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1. Classes of functions of two variables of bounded generalized variation

In 1881 Jordan [20] introduced a class of functions of bounded variation and applied
it to the theory of Fourier series. This notion was generalized hereinafter by many
authors (quadratic variation, Φ-variation, Λ-variation ets., see [27]-[4]). In the two
dimensional case the class BV of functions of bounded variation was introduced by
Hardy [19].

In this section we introduce several classes of bivariate functions of bounded
generalized variation and compare them with the class HBV (se Definition 1.1
below), which is important for the applications in Fourier analysis (see Theorem S
in Section 2.).

Let f(x, y), (x, y) ∈ R
2 be a real function of two variables of period 2π with

respect to each variable. Given intervals I = (a, b), J = (c, d) and points x, y from
T := [0, 2π] we denote

f(I, y) := f(b, y)− f(a, y), f(x, J) = f(x, d)− f(x, c)

and

f(I, J) := f(a, c)− f(a, d)− f(b, c) + f(b, d).
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Let E = {Ii} be a collection of nonoverlapping intervals from T ordered in arbitrary
way and let Ω be the set of all such collections E. Denote by Ωn set of all collections
of n nonoverlapping intervals Ik ⊂ T.

For the sequence of positive numbers Λ = {λn}∞n=1 we define

ΛV1(f) = sup
y

sup
E∈Ω

∑
n

|f(Ii, y)|
λi

(E = {Ii}) ,

ΛV2(f) = sup
x

sup
F∈Ω

∑
m

|f(x, Jj)|
λj

(F = {Jj}),

ΛV1,2(f) = sup
F,E∈Ω

∑
i

∑
j

|f(Ii, Jj)|
λiλj

.

Definition 1.1: We say that the function f has bounded Λ-variation on T 2 =
[0, 2π]2 and write f ∈ ΛBV , if

ΛV (f) := ΛV1(f) + ΛV2(f) + ΛV1,2(f) <∞.

We say that f has bounded partial Λ-variation and write f ∈ PΛBV if

PΛV (f) := ΛV1(f) + ΛV2(f) <∞.

If λn ≡ 1 (or if 0 < c < λn < C <∞, n = 1, 2, . . .) the classes ΛBV and PΛBV
coincide with the Hardy class BV and PBV respectively. Hence it is reasonable to
assume that λn → ∞ and since the intervals in E = {Ii} are ordered arbitrarily,
we will suppose, without loss of generality, that the sequence {λn} is increasing.
Thus,

1 < λ1 ≤ λ2 ≤ . . . , lim
n→∞

λn =∞. (1)

In the case when λn = n, n = 1, 2 . . . we say Harmonic Variation instead of
Λ-variation and write H instead of Λ (HBV , PHBV , HV (f), ets).

The notion of Λ-variation was introduced by D. Waterman [26] in one dimensional
case and A. Sahakian [24] in two dimensional case. The class PBV as well as the
class PBVp (see Definition 1.2) was introdused by U. Goginava in [10].

Definition 1.2: Let Φ-be a strictly increasing continuous function on [0,+∞)
with Φ (0) = 0. We say that the function f has bounded partial Φ-variation on T 2

and write f ∈ PBVΦ, if

V
(1)

Φ (f) := sup
y

sup
{Ii}∈Ωn

n∑
i=1

Φ (|f (Ii, y) |) <∞, n = 1, 2, ...,
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V
(2)

Φ (f) := sup
x

sup
{Jj}∈Ωm

m∑
j=1

Φ (|f (x, Jj) |) <∞, m = 1, 2, ....

In the case when Φ (u) = up, p ≥ 1, we say that f has bounded partial p-variation
and write f ∈ PBVp.

In the following theorem the necessary and sufficient conditions are obtained for
the inclusion PΛBV ⊂ HBV .

Theorem 1.3 (U. Goginava, A. Sahakian [11]): Let Λ = {λn} with λn = nγn
and γn ≥ γn+1 > 0, n = 1, 2, .... .

1) If

∞∑
n=1

γn
n
<∞, (2)

then PΛBV ⊂ HBV .
2) If γn = O(γn[1+δ]) for some δ > 0 and

∞∑
n=1

γn
n

=∞,

then PΛBV 6⊂ HBV .

Corollary 1.4: PBV ⊂ HBV and PHBV 6⊂ HBV .

Corollary 1.5: Let Φ and Ψ be conjugate functions in the sense of Young (ab ≤
Φ(a) + Ψ(b)) and let for some {λn} satisfying (1),

∞∑
n=1

Ψ

(
1

λn

)
<∞. (3)

Then PBVΦ ⊂ HBV . In particular, PBVp ⊂ HBV for any p > 1.

