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In this paper we study some generalization of Rubio de Francia’s theorem in variable exponent
Lebesgue spaces.
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1. Main result

The Lebesgue spaces Lp(·)(Rn) with variable exponent and the corresponding vari-
able Sobolev spaces W k,p(·)(Rn) are of interest for their applications to modeling
problems in physics, and to the study of variational integrals and partial differential
equations with non-standard growth condition (see [4], [3]).

Given a measurable function p : Rn −→ [1,∞), Lp(·)(Rn) denotes the set of
measurable functions f on R

n such that for some λ > 0

∫
Rn

(
|f(x)|
λ

)p(x)

dx <∞.

This set becomes a Banach function space when equipped with the norm

‖f‖p(·) = inf

{
λ > 0 :

∫
Rn

(
|f(x)|
λ

)p(x)

dx ≤ 1

}
.

Let B(x, r) denote the open ball in R
n of radius r and center x. By |B(x, r)|

we denote n−dimensional Lebesgue measure of B(x, r). The Hardy-Littlewood
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maximal operator M is defined on the locally integrable function f on R
n by the

formula

Mf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy.

Define the spherical maximal operator M, by

Mf(x) := sup
t>0
|µt ∗ f(x)| = sup

t>0

∣∣∣∣∣
∫
{y∈Rn:|y|=1}

f(x− ty)dµ1(y)

∣∣∣∣∣
where µt denotes the normalized surface measure on the sphere of center 0 and
radius t in Rn. The Hardy-Littlewood maximal operator M , which involves averag-
ing over balls, is clearly related to the spherical maximal operator, which averages
over spheres. Indeed, by using polar coordinates, one easily verifies the pointwise
inequality Mf(x) ≤Mf(x) for any (continuous) function.

Given a multiplier m ∈ L∞(Rn), we define the operators Mt, t > 0 by

(Mtf)∧(ξ) = f̂(ξ)m(tξ) and the maximal multiplier operator Mmf(x) =
sup
t>0
|(Mtf)(x)| (which is well defined a priori for the Schwartz function).

For α > 0, let mα(x) = (1 − |x|2)α−1/Γ(α), where |x| < 1, and mα(x) = 0 if
|x| ≥ 1. With mα,t(x) = mα(x/t)t−n, t > 0, we define spherical means of (complex)
order Reα > 0, by

Mα
t f(x) = (mα,t ∗ f)(x).

Note that the Fourier transform of mα is given by

m̂α(ξ) = π−α+1|ξ|−n/2−α+1Jn/2+α(2π|ξ|).

The definition of Mα
t can be extended to the region Reα ≤ 0 by the analytic

continuation. Indeed for complex α in general we can define the operatorMα
t by

(Mα
t f)∧(ξ) = m̂α(tξ)f̂(ξ), f ∈ C∞0 (Rn).

Define the spherical maximal operator of order α by

Mαf(x) = sup
t>0
|Mα

t f(x)|.

We observe that for α = 0 we haveMαf(x) = cMf(x) for appropriate constant
c.

Theorem 1.1 (Rubio de Francia): If m(ξ) is the Fourier transform of a compactly
supported Borel measure and satisfies |m(ξ)| ≤ (1 + |ξ|)−a for some a > 1/2 and
all ξ ∈ Rn, then the maximal operator Mm maps Lp(Rn) to itself when p > 2a+1

2a .

Note that for normalized surface measure of the sphere we have |d̂µ1(ξ)| ≤
C(1 + |ξ|)−(n−1)/2 and from Theorem Rubio de Francia follows Stein’s theorem
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on boundedness of the spherical maximal operator in Lp(Rn) (see [7]). Accord-
ing to Stein’s theorem for the corresponding maximal operator (spherical maximal
operator)

‖M‖Lp(Rn) ≤ Cp‖f‖Lp(Rn)

holds if p > n/(n−1), n ≥ 3, where f is initially taken to be in the class of rapidly
decreasing functions. The two-dimensional version of this result was proved by Bur-
gain [1]. The key feature of the spherical maximal operator is the non-vanishing
Gaussian curvature of the sphere. Indeed, one obtains the same Lp bounds if the
sphere is replaced by a piece of any hypersurface in R

n with everywhere non-
vanishing Gaussian curvature (see [2]). More generally, if σ is smooth compactly
supported measure in a hypersurface on R

n with k non vanishing principal curva-
tures (k > 1), then |σ̂(ξ)| ≤ C(1 + |ξ|)−k/2 and from Theorem of Rubio de Francia
follows Greenleaf’s theorem ( see [2], [8]).

