} r\right),
\end{aligned}
$$

$$
\begin{aligned}
& M_{4 \alpha}^{\epsilon}(\partial \mathbf{x})=-k_{3} \beta_{0}\left[\frac{n_{2}}{k \mu_{0}} \sum_{m=1}^{3} l_{m} \lambda_{m}^{2} \frac{\partial}{\partial x_{\alpha}} H_{0}^{(1)}\left(\lambda_{m} r\right)+\left(\epsilon_{2}+k_{6}\right) \frac{\partial}{\partial s} \frac{\partial^{2} \psi_{13}}{\partial x_{1} \partial x_{\alpha}}\right], \\
& M_{43}^{\epsilon}(\partial \mathbf{x})=-\frac{\tau_{2}}{k_{6}} \frac{\partial H_{0}^{(1)}\left(i \lambda_{5} r\right)}{\partial s}+\left(\epsilon_{2}+k_{6}\right) \frac{\partial^{2}}{\partial x_{1}^{2}} \frac{\partial \Psi_{33}}{\partial s}+n_{2} \frac{\uplus}{\partial} \partial x_{1}\left[k_{1} k_{3} \psi_{51}-k_{8} \Psi_{33}\right], \\
& M_{45}^{\epsilon}(\partial \mathbf{x})=\frac{k_{3}}{k \mu_{0}} \sum_{m=1}^{3} l_{m}\left(\rho \tau^{2}+\mu_{0} \lambda_{m}^{2}\right)\left[n_{2} \lambda_{m}^{2}+\frac{\epsilon_{2}+k_{6}}{k_{7}} \frac{\partial}{\partial x_{1}} \frac{\partial}{\partial s}\right] H_{0}^{(1)}\left(\lambda_{m} r\right), \\
& M_{5 \gamma}^{\epsilon}(\partial \mathbf{x})=\frac{\beta_{0}}{k_{7} \mu_{0}} \sum_{m=1}^{3} l_{m}\left[\frac{k_{1} k_{3}}{k}-k_{8}-k_{7} \lambda_{m}^{2}\right] \frac{\partial^{2} H_{0}^{(1)}\left(\lambda_{m} r\right)}{\partial x_{\gamma} \partial n}, \\
& M_{5, \gamma+2}^{\epsilon}(\partial \mathbf{x})=k_{1}\left[\frac{n_{\gamma}}{k_{6}} H_{0}^{(1)}\left(i \lambda_{5} r\right)-\frac{\partial^{2}\left(\Psi_{33}+k \psi_{51}\right)}{\partial x_{\gamma} \partial n}\right], \\
& M_{55}^{\epsilon}(\partial \mathbf{x})=\frac{1}{\mu_{0} k_{7}} \sum_{m=1}^{3} l_{m}\left(\rho \tau^{2}+\mu_{0} \lambda_{m}^{2}\right)\left[-\frac{k_{1} k_{3}}{k}+k_{8}+k_{7} \lambda_{m}^{2}\right] \frac{\partial H_{0}^{(1)}\left(\lambda_{m} r\right)}{\partial n}, \\
& l_{m}=d_{m}\left(\lambda_{4}^{2}+\lambda_{m}^{2}\right)\left(\lambda_{5}^{2}+\lambda_{m}^{2}\right), \quad m=1,2,3, \quad \alpha, \gamma=1,2 .
\end{aligned}
$$

The following theorem may be easily verified
Theorem 5.1: Every column of the matrix $\left[\boldsymbol{R}^{\boldsymbol{\epsilon}}(\partial \boldsymbol{y}, \boldsymbol{n}) \boldsymbol{\Gamma}(\boldsymbol{y}-\boldsymbol{x}, \tau)\right]^{T}$, considered as a vector, is a solution with respect to the point \boldsymbol{x} of the system $\widetilde{\boldsymbol{A}}(\partial \boldsymbol{x}, \tau) V=0$ everywhere in E_{2}, except $\boldsymbol{x}=\boldsymbol{y}$.