Definition 1.6 (U. Goginava [10]) : The Partial Modulus of Variation of a func-
tion f are the functions v1 (n, f) and v2 (m, f) defined by

v1 (n, f) := sup
y

sup
{Ii}∈Ωn

n∑
i=1

|f (Ii, y)| , n = 1, 2, . . . ,

v2 (m, f) := sup
x

sup
{Jk}∈Ωm

m∑
i=1

|f (x, Jk)| , m = 1, 2, . . . .

For functions of one variable the concept of the modulus of variation was intro-
duced by Chanturia [4].

Theorem 1.7 (U. Goginava, A. Sahakian [11]): Let f be such that

∞∑
n=1

√
vj (n, f)

n3/2
<∞, j = 1, 2.
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Then f ∈ HBV.

Another class of functions of generalized bounded variation was introduced by M.
Dyachenko and D. Waterman in [7]. Denoting by Γ the the set of finite collections
of nonoverlapping rectangles Ak := [αk, βk]× [γk, δk] ⊂ T 2 they define

Λ∗V (f) := sup
{Ak}∈Γ

∑
k

|f (Ak)|
λk

.

Definition 1.8 (M. Dyachenko, D. Waterman [7]) : We say that f ∈ Λ∗BV if

ΛV (f) := ΛV1(f) + ΛV2(f) + Λ∗V (f) <∞.

In [14] we introduced a new class of functions of generalized bounded variation
and investigate the convergence of Fourier series of function of that class. For the
sequence Λ = {λn}∞n=1 we define

Λ#V1(f) = sup
{yi}⊂T

sup
{Ii}∈Ω

∑
i

|f(Ii, yi)|
λi

,

Λ#V2(f) = sup
{xj}⊂T

sup
{Jj}∈Ω

∑
j

|f(xj , Jj |
λj

.

Definition 1.9 (U. Goginava, A. Sahakian [11]) : We say that f ∈ Λ#BV , if

Λ#V (f) := Λ#V1(f) + Λ#V2(f) <∞.

It is easy to see, that

Λ∗BV ⊂ Λ#BV ⊂ PΛBV. (4)

Obviously, the function f(x, y) = sign(x − y) belongs to PΛBV \ Λ#BV for any
Λ. On the other hand, we have proved the following result.

Theorem 1.10 (U. Goginava, A. Sahakian [14]): If Λ = {λn} and

lim sup
n→∞

(
n2∑
k=1

1

λk

)(
n∑
k=1

1

λk

)−1

= +∞,

then Λ#BV \ Λ∗BV 6= ∅.

In the next theorem we characterize sequences Λ = {λn} for which the inclusion
Λ#BV ⊂ HBV holds.

Theorem 1.11 (U. Goginava, A. Sahakian [14]): Let Λ = {λn}.
a) If

lim sup
n→∞

λn log n

n
<∞,
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then

Λ#BV ⊂ HBV.

b) If λn
n ↓ 0 and

lim sup
n→∞

λn log n

n
= +∞,

then

Λ#BV 6⊂ HBV.

Definition 1.12 (U. Goginava, A. Sahakian [14]) : Let Φ-be a strictly increasing
continuous function on [0,+∞) with Φ (0) = 0. We say that the function f ∈
B#VΦ

(
T 2
)
, if

V #
Φ,1 (f) := sup

{yi}⊂T
sup
{Ii}∈Ω

∑
i

Φ (|f (Ii, yi) |) <∞,

and

V #
Φ,2 (f) := sup

{xj}⊂T
sup
{Jj}∈Ω

∑
j

Φ (|f (xj , Jj) |) <∞.

Next, we define

v#
1 (n, f) := sup

{yi}ni=1

sup
{Ii}∈Ωn

n∑
i=1

|f (Ii, yi)| , n = 1, 2, . . . ,

v#
2 (m, f) := sup

{xj}mj=1

sup
{Jk}∈Ωm

m∑
j=1

|f (xj , Jj)| , m = 1, 2, . . . .

Theorem 1.13 (U. Goginava, A. Sahakian [14]): Let Φ and Ψ are conjugate
functions in the sense of Young (ab ≤ Φ(a) + Ψ(b)) and let

∞∑
n=1

Ψ

(
log n

n

)
<∞.

Then

B#VΦ ⊂
{

n

log n

}#

BV.
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Theorem 1.14 (U. Goginava, A. Sahakian [14]): Let

∞∑
n=1

v#
s (f, n) logn

n2
<∞, s = 1, 2.

Then

f ∈
{

n

log n

}#

BV.

Observe that by Theorem 1.11 we have the inclusion
{

n
logn

}#
BV ⊂ HBV . Now,

for a sequence Λ = {λn} we denote

Λn := {λk}∞k=n , n = 1, 2, . . .