Our aim of the paper is to study boundedness properties of the Rubio de Fran-
cia’s maximal multiplier operator Mm in variable Lebesgue spaces. Note that the
boundedness of the spherical maximal operator in variable Lebesgue spaces was
investigated in [5] and [6].

In many applications a crucial step has been to show that the Hardy-Littlewood
maximal operator is bounded on a variable Lp space. Note that many classical
operators in harmonic analysis such as singular integrals, commutators and frac-
tional integrals are bounded on the variable Lebesgue space Lp(·(Rn) whenever the
Hardy-Littlewood maximal operator is bounded on Lp(·(Rn) (see [3], [4]).

Assume that p− = essinfx∈Rnp(x) and p+ = esssupx∈Rnp(x). Let B(Rn) be the
class of all functions p(·) (1 < p− ≤ p+ < ∞) for which the Hardy-Littlewood
maximal operator M is bounded on Lp(·)(Rn).

We say that a function p : Rn → (0,∞) is locally log-Hölder continuous on Rn if
there exists c1 > 0 such that

|p(x)− p(y)| ≤ c1
1

log(e+ 1/|x− y|)

for all x, y ∈ Rn. We say that p(·) satisfies the log-Hölder decay condition if there
exist p∞ ∈ (0,∞) and a constant c2 > 0 such that

|p(x)− p∞| ≤ c2
1

log(e+ |x|)

for all x ∈ Rn. We say that p(·) is globally log-Hölder continuous in Rn (p(·) ∈ Plog)
if it is locally log-Hölder continuous and satisfies the log-Hölder decay condition.

If p : Rn → (1,∞) is globally log-Hölder continuous function in R
n and p− > 1,

then the classical boundedness theorem for the Hardy-Littlewood maximal operator
can be extended to Lp(·) (see(see [3], [4]).

By Bθ(Rn) (0 < θ < 1) we denote the class of exponents p(·) such that the
following complex interpolation expansion Lp(·)(Rn) = [L2(Rn), Lp̃(·)(Rn)]θ is valid,
where p̃(·) ∈ B(Rn) (obviously we have p(·) ∈ B(Rn)). Note that p(·) ∈ Bθ(Rn) if

and only if 2θp(·)
2−(1−θ)p(·) ∈ B(Rn).

Our main results are the following



6 Bulletin of TICMI

Theorem 1.2 : Let m(ξ) be the Fourier transform of a compactly supported Borel
measure σ and |m(ξ)| ≤ C(1 + |ξ|)−α, where α > 1/2. If p(·) ∈ Bθ(Rn) for some
0 < θ < 2α−1

2α−1+2n , then the maximal operator Mm maps Lp(·)(Rn) to itself.

Theorem 1.3 : If m(ξ) is the Fourier transform of a compactly supported Borel
measure and satisfies |m(ξ)| ≤ (1 + |ξ|)−a for some a > 1/2 and all ξ ∈ R

n. If
p(·) ∈ Plog and

2n+ 2α− 1

n+ 2α− 1
< p− ≤ p+ <

n+ 2α− 1

n
p−.

then the maximal operator Mm maps Lp(·)(Rn) to itself.

2. Proofs

̂ ∞

To study the maximal multiplier operator Mmf(x) we decompose the multiplier
m(ξ) into radial pieces as follows: we fix a radial C∞ function ϕ0 in R

n such that
ϕ0(ξ) = 1 when |ξ| ≤ 1 and ϕ0(ξ) = 0 when |ξ| ≤ 2. For j ≥ 1 we let

ϕj(ξ) = ϕ0(2−jξ)− ϕ0(21−jξ)

and we observe that ϕj is localized near |ξ| ≈ 2j . Then we have

∞∑
j=0

ϕj = 1.