Let

$$
\tilde{\boldsymbol{R}}^{\epsilon}(\partial \mathbf{x}, \mathbf{n})=\left(\begin{array}{llrll}
R_{11}^{\epsilon} & R_{12}^{\epsilon} & 0 & 0 & \beta_{0} n_{1} \\
R_{21}^{\epsilon} & R_{22}^{\epsilon} & 0 & 0 & \beta_{0} n_{2} \\
0 & 0 & R_{33}^{\epsilon} & 34 & 0 \\
0 & 0 & R_{43}^{\epsilon} & R_{44}^{\epsilon} & 0 \\
0 & 0 & k_{3} n_{1} & k_{3} n_{2} & R_{55}^{\epsilon}
\end{array}\right)
$$

where $R_{\alpha \gamma}^{\epsilon}, \quad R_{\alpha+2, \gamma+2}^{\epsilon}, \quad R_{55}^{\epsilon}, \quad \alpha, \gamma=1,2$, are given by (28), then

$$
\tilde{\boldsymbol{R}}^{\epsilon}(\partial \mathbf{x}, \mathbf{n}) \tilde{\boldsymbol{\Gamma}}(\mathbf{x}-\mathbf{y}, \tau)=\left\|\widetilde{M}_{l j}^{\epsilon}(\partial \mathbf{x})\right\|_{5 \times 5}
$$

Here

$$
\begin{aligned}
& \widetilde{M}_{\alpha \gamma}^{\epsilon}(\partial \mathbf{x})=M_{\alpha \gamma}^{\epsilon}(\partial \mathbf{x}), \quad \widetilde{M}_{\alpha+2, \gamma+2}^{\epsilon}(\partial \mathbf{x})=M_{\alpha+2, \gamma+2}^{\epsilon}(\partial \mathbf{x}), \quad \widetilde{M}_{55}^{\epsilon}(\partial \mathbf{x})=M_{55}^{\epsilon}(\partial \mathbf{x}), \\
& \widetilde{M}_{1, \gamma+2}^{\epsilon}(\partial \mathbf{x})=k_{3} \beta_{0}\left[n_{1} \rho \tau^{2} \frac{\partial \psi_{13}}{\partial x_{\gamma}}+\left(\epsilon_{1}+\mu\right) \frac{\partial}{\partial s} \frac{\partial^{2} \psi_{13}}{\partial x_{2} \partial x_{\gamma}}\right],
\end{aligned}
$$