Definition 1.15 (U Goginava [12]) : We say that the function f ∈ Λ#BV is
continuous in Λ#-variation and write f ∈ CΛ#V , if

lim
n→∞

Λ#
n V1 (f) = lim

n→∞
Λ#
n V2 (f) = 0.

Theorem 1.16 (U. Goginava, A. Sahakian [17]): Let the sequence Λ = {λn} be
such that

lim inf
n→∞

λ2n

λn
= q > 1.

Then Λ#BV = CΛ#V .

Theorem 1.17 (U. Goginava [12]): Let α+ β < 1, α, β > 0 and

∞∑
j=1

v#
s

(
f ; 2j

)
2j(1−(α+β))

<∞, s = 1, 2.

Then f ∈ C{n1−(α+β)}#V .

2. Convergence of double Fourier series

Everywhere in this and in the next section we suppose that the function f is
measurable on R2 and 2π-periodic with respect to each variable. The double Fourier
series of a function f ∈ L1

(
T 2
)

with respect to the trigonometric system is the
series

S [f ] :=

+∞∑
m,n=−∞

f̂ (m,n) eimxeiny,
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where

f̂ (m,n) =
1

4π2

∫ 2π

0

∫ 2π

0
f(x, y)e−imxe−inydxdy

are the Fourier coefficients of f . The rectangular partial sums of S[f ] are defined
as follows:

SM,N [f, (x, y)] :=

M∑
m=−M

N∑
n=−N

f̂ (m,n) eimxeiny,

In this paper we consider only Pringsheim convergence of double Fourier series,
i.e convergence of rectangular partial sums SM,N [f, (x, y)], as M,N →∞.

We denote by C(T 2) the space of continuous on R2 and 2π-periodic with respect
to each variable functions with the norm

‖f‖C := sup
x,y∈T 2

|f(x, y)|.

For a function f we denote by f (x± 0, y ± 0) the open coordinate quadrant
limits (if exist) at the point (x, y) and let f∗(x, y) be the arithmetic mean of that
quadrant limits:

f∗(x, y) :=
1

4
{f (x+ 0, y + 0) + f (x+ 0, y − 0)

+f (x− 0, y + 0) + f (x− 0, y − 0)} . (5)

Remark 1 : Observe that for a function f ∈ ΛBV the quadrant limits
f (x± 0, y ± 0) may not exist. As was shown in [14] for any function f ∈ Λ#BV
the quadrant limits f (x± 0, y ± 0) exist at any point (x, y) ∈ T 2.

We say the point (x, y) ∈ T 2 is a regular point of a function f , if all quadrant
limits in (5) exist.

The well known Dirichlet-Jordan theorem (see [29]) states that the Fourier series
of a function g(x), x ∈ T of bounded variation converges at every point x to the
value [g (x+ 0) + g (x− 0)] /2. If g is in addition continuous on T , the Fourier series
converges uniformly on T .

Hardy [19] generalized the Dirichlet-Jordan theorem to the double Fourier series.
He proved that if the function f has bounded variation in the sense of Hardy
(f ∈ BV ), then S [f ] converges to f∗(x, y) at any regular point (x, y). If f is in
addition continuous on T 2 then S [f ] converges uniformly on T 2.

Theorem S (Sahakian [24]): The Fourier series of a function f ∈ HBV converges
to f∗(x, y) in any regular point (x, y). The convergence is uniform on any compact
K ⊂ T 2, where the function f is continuous.

Theorem S was proved in [24] under the assumption that the function is contin-
uous on some open set containing K, while O. Sargsyan noticed in [23], that the
continuity of f on the compact K is sufficient.
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Definition 2.1: We say that the class of functions V ⊂ L1(T 2) is a class of
convergence on T 2, if for any function f ∈ V

1) the Fourier series of f converges to f∗(x, y) at any regular point (x, y),
2) the convergence is uniform on any compact K ⊂ T 2, where the function f is

continuous.

The following results immediately follow from Theorems 1.3, 1.7, Corollary 1.5
and Theorem S.

Theorem 2.2 (U. Goginava, A. Sahakian [11]): Let Λ = {λn} with λn = nγn
and γn ≥ γn+1 > 0, n = 1, 2, .... .

1) If

∞∑
n=1

γn
n
<∞,

then the class PΛBV is a class of convergence on T 2.
2) If γn = O(γn[1+δ]) for some δ > 0 and

∞∑
n=1

γn
n

=∞,

then then there exists a continuous function f ∈ PΛBV , the Fourier series of
which diverges over cubes at (0, 0) .

Theorem 2.3 (U. Goginava, A. Sahakian [11]): The set of functions f satisfying

∞∑
n=1

√
vj (n, f)

n3/2
<∞, j = 1, 2,

is a class of convergence on T 2.

