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The Range of Critical Numbers for Banach Spaces
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To consider the intersection of embedded bounded closed sets in infinite-dimensional Banach
spaces the numerical parameter was introduced earlier. In the present paper we collect some
results that are known around the subject.
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1. Description of the problem

The nonemptiness of the intersection of embedded closed sets in metric spaces
is related to some basic concepts of analysis. We mention here the concept of
completeness of a space: the metric space X is complete if and only if for any
sequence of embedded closed balls Bn = B(xn, rn) with rn → 0 the intersection⋂∞

n=1Bn is nonempty. It seems contradictory to our natural intuition that this
intersection may be empty if the radii do not tend to zero. A simple example is:
X = {x1, x2, ...}, with metric ρ(xi, xj) = (ai +aj)(1−δij), where ai ∈ R, ai ↓ a > 0
and Bn = B(xn, an−1 + an), n ≥ 2.

But actually this example shows only that the general concept of a metric space
is too general to be in full accordance with the intuition accumulated mainly by
observations on phenomena for normed spaces. And indeed, if X is a Banach space,
this simple problem of embedded closed balls has the natural solution, namely, the
intersection is always nonempty regardless the behavior of the radii. However, if we
consider a sequence of general embedded bounded closed sets, rather than balls, in
a Banach space, then the problem of nonemptiness of the intersection becomes non-
trivial and this problem is in fact the subject of the present communication. (An-
other trivial but still unexpected observation for generals complete metric spaces
is that a bigger ball may be a proper part of another smaller ball.) First let us note
that this problem is purely infinite-dimensional, because any bounded closed set in
a finite-dimensional Banach space is compact. Therefore, the intersection is always
nonempty. The converse is also true: If the intersection of all embedded closed sets
of a Banach space is nonempty then this space is finite-dimensional. This follows
from Riesz Theorem, which asserts that Xis finite-dimensional if the closed unit
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ball B = B(0, 1) of X is a compact set. (Indeed, we should show that for any
given sequence (xn)n∈N of points of B there exists a subsequence of it converging
to a point of B. Denote by Fn the closure of the set {xn, xn+1, · · · }, n = 1, 2, · · · .
Clearly, Fn ⊆ B, n ≥ 1, and for any point y from the intersection ∩Fn there exists
a subsequence of (xn)n∈N that converges to y and compactness of B follows). Note
also that if the diameters of the closed sets Fn tend to zero then the intersection
is nonempty, and consists of one point only, in any Banach space; this statement
is true in any complete metric space as well.

2. Numerical parameter κ and the main theorem

In what follows X will always denote a Banach space. For brevity instead of ”a
sequence of embedded bounded closed sets A1 ⊇ A2 ⊇ · · · ” we will say ”an
admissible sequence (An)n∈N ”. To study intersection of admissible sequence the
numerical parameter was introduced earlier by N.N.Vakhania and I.N.Kartsivadze
[1]. This parameter characterizes in a sense a measure of deviation of A from being
ball shaped kind of nonflatness of A. We define first two quantities depending on
a point in X

r(A, x) = sup{||x− y|| : y ∈ A},

r
′
(A, x) = inf{||x− y|| : y ∈ X \A}

κ(A) = sup{r
′
(A, x)

r(A, x)
: x ∈ A}.

It is clear that 0 ≤ κ(A) ≤ 1 for any A and it is easy to show that κ(A) = 1 if and
only if the closure of A is a ball.

In [1] the following Theorem 2.1 and Theorem 2.4. were also proved.

Theorem 2.1 : Let (An)n∈N be an admissible sequence in a Banach space. If
limκ(An) > 1

2 then the intersection of the sets An is nonempty.

The following statement is an immediate consequence of this theorem.

Corollary 2.2: The intersection of embedded closed balls in a Banach space is
always nonempty.

The proof of Theorem 2.1 uses the following elementary auxiliary proposition
which, unlike the general metric space situation, is in full accordance with the
intuition.

Lemma 2.3: Let B(x, r) and B(y,R) be two balls in a Banach space. If B(x, r) j
B(y,R) then r + ||x− y|| ≤ R.

Note that a direct simple proof of Corollary to Theorem 2.1 can easily be derived
from this lemma.

The next theorem shows that Theorem 2.1 cannot be improved if we want it to
be true for all Banach spaces. The number 1/2 turns out to be the best possible
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in the following natural sense: with the number 1/2 Theorem 2.1 is true but if we
write 1/2− ε, ε > 0 then it will not be true for all Banach spaces.