$$
\begin{aligned}
& \widetilde{M}_{2, \gamma+2}^{\epsilon}(\partial \mathbf{x})=k_{3} \beta_{0}\left[n_{2} \rho \tau^{2} \frac{\partial \psi_{13}}{\partial x_{\gamma}}-\left(\epsilon_{1}+\mu\right) \frac{\partial}{\partial s} \frac{\partial^{2} \psi_{13}}{\partial x_{1} \partial x_{\gamma}}\right], \\
& \widetilde{M}_{15}^{\epsilon}(\partial \mathbf{x})=\beta_{0}\left[n_{1} \rho \tau^{2} \psi_{15}+\left(\epsilon_{1}+\mu\right) \frac{\partial}{\partial s} \frac{\partial \psi_{15}}{\partial x_{2}}\right], \\
& \widetilde{M}_{25}^{\epsilon}(\partial \mathbf{x})=\beta_{0}\left[n_{2} \rho \tau^{2} \psi_{15}-\left(\epsilon_{1}+\mu\right) \frac{\partial}{\partial s} \frac{\partial \psi_{15}}{\partial x_{1}}\right], \\
& \widetilde{M}_{3 \gamma}^{\epsilon}(\partial \mathbf{x})=k_{1} \beta\left[\frac{n_{1}}{k \mu_{0}} \sum_{m=1}^{3} l_{m} \lambda_{m}^{2} \frac{\partial H_{0}^{(1)}\left(\lambda_{m} r\right)}{\partial x_{\gamma}}-\left(\epsilon_{2}+k_{6}\right) \frac{\partial}{\partial s} \frac{\partial^{2} \psi_{13}}{\partial x_{2} \partial x_{\gamma}}\right], \\
& \widetilde{M}_{4 \gamma}^{\epsilon}(\partial \mathbf{x})=k_{1} \beta\left[\frac{n_{2}}{k \mu_{0}} \sum_{m=1}^{3} l_{m} \lambda_{m}^{2} \frac{\partial H_{0}^{(1)}\left(\lambda_{m} r\right)}{\partial x_{\gamma}}+\left(\epsilon_{2}+k_{6}\right) \frac{\partial}{\partial s} \frac{\partial^{2} \psi_{13}}{\partial x_{1} \partial x_{\gamma}}\right], \\
& \widetilde{M}_{35}^{\epsilon}(\partial \mathbf{x})=k_{1}\left[\frac{n_{1}}{k \mu_{0}} \sum_{m=1}^{3} l_{m} \lambda_{m}^{2}\left(\rho \tau^{2}+\mu_{0} \lambda_{m}^{2}\right) H_{0}^{(1)}\left(\lambda_{m} r\right)-\left(\epsilon_{2}+k_{6}\right) \frac{\partial}{\partial s} \frac{\partial \psi_{51}}{\partial x_{2}}\right], \\
& \widetilde{M}_{45}^{\epsilon}(\partial \mathbf{x})=k_{1}\left[\frac{n_{2}}{k \mu_{0}} \sum_{m=1}^{3} l_{m} \lambda_{m}^{2}\left(\rho \tau^{2}+\mu_{0} \lambda_{m}^{2}\right) H_{0}^{(1)}\left(\lambda_{m} r\right)+\left(\epsilon_{2}+k_{6}\right) \frac{\partial}{\partial s} \frac{\partial \psi_{51}}{\partial x_{1}}\right], \\
& \widetilde{M}_{5 \gamma}^{\epsilon}(\partial \mathbf{x})=\frac{\beta}{k_{7} \mu_{0}} \sum_{m=1}^{3} l_{m}\left[k_{8}+k_{7} \lambda_{m}^{2}-\frac{k_{1} k_{3}}{k}\right], \frac{\partial^{2} H_{0}^{(1)}\left(\lambda_{m} r\right)}{\partial x_{\gamma} \partial n}, \\
& \widetilde{M}_{5, \gamma+2}^{\epsilon}(\partial \mathbf{x})=k_{3}\left[\frac{n_{\gamma}}{k_{6}} H_{0}^{(1)}\left(i \lambda_{5} r\right)+\frac{\partial^{2}\left(-\psi_{33}+k \psi_{51}\right)}{\partial x_{\gamma} \partial n}\right] .
\end{aligned}
$$

Let $\left[\tilde{\boldsymbol{R}}^{\epsilon}(\partial \mathbf{y}, \mathbf{n}) \widetilde{\boldsymbol{\Gamma}}(\mathbf{y}-\mathbf{x}, \tau)\right]^{T}$, be the matrix which we get from $\tilde{\boldsymbol{R}}^{\epsilon}(\partial \mathbf{x}, \mathbf{n}) \widetilde{\boldsymbol{\Gamma}}(\mathbf{x}-\mathbf{y})$ by transposition of the columns and rows and the variables \mathbf{x} and \mathbf{y}. The superscript " T " denotes transposition.

Let \mathbf{g} and ϕ be continuous (or Hölder continuous) five-component vectors and let S be a closed Lyapunov curve.

We introduce the potential

$$
\mathbf{Z}^{(1)}(\mathbf{x}, \mathbf{g})=\int_{S} \boldsymbol{\Gamma}(\mathbf{x}-\mathbf{y}, \tau) \mathbf{g}(\mathbf{y}) d s
$$

of a single-layer, the potential

$$
\mathbf{Z}^{(2)}(\mathbf{x}, \mathbf{g})=\int_{S}\left[\tilde{\boldsymbol{R}}^{\epsilon}(\partial \mathbf{y}, \mathbf{n}) \boldsymbol{\Gamma}^{T}(\mathbf{y}-\mathbf{x}, \tau)\right]^{T} \mathbf{g}(\mathbf{y}) d s
$$

of double-layer and the potential

$$
\mathbf{Z}^{(3)}(\mathbf{x}, \phi)=\int_{D^{ \pm}} \boldsymbol{\Gamma}(\mathbf{x}-\mathbf{y}, \tau) \phi(\mathbf{y}) d s
$$

of volume.
We may show as in the classical theory of thermoelasticity, that the following theorem is valid