Corollary 2.4: The set of functions f satisfying v1 (n, f) = O (nα), v2 (n, f) =
O
(
nβ
)
, 0 < α, β < 1, is a class of convergence on T 2.

Theorem 2.5 (U. Goginava [10]): The class PBVp, p ≥ 1, is a class of conver-
gence on T 2.

From Theorem 2.2 it follows that for any δ > 0 the class f ∈ P
{

n
log1+δ n

}
BV

is a class of convergence. Moreover, one can not take here δ = 0. It is interesting
to compare this result with the following one obtained by M. Dyachenko and D.
Waterman in [7].

Theorem DW (M. Dyachenko and D. Waterman [7]): If f ∈
{

n
logn

}∗
BV , then

in any point (x, y) ∈ T 2 the quadrant limits (5) exist and the double Fourier series
of f converges to f∗(x, y).

Moreover, the sequence
{

n
logn

}
can not be replaced with any sequence

{
nαn
logn

}
,

where αn →∞.

It is easy to show (see[7]), that
{

n
logn

}∗
BV ⊂ HBV , hence the convergence
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part of Theorem DW follows from Theorem S. It is essential that the condition

f ∈
{

n
logn

}∗
BV guaranties the existence of quadrant limits.

The following theorem immediately follows from Theorem 1.11 and Theorem S.

Theorem 2.6 (U. Goginava, A. Sahakian [14]): If Λ = {λn} and

lim sup
n→∞

λn log n

n
<∞,

then the class Λ#BV is a class of convergence on T 2.

In particular, the class
{

n
logn

}#
BV is a class of convergence on T 2.

Theorem DW and (4) imply that the sequence
{

n
logn

}
in Theorem 2.6 can not

be replaced with any sequence
{
nαn
logn

}
, where αn →∞.

Theorems 1.13, 1.14 and 2.6 imply

Theorem 2.7 (U. Goginava, A. Sahakian [14]): The class B#VΦ is a class of
convergence on T 2, provided that (2) and (3) hold.

Theorem 2.8 (U. Goginava, A. Sahakian [14]): Let

∞∑
n=1

v#
s (f, n) logn

n2
<∞, s = 1, 2.

Then in any point (x, y) ∈ T 2 the quadrant limits (5) exist and the double Fourier
series of f converges to f∗(x, y). The convergence is uniform on any compact
K ∈ T 2, if f is continuous on K.

3. Cesàro summability of double Fourier series

For one-dimensional Fourier series D. Waterman has proved the following theorem.

Theorem W2 (D. Waterman [25]): Let 0 < α < 1. The Fourier series of a function
f ∈ {n1−α}BV is everywhere (C,−α) bounded and is uniformly (C,−α) bounded
on each closed interval of continuity of f .

If f ∈ C{n1−α}BV , then S[f ] is everywhere (C,−α) summable to the value
[f (x+ 0) + f (x− 0)] /2 and the summability is uniform on each closed interval of
continuity.

Later A. Sablin proved in [22], that for 0 < α < 1 the classes {n1−α}BV and
C{n1−α}BV coincide.

For double Fourier series the Cesàro (C;α, β)-means of a function f ∈ L1(T 2)
are defined by

σα,βn,m(f ;x, y) :=
1

Aαn

1

Aβm

n∑
i=0

m∑
j=0

Aα−1
n−iA

β−1
m−jSi,j [f, (x, y)] ,
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where α, β > −1 and

Aα0 = 1, Aαk =
(α+ 1) · · · (α+ k)

k!
, k = 1, 2, ....

The double Fourier series of f is said to be (C;α, β) summable to s in a point
(x, y), if

lim
n,m→∞

σα,βn,m(f ;x, y) = s.

L. Zhizhiashvili has investigated the convergence of Cesàro means of double
Fourier series of functions of bounded variation. In particular, the following theo-
rem was proved.

Theorem Zh (L. Zhizhiashvili [28]): If f ∈ BV , then the double Fourier series of
f is (C;−α,−β) summable to f∗(x, y) in any regular point (x, y). The convergence
is uniform on any compact K, where the function f is continuous.

For functions of partial bounded variation the problem was considered by the
first author.

Theorem G2 (U. Goginava [8]): Let α > 0, β > 0.
1) If α+ β < 1, then for any f ∈ C

(
T 2
)
∩ PBV the double Fourier series of f

is uniformly (C;−α,−β) summable to f .
2) If α+ β ≥ 1, then there exists a continuous function f0 ∈ PBV such that the

sequence σ−α,−βn,n (f0; 0, 0) diverges.