Set mj = ϕjm for all j ≥ 0. Then mj are C∞0 functions that satisfy

m =

∞∑
j=0

mj .

Also, the following estimate is valid:

Mmf ≤
∞∑
j=0

Mjf

where

Mjf(x) = sup
t>0
|F−1

(
f̂(ξ)mj(tξ)

)
(x)|.

Note that for any j ≥ 0 we have (see [8]) the estimate

‖Mjf‖L2 ≤ C2(1/2−a)j‖f‖L2 (2.1)

for all f ∈ L2(Rn).

Proof (of Theorem 1.2): We set m(ξ) = dσ(ξ). Obviously m(ξ) is a C function.
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Note also that since p̃(·) ∈ B(Rn), we have the estimate

‖Mjf‖p̃(·) ≤ C2j(n)‖f‖p̃(·) (2.2)

for any j ≥ 0. The proof of estimate (2.2) is based on the estimate

Mjf(x) ≤ C2j(n)Mf(x), (2.3)

where M is a Hardy-Littlewood maximal operator.
To establish (2.3), it suffices to show that for any M > n there is a constant

CM <∞ such that

∣∣(F−1(ϕj) ∗ dσ
)

(x)
∣∣ ≤ C2j(n)

(1 + |x|)M .
(2.4)

Using the fact that ϕ is a Schwartz function, we have for every N > 0,

∣∣(F−1(ϕj) ∗ dσ
)

(x)
∣∣ ≤ CN2nj

∫
Rn

dσ(y)

(1 + 2j |x− y|)N
. (2.5)

Let N > M . We split the last integral into the regions

S−1(x) = Sn−1 ∩ {y ∈ Rn : 2j |x− y| ≤ 1}

and for k > 0,

Sk(x) = Sn−1 ∩ {y ∈ Rn : 2k < 2j |x− y| ≤ 2k+1}.

We obtain the following estimate for the expression
∣∣(F−1(ϕj) ∗ dσ

)
(x)
∣∣

j∑
k=−1

∫
Sk(x)

CN2njdσ(y)

(1 + 2j |x− y|)N
+

∞∑
k=j+1

∫
Sk(x)

CN2njdσ(y)

(1 + 2j |x− y|)N
(2.6)

≤ C ′N2nj
j∑

k=−1

σ(Sk(x))χ
B(0,3)

(x)

2kN
+ CN2nj

∞∑
k=j+1

σ(Sk(x))χ
B(0,2k+1−j+1)

(x)

2kN

=: I + II.

Using the fact that for y ∈ Sk(x) we have |x| ≤ 2k+1−j + 1, we obtain the following
estimate

I ≤ C ′N2nj
j∑

k=−1

C2(k+1−j)χ
B(0,3)

(x)

2kN
≤ CN2(n)jχ

B(0,3)
(x). (2.7)

On the other hand
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II ≤ C ′N2nj
∞∑

k=j+1

C2−kNχ
B(0,2k+1−j+1)

(x) (2.8)

≤ C ′N
∞∑

k=j+1

2nj2−kN
(1 + 2k−j+2)M

(1 + |x|)M

≤ C ′M
∞∑

k=j+1

2(k−j)(M−N)

2k(N+1−n)

≤
C ′′M2j

(1 + |x|)M
,

where we used that N > M > n. From (2.5)-(2.8) we obtain (2.4) and consequently
(2.3).

From (2.1)-(2.2) we obtain

‖Mj‖Lp(·)→Lp(·) ≤ C‖Mj‖1−θL2→L2 ‖Mj‖Lp̃(·)→Lp̃(·) � 2(1/2−α)(1−θ)j2j(n)θ. (2.9)

Using the last estimate we obtain if 0 < θ < 2α−1
2α−1+2n , then

‖Mm‖p(·) �
∞∑
j=0

2(1/2−a)(1−θ)j2j(n)θ‖f‖p(·) � ‖f‖p(·).