Theorem 5.2: The vectors $\boldsymbol{Z}^{(j)}(j=1,2$, $)$ are solutions of equation $\boldsymbol{A}(\partial \boldsymbol{x}, \tau) \boldsymbol{U}=0$ in both the domains D^{+}and D^{-}and the elements of the matrix $\left[\tilde{\boldsymbol{R}}^{\epsilon}(\partial \boldsymbol{y}, \boldsymbol{n}) \boldsymbol{\Gamma}^{\boldsymbol{T}}(\boldsymbol{y}-\boldsymbol{x}, \tau)\right]^{T}$, contain a singular part, which is integrable in the sense of the Cauchy principal value. The vector $\boldsymbol{Z}^{(3)}(\boldsymbol{x}, \boldsymbol{\phi})$ is solution of the system $\boldsymbol{A}(\partial \boldsymbol{x}, \tau) \boldsymbol{Z}^{(3)}=\boldsymbol{\phi}$.

References

[1] R.A. Grot, Thermodynamics of a continuum with microtemperatyre, Int. J. Engng. Sci., 7 (1969), 801-814
[2] A.C. Eringen, Microcontinuum Field Theories I: Foundation and Solids, Springer-Verlag, New-York, Berlin, Heidelberg, 1999
[3] D. Iesan, Thermoelastic Models of Continua, Kluwer, Acad. Publ. Boston, Dordrecht, London, 2005
[4] D. Iesan and R. Quintanilla, On a theory of thermoelasticity with microtemperatures, J. Thermal Stresses, 23 (2000), 199-215
[5] M. Svanadze, Boundary integral method in the dynamical theory of thermoelasticity with microtemperatures, In: I. Troch, F. Breitenecker (eds.), Full Paper Preprint Volume, 7th Vienna International Conference on Mathematical Modeling, 14-17 February, 2012, Vienna University of Technology, ARGESIM Report no. AR-S38
[6] A. Scalia, M. Svanadze, On the representations of solutions of the theory of thermoelasticity with microtemperatures, J. of Thermal Stresses, 29, 9 (2006), 849-863
[7] M. Svanadze, Fundamental Solutions of the equations of the theory of thermoelasticity with microtemperatures, J. of Thermal Stresses, 27 (2004), 151-170
[8] A. Scalia, M. Svanadze and R. Tracinà, Basic Theorems in the equilibrium theory of thermoelasticity with microtemperatures, J. of Thermal Stresses, 33 (2010), 721-753
[9] L. Bitsadze, Effective solution of the Dirichlet BVP of the linear theory of thermoelasticity with microtemperatures for a spherical ring, J. of Thermal Stresses, 36, 7 (2013), 714-726
[10] L. Bitsadze, Effective solution of the Neumann BVP of the linear theory of thermoelasticity with microtemperatures for a spherical ring, Georgian International J. of Science and Technology, 5, 1-2 (2013), 5-19, Nova Science Publishers
[11] M. Svanadze, On the Linear Theory of Thermoelasticity with Microtemperatures, Techniche Mechanik, 32 2-5, (2011), 564-576
[12] M. Basheleishvili, L. Bitsadze, G. Jaiani, On fundamental and singular solutions of the system of equations of the equilibrium of the plane thermoelastisity theory with microtemperatures, Bulletin of TICMI, 15 (2011), 5-12
[13] L. Bitsadze and G. Jaiani, Theorems for the third and fourth BVPs of $2 D$ theory of thermoelastisty with microtemperatures, mechanics of the continuous environment issues, Dedicated To The 120-th Birth Anniversary of Academician Nikoloz Muskhelishvili, 2012, pp. 99-119. Nova Science Publishers
[14] L. Bitsadze, G. Jaiani, Some basic boundary value problems of the plane thermoelasticity with microtemperatures, Math. Meth. Appl. Sci., 36 (2013), 956-966
[15] L. Bitsadze, G. Jaiani, Explicit solutions of boundary value problems of 2D theory of thermoelasticity with microtemperatures for the half-plane, Proc. I.Vekua Inst.of appl. Math., 61-62 (2012), 1-13
[16] V.D. Kupradze, T.G. Gegelia, M.O. Basheleishvili and T.V. Burchuladze, Three-dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North-Holland Publ. Company, Amsterdam-New-York-Oxford, 1979
[17] I.N. Vekua, On Metaharmonic Functions, Proc. Tbilisi Math. Inst.Academy of Science of Georgian SSR, 12 (1943), 105-174

[^0]: * Email: lamarabitsadze@yahoo.com