In [13] we consider the following problem. Let α, β ∈ (0, 1) , α + β < 1. Under
what conditions on the sequence Λ = {λn} is the double Fourier series of any
function f ∈ PΛBV is (C;−α,−β) summable?

Theorem 3.1 (U. Goginava, A. Sahakian [13]): Let α, β ∈ (0, 1) , α+ β < 1 and
let the sequence Λ = {λk} be such that λkk

(α+β)−1 ↓ 0.
1) If

∞∑
k=1

λk
k2−(α+β)

<∞,

then the double Fourier series of any function f ∈ PΛBV is (C;−α,−β) summable
to f∗(x, y) at any regular point (x, y). The summability is uniform on any compact
K, if f is continuous on the neighborhood of K.

2) If

∞∑
k=1

λk
k2−(α+β)

=∞,

then there exists a continuous function f ∈ PΛBV for which the (C;−α,−β)
means of the double Fourier series diverges over cubes at (0, 0) .

Corollary 3.2 (U. Goginava, A. Sahakian [13]) : Let α, β ∈ (0, 1) , α+ β < 1.
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1) If f ∈ P
{
n1−(α+β)

log1+ε n

}
BV for some ε > 0, then the double Fourier series of the

function f is (C;−α,−β) summable to f∗(x, y) in any regular point (x, y). The
summability is uniform on any compact K, if f is continuous on the neighborhood
of K.

2) There exists a continuous function f ∈ P
{
n1−(α+β)

log(n+1)

}
BV such that

(C;−α,−β) means of two-dimensional Fourier series of f diverges over cubes at
(0, 0) .

Corollary 3.3 (U. Goginava, A. Sahakian [13]) : Let α, β ∈ (0, 1) , α+ β < 1
and f ∈ PBV . Then the double Fourier series of the function f is (C;−α,−β)
summable to f∗(x, y) in any regular point (x, y). The summability is uniform on
any compact K, if f is continuous on the neighborhood of K.

In [12] the following problem was considred. Let α, β ∈ (0, 1) , α+ β < 1. Under
what conditions on the sequence Λ = {λn} the double Fourier series of any function
f ∈ CΛ#BV is (C;−α,−β) summable.

Theorem 3.4 (U. Goginava [12]) : a) Let α, β ∈ (0, 1) , α + β < 1 and f ∈
C
{
n1−(α+β)

}#
BV . Then the double Fourier series of f is (C;−α,−β) summable

to f∗(x, y) in any point (x, y). The summability is uniform on any compact K ⊂ T
2,

if f is continuous on the neighborhood of K.
b) Let Λ :=

{
n1−(α+β)ξn

}
, where ξn ↑ ∞ as n→∞. Then there exists a function

f ∈ C
(
T

2
)
∩CΛ#V for which (C;−α,−β)-means of double Fourier series diverges

unboundedly at (0, 0).

Theorems 1.16, 1.17 and 3.4 imply the following results.

Theorem 3.5 : Let α, β ∈ (0, 1) , α + β < 1 and f ∈
{
n1−(α+β)

}#
BV . Then

the double Fourier series of f is (C;−α,−β) summable to f∗(x, y) in any point
(x, y). The summability is uniform on any compact K ⊂ T

2, if f is continuous on
the neighborhood of K.

Theorem 3.6 : Let α, β ∈ (0, 1) , α+ β < 1 and

∞∑
j=1

v#
s

(
f ; 2j

)
2j(1−(α+β))

<∞, s = 1, 2.

Then the double Fourier series of f is (C;−α,−β) summable to f∗(x, y) in
any point (x, y). The summability is uniform on any compact K ⊂ T

2, if f is
continuous on the neighborhood of K.

4. Classes of functions of d variables of bounded generalized variation

Consider a function f (x) defined on the d-dimensional cube T d and a collection of
intervals

Jk =
(
ak, bk

)
⊂ T, k = 1, 2, . . . d.
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For d = 1 we set

f
(
J1
)

:= f
(
b1
)
− f

(
a1
)
.

If for any function of d− 1 variables the expression f
(
J1 × · · · × Jd−1

)
is already

defined, then for a function f of d variables the mixed difference is defined as
follows:

f
(
J1 × · · · × Jd

)
:= f

(
J1 × · · · × Jd−1, bd

)
− f

(
J1 × · · · × Jd−1, ad

)
.

For sequences of positive numbers

Λj = {λjn}∞n=1, lim
n→∞

λjn =∞, j = 1, 2, . . . , d,

and for a function f(x), x = (x1, . . . , xd) ∈ T d the
(
Λ1, . . . ,Λd

)
-variation of f

with respect to the index set D := {1, 2, ..., d} is defined as follows:

{
Λ1, . . . ,Λd

}
V D

(
f, T d

)
:= sup
{Ijij }∈Ω

∑
i1,...,id

∣∣f (I1
i1
× · · · × Idid

)∣∣
λ1
i1
· · ·λdid

.