Theorem 2.4 : For any number ε > 0 there exist a Banach space X and an
admissible sequence (An)n∈N such that limκ(An) > 1

2 − ε but the intersection⋂∞
n=1An is empty.

Proof : Let us take c0(the sequence of all real numbers converging to zero) as X
and let ε > 0 be given. Denote An = {x ∈ c0 : 2ε ≤ (−1)kxk ≤ 1 for 1 ≤ k ≤ n
and −1 ≤ xk ≤ 1 for k > n. It is easy to see that everything can be checked
elementarily. �

Note that the space c0 in which the example was just given to prove Theorem
2.4 is non reflexive. We also know the example in a reflexive space (lp with an
appropriately chosen p depending on ε) but with non-convex sets [2]. Now let us
just remark that the example with convex sets cannot exist in a reflexive space.

Proposition 2.5: Any sequence of embedded bounded closed and convex sets in
a reflexive space has nonempty intersection.

Proof : It is enough to combine the following statements. Any sequence of em-
bedded compact sets in any topology has nonempty intersection. In a dual Banach
space any bounded set which is closed in the weak * topology is compact in this
topology (the Alaoglu theorem). Weak* topology in a reflexive space is the same
as the weak topology. In any Banach space convex sets are closed in the weak
topology provided that they are closed in the norm topology. Also let us mention,
that the property which was just proved, characterizes reflexive Banach spaces.
Indeed, if the intersection of any sequence of embedded bounded closed convex
sets is non-empty then the closed unit ball B(0, 1) of X is compact in the weak
topology (Schmulyan’s theorem) and, moreover, if this is the case then is reflexive
(Eberlein’s theorem). �

3. Critical numbers (critical values of the parameter κ) for individual
Banach spaces

As it was indicated in the preamble to Theorem 2.4, the number 1/2 is a kind of
critical number for a subclass of Banach spaces consisting of reflexive spaces, as
the remark following Theorem 2.4 tells.

In this section we define in a similar manner the critical numbers for individual
Banach spaces, and give related results.

Definition 3.1: For Xgiven, say that α ∈ R+ is the critical value of X, and write
α = cv(X) for short, if:

a) any nested sequence of closed, bounded sets (An)n∈N such that limκ(An) > α
has nonempty intersection and

b) for any ε > 0 there exists a nested sequence (An)n∈N such that limκ(An) >
α− ε and

⋂∞
n=1An = ∅.

We know critical values of some spaces [3]:

Theorem 3.2 : The critical number for the space lp for 1 ≤ p < ∞ is expressed
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by the formula

cv(lp) =
1

2
1

p + 1
.

This theorem shows that the set of all critical numbers for Banach spaces contains
the interval [1/3, 1/2).

As a consequence of Theorem 2.1 and Theorem 2.4 we have that cv(c0) = 1/2.
Since by Theorem 2.1 the number 1/2 is a sufficient number for any Banach space,
no number greater than 1/2 can be the critical number for a Banach space (condi-
tion(2) of the definition cannot be satisfied).

It is clear that the critical number for any finite-dimensional space is zero. It is
easy to see that in any infinite-dimensional X there exists an admissible sequence
with the empty intersection. Indeed, let (xn)n∈N be a bounded sequence in X with
||xi − xj || ≥ 2r (i, j = 1, 2, · · · , n) for some positive number r which exists in any
infinite-dimensional space X. Denote

An =

∞⋃
k=n

B(xk, r − ε), ε > 0, n = 1, 2, · · · .

It is easy to check that (An)n∈N is an admissible sequence with the empty in-
tersection and with a positive value of limκ(An). Only a slightly more involved
consideration shows that for any ε > 0 in any infinite-dimensional Banach space we
can similarly construct an admissible sequence (An)n∈N such that limκ(An) > 1

3−ε
and the intersection

⋂∞
n=1An is empty [3]. Therefore, no number less than 1

3 can
be the critical number for an infinite-dimensional Banach space (condition (1) of
the definition cannot be satisfied.)

Summing up the statement of Theorem 3.2 and the subsequent remarks we get
the following assertion.

Theorem 3.3 : The set of critical numbers for all infinite-dimensional Banach
spaces is the closed interval [1/3,1/2].
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