�

To prove Theorem 1.3 we need the following lemma.

Lemma 2.1: Suppose α > 1/2 and for exponent p : Rn → (1,+∞) we have

2n+ 2α− 1

n+ 2α− 1
< p− ≤ p+ <

2n+ 2α− 1

n
.

Then there exists exponent p̃ : Rn → (1,+∞) such that 1 < p̃− ≤ p̃+ < ∞ and
1

p(x) = 1−θ
2 + θ

p̃(x) ; x ∈ Rn for some θ with property 0 < θ < 2α−1
2n+2α−1 .

Proof : Note that

1 <
2n+ 2α− 1

n+ 2α− 1
< 2 <

2n+ 2α− 1

n
.

We have

n

2n+ 2α− 1
< inf

x∈Rn

1

p(x)
≤ sup

x∈Rn

1

p(x)
<

n+ 2α− 1

2n+ 2α− 1
.

Let 1
p(x) = 1

2 + r(x). By the assumption we have

n

2n+ 2α− 1
− 1

2
< inf

x∈Rn
r(x) ≤ sup

x∈Rn

r(x) <
n+ 2α− 1

2n+ 2α− 1
− 1

2
. (2.10)
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It is easy to see that the equation

1

p(x)
=

1− θ
2

+
θ

p̃(x)
; (2.11)

is equivalent to

1

2
+
r(x)

θ
=

1

p̃(x)
. (2.12)

Using (2.9) we may take small δ > 0 such that

n

2n+ 2α− 1
− 1

2
+ δ < inf

x∈Rn
r(x) ≤ sup

x∈Rn

r(x) <
n+ 2α− 1

2n+ 2α− 1
− 1

2
− δ.

Then for θ, 0 < θ < 2α−1
2α−1 , where θ = θ < 2α−1

2α−1 − θ0, θ0 > 0 we have

n
2n+2α−1 −

1
2 + δ

2α−1
2n+2α+1 − θ0

< inf
x∈Rn

r(x)

θ
≤ sup

x∈Rn

r(x)

θ
<

n+2α−1
2n+2α−1 −

1
2 − δ

2α−1
2n+2α+1 − θ0

−1

2

2a−1
2n+2a−1 − 2δ

2a−1
2n+2a−1 − θ0

< inf
x∈Rn

r(x)

θ
≤ sup

x∈Rn

r(x)

θ
<

1

2

2a−1
2n+2a−1 − 2δ

2a−1
2n+2a−1 − θ0

.

If we take θ0 < 2δ we obtain

−1

2
< inf

x∈Rn

r(x)

θ
≤ sup

x∈Rn

r(x)

θ
<

1

2
. (2.13)

From (2.11) and (2.12) we get

0 < inf
x∈Rn

1

p̃(x)
≤ sup

x∈Rn

1

p̃(x)
< 1.

Consequently we have 1 < p̃− ≤ p̃+ <∞. �

As by the assumption

2n+ 2α− 1

(n+ 2α− 1)p−
<

2n+ 2α− 1

(n)p+
,

we can find θ such that

2n+ 2α− 1

(n+ 2α− 1)p−
< θ < min

(
1,

2n+ 2α− 1

(n)p+

)
.

Proof (Proof of Theorem 1.3):
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It is clear, that

2n+ 2α− 1

(n+ 2α− 1)
< θp− < θp+ <

2n+ 2α− 1

(n)
.

As we have that if p(·) ∈ Plog then θp(·) ∈ Plog and by Theorem 1.2 we get that the

operatorMm is bounded in Lθp(·)(Rn). Using the fact that [L∞(Rn), Lp(·)θ(Rn)]θ =
Lp(·)(Rn), (0 < θ < 1) and the operatorMm is bounded in L∞(Rn) and Lθp(·)(Rn)
we obtain that the operator Mm is bounded in Lp(·)(Rn). �
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