For an index set α = {j1, ..., jp} ⊂ D and any x = (x1, ..., xd) ∈ Rd we set
α̃ := D \ α and denote by xα the vector of Rp consisting of components xj , j ∈ α,
i.e.

xα =
(
xj1 , ..., xjp

)
∈ Rp.

By

{
Λj1 , ...,Λjp

}
V α
(
f, xα̃, T

d
)

and f
(
I1
ij1
× · · · × Ipijp , xα̃

)
we denote respectively the

(
Λj1 , ...,Λjp

)
-variation over the p-dimensional cube T p

and mixed difference of f as a function of variables xj1 , ..., xjp with fixed values xα̃
of other variables. The

(
Λj1 , ...,Λjp

)
-variation of f with respect to the index

set α is defined as follows:{
Λj1 , ...,Λjp

}
V α (f, T p) = sup

xα̃∈T d−p

{
Λj1 , ...,Λjp

}
V α
(
f, xα̃ , T d

)
.

Definition 4.1: We say that the function f has total bounded
(
Λ1, ...,Λd

)
-

variation on T d and write f ∈
{

Λ1, ...,Λd
}
BV

(
T d
)
, if{

Λ1, ...,Λd
}
V (f, T d) :=

∑
α⊂D

{
Λ1, ...,Λd

}
V α
(
f, T d

)
<∞.

Definition 4.2: We say that the function f is continuous in
(
Λ1, ...,Λd

)
-variation
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on T d and write f ∈ C
{

Λ1, ...,Λd
}
V
(
T d
)
, if

lim
n→∞

{
Λj1 , ...,Λjk−1 ,Λjkn ,Λ

jk+1 , ...,Λjp
}
V α
(
f, T d

)
= 0, k = 1, 2, . . . , p

for any α ⊂ D, α := {j1, ..., jp}, where Λjkn :=
{
λjks
}∞
s=n

.

The continuity of a function in Λ-variation was introduced by D. Waterman
[25] and was investigated in details by A. Bakhvalov (see [1], [2] and references
therein). This property is important for applications in the theory of Fourier series
(see Theorem B1 in Section 5).

Definition 4.3: We say that the function f has bounded Partial
(
Λ1, ...,Λd

)
-

variation and write f ∈ P
{

Λ1, ...,Λd
}
BV

(
T d
)

if

P
{

Λ1, ...,Λd
}
V (f, T d) :=

d∑
i=1

ΛiV {i}
(
f, T d

)
<∞.

In the case when Λ1 = · · · = Λd = Λ we set

ΛBV (T d) := {Λ1, ...,Λd}BV (T d),

CΛV (T d) := C{Λ1, ...,Λd}V (T d),

PΛBV (T d) := P{Λ1, ...,Λd}BV (T d).

If λn = n for all n = 1, 2 . . . we say Harmonic Variation instead of Λ-variation and
write H instead of Λ, i.e. HBV , PHBV , CHV , ets.

Theorem 4.4 (U. Goginava, A. Sahakian [15]): Let Λ = {λn}∞n=1 and d ≥ 2. If
λn/n ↓ 0 and

∞∑
n=1

λn logd−2 n

n2
<∞,

then PΛBV (T d) ⊂ CHV (T d).

For a sequence Λ = {λn}∞n=1 we denote

Λ#Vs

(
f, T d

)
:= sup
{xi{s}}⊂T d−1

sup
{Isi }∈Ω

∑
i

∣∣f (Isi , xi{s})∣∣
λi

,

where

xi{s} :=
(
xi1, . . . , x

i
s−1, x

i
s+1, . . . , x

i
d

)
for xi :=

(
xi1, . . . , x

i
d

)
.

Definition 4.5: We say that f ∈ Λ#BV
(
T d
)
, if

Λ#V
(
f, T d

)
:=

d∑
s=1

Λ#Vs

(
f, T d

)
<∞.
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Theorem 4.6 (U. Goginava, A. Sahakian [18]): If Λ = {λn} with

λn =
n

logd−1 n
, n = 2, 3, . . . ,

then Λ#BV (T d) ⊂ HBV (T d).

Now, we denote

∆ := {δ = (δ1, . . . , δd) : δi = ±1, i = 1, 2, . . . , d}

and

πεδ(x) := (x1, x1 + εδ1)× · · · × (xd, xd + εδd),

for x = (x1, . . . , xd) ∈ Rd and ε > 0. We set πδ(x) := πεδ(x), if ε = 1.
For a function f and δ ∈ ∆ we set

fδ(x) := lim
t∈πδ(x), t→x

f(t), (6)

if the last limit exists.

Theorem 4.7 (U. Goginava, A. Sahakian [18]): Suppose Λ = {λn} and f ∈
Λ#BV

(
T d
)
.

a) If the limit fδ(x) exists for some x = (x1, . . . , xd) ∈ T d and some δ =
(δ1, . . . , δd) ∈ ∆, then

lim
ε→0

Λ#V (f, πεδ(x)) = 0.

b) If f is continuous on some compact K ⊂ T d, then

lim
ε→0

Λ#V (f, [x1 − ε, x1 + ε]× · · · × [xd − ε, xd + ε]) = 0

uniformly with respect to x = (x1, . . . , xd) ∈ K.

Theorem 4.8 (U. Goginava, A. Sahakian [18]): If the function f(x), x ∈ T d

satisfies the condition

∞∑
n=1

v#
s (f, n) logd−1 n

n2
<∞, s = 1, 2, ..., d,

then f ∈
{

n
logd−1 n

}#
BV

(
T d
)
.
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5. Convergence of multiple Fourier series

The Fourier series of the function f ∈ L1
(
T d
)

with respect to the trigonometric
system is the series

S [f ] :=

+∞∑
n1,...,nd=−∞

f̂ (n1, ...., nd) e
i(n1x+···+ndxd),

where

f̂ (n1, ...., nd) =
1

(2π)d

∫
T d
f(x1, ..., xd)e

−i(n1x1+···+ndxd)dx1 · · · dxd

are the Fourier coefficients of f . The rectangular partial sums are defined as follows:

SN1,...,Nd [f, (x1, ..., xd)] =

N1∑
n1=−N1

· · ·
Nd∑

nd=−Nd

f̂ (n1, ...., nd) e
i(n1x1+···+ndxd)

We denote by C(T d) the space of continuous and 2π-periodic with respect to each
variable functions with the norm

‖f‖C := sup
(x1,..., xd)∈T d

|f(x1, . . . , xd)|.

We say that the point x :=
(
x1, . . . , xd

)
∈ T d is a regular point of a function

f if the limits (6) exist for all δ ∈ ∆. For a regular point x ∈ T d we denote

f∗ (x) :=
1

2d

∑
δ∈∆

fδ(x).

Definition 5.1: We say that the class of functions V ⊂ L1(T d) is a class of
convergence on T d, if for any function f ∈ V

1) the Fourier series of f converges to f∗(x) at any regular point x ∈ T d,
2) the convergence is uniform on any compact K ⊂ T d, if f is continuous on the

neighborhood of K.

In [1] A. Bakhvalov showed that the class HBV (T d) is not a class of convergence
on T d, if d > 2. On the other hand, he proved the following

Theorem B1 (A. Bakhvalov [1]): The class CHV (T d) is a class of convergence
on T d for any d = 1, 2, . . .

Convergence of spherical and other partial sums of d-dimensional Fourier series
of functions of bounded Λ-variation was investigated in deatails by M. Dyachenko
[5, 6], A. Bakhvalov [1, 3].

The first part of the next theorem is a consequence of Theorem 4.4 and Theorem
B1.

Theorem 5.2 (U. Goginava, A. Sahakian [15]): Let Λ = {λn} and d ≥ 2.
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a) If λn/n ↓ 0 and

∞∑
n=1

λn logd−2 n

n2
<∞,

then PΛBV is a class of convergence on T d.

b) If λn
n = O

(
λ[nδ ]

[nδ]

)
for some δ > 1, and

∞∑
n=1

λn logd−2 n

n2
=∞,

then there exists a continuous function f ∈ PΛBV , the Fourier series of which
diverges at (0, . . . , 0) .

Theorem 5.2 imply

Corollary 5.3: a) If Λ = {λn}∞n=1 with

λn =
n

logd−1+ε n
, n = 2, 3, . . .

for some ε > 0, then the class PΛBV is a class of convergence on T d.

b) If Λ = {λn}∞n=1 with

λn =
n

logd−1 n
, n = 2, 3, . . . ,

then the class PΛBV is not a class of convergence on T d.

Theorem 5.4 (Goginava, Sahakian [18]): a) If Λ = {λn}∞n=1 with

λn =
n

logd−1 n
, n = 2, 3, . . . ,

then the class Λ#BV
(
T d
)

is a class of convergence on T d.
b)If Λ = {λn}∞n=1 with

λn :=

{
nξn

logd−1 n

}
, n = 2, 3, . . . ,

where ξn →∞ as n→∞, then there exists a continuous function f ∈ Λ#BV
(
T d
)

such that the cubical partial sums of d-dimensional Fourier series of f diverge
unboundedly at (0, ..., 0) ∈ T d.

Theorem 5.5 (Goginava, Sahakian [18]): For any d > 1 the class of functions
f(x), x ∈ T d satisfying the following condition

∞∑
n=1

v#
s (f, n) logd−1 n

n2
<∞, s = 1, ..., d,
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is a class of convergence.

6. Cesàro summability of d-dimensional Fourier series

The Cesàro (C;α1, ..., αd) means of d-dimensional Fourier series of function f ∈
L1(T d) is defined by

σα1,...,αd
m1,...,md

[f ; (x1, ..., xd)]

:=

(
d∏
i=1

Aαimi

)−1 m1∑
p1=0

· · ·
md∑
pd=0

d∏
i=1

Aαi−1
mi−piSp1,...,pd [f, (x1, ..., xd)],

where

Aα0 = 1, Aαn =
(α+ 1) · · · (α+ n)

n!
, α > −1.

The Fourier series S[f ] is said to be (C;−α1, ...,−αd) summable to s in a point
(x1, . . . , xd), if

σα1,...,αd
m1,...,md

[f ; (x1, ..., xd)]→ s as x1, ..., xd →∞.

Definition 6.1: We say that the class of functions Ω ⊂ L1(T d) is a class of
(C;−α1, ...,−αd) summability on T d, if the Cesaro (C;−α1, ...,−αd) means of
Fourier series of any function f ∈ Ω converges to f∗(x) at any regular point x ∈ T d.
The summability is uniform on any compact K ⊂ T d, if in addition, f is continuous
on the neighborhood of K.

The multivariate analog of Theorem W2 from Section 3 was proved by A.
Bakhvalov in [2].

Theorem B2 (A. Bakhvalov [2]): For any numbers α1, ..., αd ∈ (0, 1) the class
C{n1−α1}, . . . {n1−αd}V (T d) is a class of (C;−α1, ...,−αd) summability on T d.

In the next theorem we consider the problem of (C;−α1, ...,−αd) summability
of the Fourier series of functions of bounded partial Λ-variation.

Theorem 6.2 (U. Goginava, A. Sahakian [16]): Suppose α1, ..., αd ∈ (0, 1), α1 +
· · ·+ αd < 1 and the sequence Λ = {λn}∞n=1 is such that

λn

n1−(α1+···+αd)
↓ 0 .

a) If

∞∑
n=1

λn

n2−(α1+···+αd)
<∞,

then PΛBV (T d) is a class of (C;−α1, ...,−αd) summability on T d.
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b) If

∞∑
n=1

λn

n2−(α1+···+αd)
=∞,

then there exists a continuous function f ∈ PΛBV (T d) for which the sequence
σ−α1,...,−αd
N,...,N [f, (0, ..., 0)] diverges.

Corollary 6.3 (U. Goginava, A. Sahakian [16] : Suppose α1, ..., αd ∈ (0, 1) , α1 +
· · ·+ αd < 1 and Λ = {λn}∞n=1.

a) If

λn =
n1−(α1+···+αd)

log1+ε n
, n = 2.3. . . .

for some ε > 0, then the class PΛBV (T d) is a class of (C;−α1, ...,−αd) summa-
bility on T d.

b) If

λn =
n1−(α1+···+αd)

log n
, n = 2.3. . . . ,

then PΛBV (T d) is not a class of (C;−α1, ...,−αd) summability on T d.

Theorem 6.4 (U. Goginava, A. Sahakian [16]): Let α1, ..., αd ∈ (0, 1) , α1 + · · ·+
αd < 1. Then the set of functions f satisfying the conditions

∞∑
j=0

(
vi
(
2j , f

))αi/(α1+···+αd)

2j(αi/(α1+···+αd)−αi)
<∞ for i = 1, ..., d,

is a class of (C;−α1, ...,−αd) summability on T d.

Theorem 6.5 (U. Goginava, A. Sahakian [16]) : Suppose α1, ..., αd ∈ (0, 1),
α1 + · · · + αd < 1/p, p ≥ 1. Then the class PBVp is a class of (C;−α1, ...,−αd)
summability on T d.

In [8] the first author has proved that the class PBVp is not a class of
(C;−α1, ...,−αd) summability on T d, if α1, ..., αd ∈ (0, 1) , and α1 + · · ·+αd ≥ 1/p.

Corollary 6.6 (U. Goginava, A. Sahakian [16]) : Suppose α1, ..., αd ∈ (0, 1),
α1 + · · ·+ αd < 1. Then the set of functions f satisfying

vi
(
2j , f

)
= O

(
2jγ
)

for i = 1, ..., d, ,

is a class of (C;−α1, ...,−αd) summability on T d.
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